第6章 单组元相图及纯晶体的凝固1
合集下载
材料学热力学篇第六章单组元相图及纯晶体凝固

返回
多相平衡状态1
当温度、压力、组分 的浓度改变时
相的个数 相的组成 相的相对含量
2020/11/19
多相平衡状态2
材料学热力学篇第六章单组元相图
及纯晶体的凝固
返回
• 材料的显微组织取决于成分、温度、压力等变量。 • 描述材料的组织与温度、压力、成分之间关系的工具:相图 • 相图是反映物质状态(固态、液态或气态)随温度、压力变
及纯晶体的凝固
返回
3、独立组元 系统中每一个能单独分离出来并能独立存在的化学纯物质。
4、自由度 在一定范围内,可以任意改变而不引起旧相消失或新相产生
的独立变量称为自由度。
2020/11/19
材料学热力学篇第六章单组元相图
及纯晶体的凝固
返回
二、相图热力学基础
1、相平衡的热力学条件
• 在平衡条件下,系统中各相的成分都保持着相对的稳定 性。
及纯晶体的凝固
返回
2020/11/19
纯材料铁学的热力相学篇图第六章单组元相图
及纯晶体的凝固
返回
二元系物质相图的表示方法
2020/11/19
二元Pb-Sb合金相图
材料学热力学篇第六章单组元相图
及纯晶体的凝固
返回
三元系物质相图的表示方法
2020/11/19
材三料学元热匀力学晶篇第相六图章单组元相图
• 单组分平衡体系最多能3相共存。
•
一个纯物质可以有许多不同的相态。例如炭:气相、
液相、固相 (无定形碳、石墨、金刚石、富勒烯族(C60)。
• 但碳的相图中最多只能三相共存,不可能四相共存.
2020/11/19
材料学热力学篇第六章单组元相图
及纯晶体的凝固
第六章单组元相图及纯晶体的凝固

C ——组成物的组元,即系统由几种物质(纯净物)组成。 例如:纯水系统,C = 1; 盐水,由于水中含有NaCl,C = 2; Al–Si合金系统,组成物为Al和Si,故C = 2。
P ——系统中能够同时存在的相(如:固相、液相、α相等)数。 2 ——表示温度和压力两个变量。
对于绝大多数的常规材料系统而言,压力的影响极小, 可看作常量(1个大气压),因此自由度数减少一个,相律 的表达式为:
(1 相) 组元:Fe
(1 相) 组元:Fe和C
(2相) 组元:Fe和C
●相图(Phase diagrams):是一个材料系统在不同的化学成分、 温度、压力条件下所处状态的图形表示,因此,相图也称为状态 图。由于相图都是在平衡条件(极缓慢冷却)下测得的,所以,相 图也称为平衡相(状态)图。
对于常用的合金相图,因为压力的影响很小,况且一般都是
等温等压下
……
……
如果体系中只有a和b两相,当极少量(dn2)的组元2从a相转到b
相,以dGa和dGb分别代表此时a相和b相的自由能变化,则引 起的总的自由能变化为:
由于 故 因此,组元2从a相自发转到b相的条件是:
当dG=0,即 内没有物质传输。
,a相和b相处于平衡状态,此时体系
同理,其他组元也应有同样的属性。 对于多元系的多相平衡条件可普遍写成:
2.过冷与过冷度 纯金属都有一个理论结晶
温度Tm(熔点或平衡结晶温度 )。在该温度下, 液体和晶体 处于动平衡状态。
结晶只有在Tm以下的实际 结晶温度下才能进行。
●凝固:由液相至固相的转变,如果凝固后的固体是晶体,则又 可称之为结晶。
●固态相变:不同固相之间的转变。
例1:糖水
相与组元的关系
P ——系统中能够同时存在的相(如:固相、液相、α相等)数。 2 ——表示温度和压力两个变量。
对于绝大多数的常规材料系统而言,压力的影响极小, 可看作常量(1个大气压),因此自由度数减少一个,相律 的表达式为:
(1 相) 组元:Fe
(1 相) 组元:Fe和C
(2相) 组元:Fe和C
●相图(Phase diagrams):是一个材料系统在不同的化学成分、 温度、压力条件下所处状态的图形表示,因此,相图也称为状态 图。由于相图都是在平衡条件(极缓慢冷却)下测得的,所以,相 图也称为平衡相(状态)图。
对于常用的合金相图,因为压力的影响很小,况且一般都是
等温等压下
……
……
如果体系中只有a和b两相,当极少量(dn2)的组元2从a相转到b
相,以dGa和dGb分别代表此时a相和b相的自由能变化,则引 起的总的自由能变化为:
由于 故 因此,组元2从a相自发转到b相的条件是:
当dG=0,即 内没有物质传输。
,a相和b相处于平衡状态,此时体系
同理,其他组元也应有同样的属性。 对于多元系的多相平衡条件可普遍写成:
2.过冷与过冷度 纯金属都有一个理论结晶
温度Tm(熔点或平衡结晶温度 )。在该温度下, 液体和晶体 处于动平衡状态。
结晶只有在Tm以下的实际 结晶温度下才能进行。
●凝固:由液相至固相的转变,如果凝固后的固体是晶体,则又 可称之为结晶。
●固态相变:不同固相之间的转变。
例1:糖水
相与组元的关系
第六章单组元相图及纯晶体的凝固

下所可能存在的相及多相平衡的几何图形。
吉布斯相律对于单元系统(C=1)的应用 :
●压力可变(相图是由温度和压力两个变量组成的二维平面) 0≤ f≤2 f= 0时,由公式f =C-P+2,可知P = 3 意味着单元系统最多可以有三相共存。
●压力不变(相图是由温度一个变量组成的直线) 0≤ f≤1 f= 0时,由公式f =C-P+1,可知P = 2 意味着单元系统最多只能有二相同时存在。
纯水的相图
纯铁的相图(具有同素异构转变)
6.2 纯晶体的凝固 6.2.1 液态结构
固态下为晶体的材料,液态时结构介于晶态与气态之间 对液态结构X射线研究表明: 1)液体中原子之间的平均距离比固体中略大; 2)液体中原子的配位数比密排结构的固体的配位数减少,熔化
时体积略微膨胀,但对一些非密排结构(如Sb、Bi、Ga、Ge 等)的晶体例外; 3)液态中原子排列混乱的程度增加。
第六章 单组元相图及纯晶体的凝固
纯水的相图
纯铁的(PT)平衡相图
铜-银合金相图
基本概念 ●组元:组成一个体系的,且相互独立的基本单元。
可以是单质也可以是化合物( 如:Fe3C)
●单组元系统(单元系):由一种元素或化合物组成的材料或体系 金刚石、 二氧化碳(CO2)、石英(SiO2)、纯铁、纯铜……
dG
2ba2d来自2b0即,2b 2a 0
当dG=0,即 2b 2a ,a相和b相处于平衡状态,此时体系
内没有物质传输。
同理,其他组元也应有同样的属性。 对于多元系的多相平衡条件可普遍写成:
1a 1b 1 1P 2a 2b 2 2P
Ca Cb C CP
相平衡条件:处于平衡状态下的多相(P个相)体系,每个组 元(共有C个组元)在各相中的化学势都必须彼此相等。
吉布斯相律对于单元系统(C=1)的应用 :
●压力可变(相图是由温度和压力两个变量组成的二维平面) 0≤ f≤2 f= 0时,由公式f =C-P+2,可知P = 3 意味着单元系统最多可以有三相共存。
●压力不变(相图是由温度一个变量组成的直线) 0≤ f≤1 f= 0时,由公式f =C-P+1,可知P = 2 意味着单元系统最多只能有二相同时存在。
纯水的相图
纯铁的相图(具有同素异构转变)
6.2 纯晶体的凝固 6.2.1 液态结构
固态下为晶体的材料,液态时结构介于晶态与气态之间 对液态结构X射线研究表明: 1)液体中原子之间的平均距离比固体中略大; 2)液体中原子的配位数比密排结构的固体的配位数减少,熔化
时体积略微膨胀,但对一些非密排结构(如Sb、Bi、Ga、Ge 等)的晶体例外; 3)液态中原子排列混乱的程度增加。
第六章 单组元相图及纯晶体的凝固
纯水的相图
纯铁的(PT)平衡相图
铜-银合金相图
基本概念 ●组元:组成一个体系的,且相互独立的基本单元。
可以是单质也可以是化合物( 如:Fe3C)
●单组元系统(单元系):由一种元素或化合物组成的材料或体系 金刚石、 二氧化碳(CO2)、石英(SiO2)、纯铁、纯铜……
dG
2ba2d来自2b0即,2b 2a 0
当dG=0,即 2b 2a ,a相和b相处于平衡状态,此时体系
内没有物质传输。
同理,其他组元也应有同样的属性。 对于多元系的多相平衡条件可普遍写成:
1a 1b 1 1P 2a 2b 2 2P
Ca Cb C CP
相平衡条件:处于平衡状态下的多相(P个相)体系,每个组 元(共有C个组元)在各相中的化学势都必须彼此相等。
第六章单组元相图及纯金

不同的是液态金属原子不象固态金属原子那 样作长程有序规则排列。由于液态金属所处的 温度较高,原子活动能力较强,所以它只能作 短程(近程)有序长程(远程)无序分布。其 结构示意图如右:
液态金属为什么会具有短程有序,长程无 序的结构?这主要是因为在液态金属内部存 在着较大的能量起伏和结构起伏所造成的。 ①能量起伏:由于液态金属所处的温度较高, 原子的热运动比较强烈,使各原子的能量 不相等,一些原子的能量高于整个体系原 子的平均能量,而另一些原子的能量低于 整个体系原子的平均能量,并且这种现象 瞬息万变,此起彼伏。 我们把这种原子能量的不均匀性称为能量 起伏。
2.纯金属凝固的一般过程
由于液态金属是不透明的,所以目前还无法直 接观察到它的凝固过程。但人们在显微镜下可直接 观察到透明物质的凝固过程,如观察到有机物氯化 铵饱和水溶液的凝固过程如下图:
该图可用来近似地描述纯金属的凝固过程,由 图可知纯金属的凝固过程,主要是通过形核和长大 两个步骤来完成。
①形核:液态金属通过能量起伏和结构起 伏,形成具有一定尺寸的晶胚的过 程。该一定尺寸的晶胚称为晶核。 ②长大:液态金属原子不断地迁移到晶核表 面上去的过程。
另外由纯金属的凝固过程示意图还可以看 出,液态金属在凝固后是由许多晶粒和晶界 组成的多晶体。 晶粒:由一个晶核长大形成的小晶体。 晶界:是晶粒与晶粒之间的交界面。 液态金属在凝固过程中形成的晶核数目越 多,晶粒越细小,晶界总面积就越大。
6.2.3纯金属凝固的热力学条件
1.液、固态金属的自由能-温度曲线 由物理化学可知,体系的自由能G可用下式 表示:G=H-TS。H-热焓,T-绝对温度,S-熵, 求体系的自由能与温度的关系曲线,只需求 出自由能随温度的变化率,即自由能对温度的 一阶导数。
第六章 单组元相图及纯晶体的凝固

L. Baykal
Dnieper
nu MA E ON A CD I be A AIA LB N B LGA I A U R
GR E E EC
Da
MOLD A OV
Sea of Japan
JA A PN
N TH K E OR OR A
MA LI
Black Sea
K ZA H TA A KS N
Irtysh
组元:基本单元- 单质或化合物 单质或化合物) ⅰ 组元:基本单元-(单质或化合物 ⅱ 相:相同的物理与化学性质;与其他部 相同的物理与化学性质; 分之间有界面 分之间有界面 元系: 个组元都是独立的体系 ⅲ n元系:n个组元都是独立的体系 元系
CND AAA
Hudson Bay Gulf of Alaska
Ar abian Sea
INIA D
C GO ON
Bay of Bengal
TH I LA D A N
K MP C E A UHA
I N ON S A D EI
BUE RNI MA Y I A LA S
L. Victoria
KNA EY S I LA K R NA TA ZA I A N N MA Y I A LA S SN P E I GA OR
B LGI U E M C anary I sl ands S AN PI AD R N OR A FR N E AC LU . X GE MA Y R N
Sea Baltic
Ob'
E TON A S I
ne Rhi
C C ZE H
S TZE LA D WI R N P N OLA D
LA I A TV LI TH A I A UN
学基础-第6章-单组元相图及纯晶体的凝固

(3)液态原子长程无序,但存在短程有序结构。局部的 有序结构随原子热运动不断形成和消失,称“结构起伏”。 (4)金属的熔化热远小于气化热≈升华热,判断液态金属 仍为金属键结合。
7
第六章
单组元相图及纯晶体的凝固
二、晶体凝固的热力学条件 恒压时,dG/dT=-S,因SL>SS , G △G 故有:(dG/dT)L<(dG/dT)s 曲线GL-T与Gs-T必相交,交点对
(3) 螺位错生长机制(光滑界面的横向生长)
螺位错提供永不消失的小台阶,长大速度较慢
生长特点: ★不需在固-液界面上反复形核,不需形核功,生长连续; ★生长速率为:vg=μ3△Tk2 (μ3为常数)
27
第六章
单组元相图及纯晶体的凝固
五、结晶动力学及凝固组织
单组元相图及纯晶体的凝固
(2)二维晶核台阶生长(光滑界面 的横向生长) 生长特点:
★需要不断地形成新的二维晶核, 需形核功,生长不连续;
★晶体生长需要较大动态过冷度 △Tk(1~2℃); ★生长速率:vg=μ2exp(-b/△Tk) 式中,μ2、b为常数
二维晶核形核
26
第六章
单组元相图及纯晶体的凝固
固相晶面上原子所占位置分数 x
23
第六章
单组元相图及纯晶体的凝固
凝固时的固-液界面微观和宏观形态 粗糙界面:界面微观粗 糙,而宏观平直。
液 液
光滑界面:微观为由许多光滑 的小平面组成,而宏观不平。
液
液
固
微观
固
宏观
固
微观
固
宏观
粗糙界面中原子的堆放
光滑界面中原子的堆放
24
第六章
单组元相图及纯晶体的凝固
3
)
7
第六章
单组元相图及纯晶体的凝固
二、晶体凝固的热力学条件 恒压时,dG/dT=-S,因SL>SS , G △G 故有:(dG/dT)L<(dG/dT)s 曲线GL-T与Gs-T必相交,交点对
(3) 螺位错生长机制(光滑界面的横向生长)
螺位错提供永不消失的小台阶,长大速度较慢
生长特点: ★不需在固-液界面上反复形核,不需形核功,生长连续; ★生长速率为:vg=μ3△Tk2 (μ3为常数)
27
第六章
单组元相图及纯晶体的凝固
五、结晶动力学及凝固组织
单组元相图及纯晶体的凝固
(2)二维晶核台阶生长(光滑界面 的横向生长) 生长特点:
★需要不断地形成新的二维晶核, 需形核功,生长不连续;
★晶体生长需要较大动态过冷度 △Tk(1~2℃); ★生长速率:vg=μ2exp(-b/△Tk) 式中,μ2、b为常数
二维晶核形核
26
第六章
单组元相图及纯晶体的凝固
固相晶面上原子所占位置分数 x
23
第六章
单组元相图及纯晶体的凝固
凝固时的固-液界面微观和宏观形态 粗糙界面:界面微观粗 糙,而宏观平直。
液 液
光滑界面:微观为由许多光滑 的小平面组成,而宏观不平。
液
液
固
微观
固
宏观
固
微观
固
宏观
粗糙界面中原子的堆放
光滑界面中原子的堆放
24
第六章
单组元相图及纯晶体的凝固
3
)
第6章 单组元相图及纯晶体的凝固

金属结晶微观过程=形核+长大
两个过程重叠交织
形核
长大
形成多晶体
三、金属结晶的热力学条件
思考:为什么液态金属在理论结晶温度不能结晶,而必须在一定过冷度下才
能进行?
热力学第二定律指出:在等温等压条件下,物质系统总是自发地从自由能较 高的状态向自由能较低的状态转变。
G H TS dG VdP SdT
G
4 3 r Gv 4r 2 3
分析:①r↑,体积自由能的减小的速率比表面能的增
加的速率要快,但开始时表面能占优; ②r增加到某一极限值,体积自由能的减小占优,出现 极大值ΔGK,对应 rK; ③r<rK,随晶胚尺寸r↑→ΔG↑(过程不能自动进行,
晶胚不能成为稳定晶核,瞬时产生,瞬时消失); ④ r>rK,随晶胚尺寸r↑→ΔG↓(自动进行→形成 稳定晶核) r=rK→临界晶核半径
不同润湿角的晶核形貌
非均匀形核
2)形核率
①过冷度的影响
非均匀形核可在较小过冷度下获得较高的形核率; 非均匀形核的最大形核率小于均匀形核 。
②固体杂质结构的影响 W cos LW L L固定不变,那么θ 角只 当液态金属确定之后,
近于 LW ,才能越接近于1。
均匀形核率和非均匀形核率 随过冷度变化的对比
则临界晶核中晶胞的数目:
n
VC 173 VL
铜是面心立方晶体结构,每个晶胞中的原子数为4,则一个临界晶核的原子
数目为1734=692个原子
思考:均匀形核所需要的过冷度很大,而在实际结晶中
并不需要这么大的过冷度,为什么?
上节重点内容回顾
1、液态金属结晶的结构条件—结构起伏或相起伏 2、均匀形核、非均匀形核 3、形核时的能量变化和临界晶核半径 4、形核功:能量起伏 5、形核率 rk、rmax rk rmax Δ Gk
第6章单组元相图及纯晶体的凝固

5
纯铁在固态下 有三种同素异 构体, -Fe 、 -Fe 体心立方 结构, -Fe 面 心立方结构。
6
6.2 纯晶体的凝固
6.2.1、液态结构
晶体材料的液态结构从长程上来说是无序的,而在近程范 围内却存在着晶态的原子排列情况即近程有序;而且由于 原子的热运动,这种排列是在不断变动的,称为“结构起 伏”。
(3)振动和搅拌: 在浇注和结晶过程中实施振动和搅拌,可以达到细化晶 粒的目的。 这是因为振动和搅拌可使结晶的枝晶碎化,增加晶核数 量;另外还能向液体中输入额外能量以提供形核功。
25
2、单晶的制备 (1)垂直提拉法: 先用感应加热或电阻加热方法熔化坩埚中的材料,使液 体保持稍高于熔点的温度,然后将夹有一个籽晶的杆下 移,使籽晶与液面接触。缓慢降低炉内温度,将籽晶杆 一边旋转一边提拉,使籽晶作为唯一的晶核在液相中结 晶,最后成为一块单晶体。 (2)尖端形核法:
8
6.2.3、形核
晶体的凝固是通过形核与长大两个过程进行的,即固相 核心的形成与晶核生长至液相耗尽为止。 形核的方式有两类: (1)均匀形核:新相晶核在母相中均匀地生成。 ( 2 )非均匀形核:新相优先在母相中存在的异质处形核。
实际溶液的凝固方式主要是非均匀形核。非均匀形核的 原理是建立在均匀形核基础上的。
(2)必须具备与一定过冷度相适应的能量起伏( G* )和 结构起伏( r* )。
12
形核率 N:当温度低于熔点时,单位体积液体内,在单位
时间所形成的晶核数。 形核率受两个因素控制,形核功因子和原子扩散的几率因子。
G * Q N K exp( ) exp( ) kT kT
形核率先随过冷度增大 而增大,有一极大值, 超过极大值后,形核率 又随过冷度进一步增大 而减小。
纯铁在固态下 有三种同素异 构体, -Fe 、 -Fe 体心立方 结构, -Fe 面 心立方结构。
6
6.2 纯晶体的凝固
6.2.1、液态结构
晶体材料的液态结构从长程上来说是无序的,而在近程范 围内却存在着晶态的原子排列情况即近程有序;而且由于 原子的热运动,这种排列是在不断变动的,称为“结构起 伏”。
(3)振动和搅拌: 在浇注和结晶过程中实施振动和搅拌,可以达到细化晶 粒的目的。 这是因为振动和搅拌可使结晶的枝晶碎化,增加晶核数 量;另外还能向液体中输入额外能量以提供形核功。
25
2、单晶的制备 (1)垂直提拉法: 先用感应加热或电阻加热方法熔化坩埚中的材料,使液 体保持稍高于熔点的温度,然后将夹有一个籽晶的杆下 移,使籽晶与液面接触。缓慢降低炉内温度,将籽晶杆 一边旋转一边提拉,使籽晶作为唯一的晶核在液相中结 晶,最后成为一块单晶体。 (2)尖端形核法:
8
6.2.3、形核
晶体的凝固是通过形核与长大两个过程进行的,即固相 核心的形成与晶核生长至液相耗尽为止。 形核的方式有两类: (1)均匀形核:新相晶核在母相中均匀地生成。 ( 2 )非均匀形核:新相优先在母相中存在的异质处形核。
实际溶液的凝固方式主要是非均匀形核。非均匀形核的 原理是建立在均匀形核基础上的。
(2)必须具备与一定过冷度相适应的能量起伏( G* )和 结构起伏( r* )。
12
形核率 N:当温度低于熔点时,单位体积液体内,在单位
时间所形成的晶核数。 形核率受两个因素控制,形核功因子和原子扩散的几率因子。
G * Q N K exp( ) exp( ) kT kT
形核率先随过冷度增大 而增大,有一极大值, 超过极大值后,形核率 又随过冷度进一步增大 而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
把上述三式代入,整理后得 GS AL L r 2 sin 2 cosL AL r 2 sin 2 cos L
不均匀形核示意图
32
非均匀形核
2 3 cos cos3 球冠晶核的体积:V r 3
ΔTK
rk rk、rmax
rmax
过冷度ΔT
过冷只是金属结晶的必要条件
26
2)形核功
思考:晶核半径在rK~r0范围内的晶核能够成为稳定晶核吗?
当r=rK→ΔG出现极大值ΔGK,
2 4 2 GK G 4 v G 3 GV V 形核功 2 1 2 1 2 4 4 r k 3 G 3 V
2 3 2
液相中的能量起伏
过冷度增大,临界形核功显著 降低,结晶过程易于进行。
28
小结:
液相必须处于一定的过冷条件时方能结晶, 而液体中客观存在的结构起伏和能量起伏是促 成均匀形核的必要因素。
b 形核率
当温度低于Tm时,单位体积液体内在单位 时间所形成的晶核数(形核率)受两个因素的 控制,即形核功因子和原子扩散的几率因子。
相晶核的几率都是相同的。
非均匀形核(异质形核、非自发形核):新相优
先在母相中存在的异质处形核,即依附于液相中
的杂质或外来表面形核。
实际金属结晶:非均匀形核
23
1、均匀形核
思考:为什么过冷液体形核要求晶胚具有一定的临界尺寸? 1)晶核形成时的能量变化和临界晶核
(液→固)→自由能↓←结晶驱动力 晶胚出现 新的表面→表面能→自由能↑←结晶阻力 能量变化
设晶胚体积为 V ,表面积为 S ,液、固两相单位体积自由 能差为ΔGV,
单位面积的表面能σ,则系统自由能的总变化为: G VGV S
设过冷液体中出现一个半径为 r 的球状晶胚,它所引起的自由 能变化为: 4 3 G r Gv 4r 2 3
24
分析 :① r<r K ,随晶胚尺寸 r ↑→ ΔG ↑ (过程不能自动进行,晶胚不能成为稳 定晶核,瞬时产生,瞬时消失); ② r>rK,随晶胚尺寸r↑→ΔG↓(自动进 行→形成稳定晶核) 4
19
事实上,在此两相共存温度 Tm ,液相既不能 完全结晶,也不能完全熔化,要发生结晶则体系必 须降至低于Tm温度,而发生熔化则必须高于Tm。
在一定温度下,从一相转变为另一相的自由能变化 为:
G H T S
令液相转变为固相的单位体积自由能变化为: GV
GV GS GL
3
2
Δ Gk
r0
rk
分析: 形成临界晶核时,体积自由能的下降只补偿了表面能的 2/3,还有1/3的表面能没有得到补偿,需要另外供给,即需要 对形核做功。
27
形核功
能量起伏:体系中每个微小体积所实际具有的能量会偏离 体系平均能量水平而瞬时涨落的现象→形核时所需能量的 来源
2Tm 4 2Tm Lm T GK 4 3 Lm T Tm Lm T 16 3Tm 1 2 T 2 3Lm
第六章 单组元相图及纯系相变的热力学及相平衡 6.2 纯晶体的凝固 6.3 气-固相变与薄膜生长
6.4
高分子的结晶特征
3
6.1 单元系相变的热力学及相平衡
6.1.1 相平衡条件和相律
组成一个体系的基本单元,如单质(元素)和化 合物,称为组元。
体系中具有相同物理与化学性质的,且与其他部
已知纯铜的凝固的温度 T m =1356K , ΔT =236K ,熔化热 Lm=1628106J/m3,比表面能σ=17710-3J/m3。
求解: 2Tm 2 177 103 1356 9 rK 1 . 249 10 m 6 Lm T 1628 10 236 铜的点阵常数a0=3.61510-10m,晶胞体积为VL=(a0)3=4.72410-29m3 而临界晶核的体积为: Vc
相变为恒温过程。 在单元系中,除了可以 出现气、液、固三相之间 的转变外,某些物质还可 能出现固态中的同素异构 转变。
9
10
SiO2相平衡图:化合物的多晶型转变
11
达到相平衡有时需要很长时间,稳定相形成速度
甚慢—在稳定相前,先形成自由能较高的亚稳相。
稳定相:α—石英 亚稳相:低温鳞石英、低温方石英、玻璃…… 12
H S H L T S S S L
H S H L Lm
Lm S S S L Tm
20
Lm T 整理后得: GV Tm
要使 ΔGv<0,必须使ΔT>0,即 T<Tm,故ΔT称为过 冷度。 晶体凝固的热力学条件表明,实际凝固温度应低于熔 点Tm,即需要有过冷度。 液、固两相的吉布斯自由能差构成了凝固的驱动力。 这就是晶体凝固的热力学条件。
13
本章章节结构
6.1 单元系相变的热力学及相平衡 6.2 纯晶体的凝固 6.3 气-固相变与薄膜生长
6.4
高分子的结晶特征
14
6.2 纯晶体的凝固
纯晶体(单组元晶体):由一种元素或化合物构 成的晶体,该体系称为单元系。
相变:从一种相到另一种相的转变。
固态相变:不同固相之间的转变。 凝固:由液相至固相的转变。 结晶:如果凝固后的固体是晶体。
相图中两相平衡时温度和压力的定量关系: 克劳修斯---克拉泊龙方程
dp H dT T Vm H 为相变潜热,Vm为摩尔体积变化,是两相平衡温度。 多数晶体由液相变为固相或高温固相变为低温固相时, dp 会放热和收缩,H 0, Vm 0,由此 0. 故相界线斜率为正。 dT dp 少数晶体膨胀,H 0, Vm 0,由此 0. 故相界线斜率为负。 dT
分以界面分开的均匀部分称为相。
通常把具有n个组元都是独立的体系称为n元系,
组元数为一的体系称为单元系。
4
吉布斯相律:
f CP2
式中,f为体系的自由度数.它是指不影响体
系平衡状态的独立可变参数(如温度、压力、浓度
等)的数目;C为体系的组元数;P为相数。 对于不含气相的凝聚体系,压力在通常范围的 变化对平衡的影响极小,一般可认为是常量。因此 相律可写成下列形式:
冰三相平衡点。根据相律,此时f=0,因此要保此三
相共存,温度和压力都不能变动。
8
如果外界压力保持恒定(例如一个标准大气压),那
么单元系相图只要一个温度轴来表示。根据相律,在汽、 水、冰的各单相区内( f = 1 ),温度可在一定范围内变动。 在熔点和沸点处,两相共存, f = 0 ,故温度不能变动,即
第 5章
内容回顾
5.3 冷塑性变形后,回复、再结晶和晶粒长大:
回复的特点、机制,再结晶的过程,形核机制,
影响再结晶的因素,晶粒长大方式等;
5.4 热变形与动态回复、再结晶:
动态回复、再结晶的真实应力-真实应变曲线,蠕
变曲线,蠕变机制,超塑性等; 5.5-5.6 陶瓷材料和高聚物的变形特点。
(1)过冷:液态材料在理论结晶温度以下仍保持液态的现 象。
(2)过冷度:液体材料的理论结晶温度(Tm) 与其实际温度 之差。 △T=Tm-T
21
6.2.3 形核
结晶的基本过程:形核-长大
图6.7
22
形核方式:均匀形核、非均匀形核
均匀形核(均质形核、自发形核):新相晶核是
在母相中均匀地生成,即液相中各个区域出现新
6
6.1.2 单元系相图
单元系相图是通过几何图形描述由单一组元构成 的体系在不同温度和压力条件下所可能存在的相及多 相的平衡。现以水为例说明单元系相图的表示和测定
方法。
7
根据相律
一
图6.1
由于f≥0,所以P≤3,故 在温度和压力这两个外界条
件变化下,单元系中最多只
能有三相平衡。 OA,OB和OC这3条曲线交于O点,它是汽、水、
H是焓;T是绝对温度;S是熵,可推导得:
18
在等压时,dp=0,故上式简化为: 由于熵恒为正值,所以自由能是随温度增高而减小。 纯晶体的液、固两相的自由能随温度变化规律如图所 示。 两条曲线的交 点表示液、固两相 的自由能相等,故 两相处于平衡而共 存,此温度即为理 论凝固温度,也就 是晶体的熔点Tm。
f C P 1
5
相律的应用
相律是检验、分析和使用相图的重要工具。利用它可以 分析和确定系统中可能存在的相数,检验和研究相图。 注意使用相律有一些限制: ( 1 )只适用于热力学平衡状态,各相温度相等(热量平 衡)、各相压力相等(机械平衡)、各相化学势相等(化 学平衡)。 (2)只表示体系中组元和相的数目,不能指明组元和相的 类型和含量。 (3)不能预告反应动力学(即反应速度问题)。 (4)f≧0
4 3 rk 8.157 10 27 m 3 3
则临界晶核中晶胞的数目: n
VC 173 VL
铜是面心立方晶体结构,每个晶胞中的原子数为4,则一个临界晶核的原子 数目为1734=692个原子
思考:均匀形核所需要的过冷度很大,而在实际结 晶中并不需要这么大的过冷度,为什么?
31
3
2 3 cos cos3 则晶核由体积引起的自由能变化为:Gt V GV r GV 3 晶核形核时体系总的自由能变化: G Gt GS
3
3 4 3 2 3 cos cos 2 将 G 和G 代入整理得: G r GV 4r L t S
2、非均匀形核
1)临界形核半径和形核功
晶核形成时体系表面能的变化为ΔGS,则 GS AL L AW W AW LW