液体粘滞系数的测定
液体粘滞系数的测定

实验项目介绍实验资料:实验名称:落球法液体粘滞系数测定指导教师:kunter可预约计划:0 执行教室:1实605实验类型:综合实验仪器:FD-VM-Ⅱ落球法粘滞系数测定仪仪器套数:6准备天数:3实验介绍:用落球法测定液体的粘滞系数一、实验目的和意义液体都具有粘滞性,液体的粘滞系数(又称内摩擦系数或粘度)是液体粘滞性大小的量度,也是粘滞流体的主要动力学参数。
研究和测定流体的粘滞系数,不仅在物性研究方面,而且在医学、化学、机械工业、水利工程、材料科学及国防建设中都有很重要的实际意义。
例如,现代医学发现,许多心血管疾病都与血液粘度的变化有关,血液粘度的增大会使流入人体器官和组织的血流量减少,血液流速减缓,使人体处于供血和供氧不足状态,可能引发多种心脑血管疾病和其他许多身体不适症状,因此,测量血液粘度的大小是检查人体血液健康的重要标志之一。
又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘度。
液体的粘度受温度的影响较大,通常随着温度的升高而迅速减小。
测定粘滞系数的方法有多种,如转筒法、毛细管法、落球法等。
转筒法,利用外力矩与内摩擦力矩平衡,建立稳定的速度梯度来测定粘度,常用于粘度为0.1~100的流体;毛细管法,通过一定时间内流过毛细管的液体体积来测定粘度,多用于粘度较小的液体如水、乙醇、四氯化碳等;落球法,通过小球在液体中的匀速下落,利用斯托克斯公式测定粘度,常用于粘度较大的透明液体如蓖麻油、变压器油、机油、甘油等。
本实验学习用落球法测定蓖麻油的粘滞系数,如果一小球在粘滞液体中铅直下落,由于附着于球面的液层与周围其他液层之间存在着相对运动,因此小球爱到粘滞阻力,它的大小与小球下落的速度有关。
当小球作匀速运动时,测出小球下落的速度,就可以计算出液体的粘度。
二、参考资料1、黄秉鍊·大学物理实验·长春:吉林科学技术出版社,2003,P65-68;2、沈元华等·基础物理实验·北京:高等教育出版社,2003,P119-122;3、阎旭东等·大学物理实验·北京:科学出版社,2003,P63-65;4、李天应·物理实验·武汉:华中理工大学出版社,1995,P100-102;5、王惠棣等·物理实验·天津:天津大学出版社,1997,P137-144;6、吴锋等·大学物理实验教程·北京:化学工业出版社,2003,P84-86。
液体粘滞系数测定实验报告

液体粘滞系数测定实验报告实验介绍:液体粘滞系数测定实验是通过测量液体在垂直下落时的速度和时间,对液体的粘滞性进行分析和测定的实验。
液体粘滞系数是指,液体内分子间相互作用的形成的阻力大小,阻碍了分子的相对运动。
液体粘滞系数又叫做黏度,通常用希腊字母mu(μ)表示,其单位是帕秒。
液体粘滞系数是许多流体力学和化学过程的重要参数之一,因此液体粘滞系数测定实验具有非常高的实用价值。
实验原理:液体粘滞系数测定实验的原理基于斯托克斯定理。
根据斯托克斯定理,在实验介质中垂直下落的直径为d的小球,以恒定的速度υ下落的关系式为:f=6πμυd其中f是液体对小球的阻力,μ是液体的粘滞系数,在SI单位下的单位是Pa·s,υ是小球下落的恒定速度,d是小球的直径。
实验内容:实验所需的材料主要有:测量筒、滴管、计时器、小球等。
首先将测试液体倒入测量筒中,并用滴管将小球放入液体中,观察小球在液体中的运动情况并确定小球下落的恒定速度。
然后,利用计时器测量小球下落一定距离所需的时间。
在实验过程中,需要先进行预热,将测试液体倒入测量筒中,用计时器测量室温下小球下落一定距离所需的时间t1,然后将液体测温加热至70℃,用计时器测量小球下落一定距离所需的时间t2。
在实验中,需要多次重复测量,求出液体的平均时间。
利用液体平均时间及小球的下落速度,根据斯托克斯定理,可以计算液体的粘滞系数。
实验数据处理:在实验过程中,需要先计算小球的下落速度υ,通过下式计算:υ=m×g/6πRμ其中,m为小球的质量,R为小球半径,g为重力加速度,μ为液体粘滞系数。
可以求出实验所得液体的平均粘滞系数μ的值,通过求出标准偏差及误差,进一步确定实验数据的可靠性和准确性。
实验结论:通过本次液体粘滞系数测定实验,我们可以得知不同液体的粘滞系数不同,小球下落恒定速度与液体的粘滞系数成反比例关系,液体温度对粘滞系数的影响较大,液体温度升高,粘滞系数减小。
粘滞系数测定

[数据处理与分析]
• 如忽略(5-7)式分母中修正项的误差, 有
Uη = ( ∆ m + ∆Vρ0 m − Vρ 0 )2 + ( ∆ l 2 ∆t 2 ∆ d 2 ) +( ) +( ) l t d
• 其中:
∆Vρ0 = Vρ 0 ∗ (3 ∆ d 2 ∆ ρ0 2 ) +( ) d ρ0
[注意事项]
• (1) • 式中η称为粘滞系数(单位名称为帕秒,符号Pa·s)。 • 不同流体具有不同的粘滞系数,同一种流体在不同温度下其η值变化 也很大。例如蓖麻油当温度从18°C上升到40°C时粘度几乎降到原来 的1/4。 • 液体的粘滞系数是粘滞流体的主要动力学参数,也是液态物质的重要 物理、化学指标之一。精确测定粘滞系数不仅具有实用意义,而且可 以对许多学科的理论研究提供重要的依据。液体粘滞系数测定的方法 有多种,常用的有毛细管法、落球法和园筒旋转法等。通过本实验还 可以对实验技能得到多方面的训练。
•
• • • •
• •
•
[实验内容] 1.选择10个以上表面光滑及直径相同的小球,用螺旋测微计分别测 出直径d,每粒小球测一次,求其平均值d,注意个别小球直径差异 过大,应剔除不用。 2.将已测过直径的10粒以上的小球,用物理天平称衡其总质量,即 可算得每粒的质量m。 3.用游标卡尺测量量筒的内直径,算出半径R;用钢直尺测量量筒 外壁上两条标线N1、N2之间的距离l。 4.用比重计测出液体的比重,并换算密度ρ0。 5.用镊子夹住小球,先将小球在油中浸一下使小球表面完全为油所 浸湿;然后将小球放入量筒的中间液面处,用秒表测出小球匀速下降 通过路径所需的时间t,则速度 v = l t 。 6.在实验前后各测一次油的温度,以平均值作为实验时的油温T。 在进行正式测量前,必须先熟练掌握秒表的使用方法,并练习测量 2~4粒未经测量直径的小球的下落时间,在已能熟练操作后,再进行 正式测量。 7.将有关数据代入公式(6)计算粘滞系数η值,并求其不确定度。
液体粘滞系数的测定实验报告

液体粘滞系数的测定实验报告一、实验目的。
本实验旨在通过测定不同液体的粘滞系数,探究液体的流动特性,并学习粘滞系数的测定方法。
二、实验原理。
液体的粘滞系数是衡量液体黏性的重要指标,通常用于描述流体的内摩擦力。
在本实验中,我们将通过测定液体在不同条件下的流动速度和流动层厚度,利用流变学原理计算出液体的粘滞系数。
三、实验仪器与试剂。
1. 流体力学实验装置。
2. 不同液体样品(如水、甘油、汽油等)。
3. 测量工具(如尺子、计时器等)。
四、实验步骤。
1. 准备工作,将实验装置设置在水平台面上,并将不同液体样品倒入实验装置中。
2. 测定流速,打开实验装置,调节流体流动速度,并测定不同液体在相同条件下的流速。
3. 测定流动层厚度,观察液体流动时的流动层厚度,并记录下来。
4. 数据处理,根据实验数据,利用流变学原理计算出不同液体的粘滞系数。
五、实验结果与分析。
经过实验测定和数据处理,我们得到了不同液体的粘滞系数。
通过对实验结果的分析,我们发现不同液体的粘滞系数存在较大差异,这与液体的性质密切相关。
例如,甘油的粘滞系数较大,而汽油的粘滞系数较小,这与它们的分子结构和相互作用有关。
六、实验总结。
通过本次实验,我们深入了解了液体的粘滞系数测定方法,并学习了流变学原理在实验中的应用。
同时,我们也认识到了不同液体的粘滞系数反映了其内部分子结构和流动特性,这对于液体的工程应用具有重要意义。
七、实验注意事项。
1. 在实验过程中要注意操作规范,确保实验安全。
2. 实验数据的准确性对于结果的可靠性至关重要,要认真记录实验数据。
3. 在测定流速和流动层厚度时,要保持仪器的稳定,避免外界干扰。
八、参考文献。
1. 《流体力学实验方法》,XXX,XXX出版社,XXXX年。
2. 《流变学导论》,XXX,XXX出版社,XXXX年。
以上为本次液体粘滞系数的测定实验报告,谢谢阅读。
液体粘滞系数的测定

实验四 液体粘滞系数的测定液体的粘滞系数是表征液体黏滞性强弱的重要参数,在工业生产和科学研究中(如流体的传输、液压传动、机器润滑、船舶制造、化学原料及医学等方面)常常需要知道液体的粘滞系数,准确测量这个量在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。
例如在用管道输送液体时要根据输送液体的流量,压力差,输送距离及液体粘度,设计输送管道的口径。
测量液体粘度可用落球法,毛细管法,转筒法等方法,其中落球法(也称斯托克斯法)是最基本的一种,它是利用液体对固体的摩擦阻力来确定粘滞系数的,可用来测量粘滞系数较大的液体。
【预习思考题】1. 什么是液体的粘滞性?2. 金属小球在粘滞性流体中下落时,将受到哪些力的作用?3. 液体的粘滞系数与那些因素有关?【实验目的】1. 观察液体中的内摩擦现象。
2. 掌握用落球法测液体粘滞系数的原理和方法。
3. 学习和掌握一些基本测量仪器(如游标卡尺、螺旋测微计、比重计、秒表)的使用。
【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力Array即为粘滞阻力。
它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的相互作用力。
不同的液体这种不同液层之间的相互作用力大小是不相同的。
所以粘滞阻力除与液体的分子性质有关外,还与液体的温度、压强等有关。
液体的内摩擦力可用粘滞系数 η来表征。
对于一个在无限深广的液体中以速度 v 运动的半径为 r 的球形物体,若运动速度较小,即运动过程中不产生涡旋,则根据斯托克斯(G.G. Stokes)推导出该球形物体受到的摩擦力即粘滞力为f = 6πηvr (1)当一个球形物体在液体中垂直下落时,它要受到三种力的作用,即向上的粘滞力 f、向上的液体浮力 F和向下的重力 G,如图 1 所示。
球体受到液体的浮力可表示为F = σg4πr3/3 (2)上式中 σ 为液体的密度,g为本地的重力加速度。
液体粘滞系数的原理和测量

液体粘滞系数的原理和测量液体粘滞系数是一个描述液体内部流动阻力的物理量。
它是指单位面积上液体层与相邻层之间的粘滞应力与液体层流动速度梯度之比。
粘滞是指在流动过程中,液体分子之间相互作用引起的内部摩擦阻力。
当液体流动时,由于近层液体粒子与远层液体粒子之间的相互作用力,近层粒子受到远层粒子的牵引,使其速度增加。
在相邻层之间,液体内部存在速度梯度,即速度随距离的变化。
液体粘滞系数的测量方法有多种,下面将介绍几种常用的方法。
一、平板式法测量液体粘滞系数平板式法是通过在液体中夹入平板,通过测量平板下落过程中的速度来求解液体粘滞系数。
实验装置主要包括液体槽、平板和测量设备。
首先将液体倒入槽中,然后将平板缓慢地插入液体中,开始计时,当平板进入液体后,即停止计时,记录下这个时间。
根据牛顿黏滞定律,我们可以获得平板下落过程中的速度。
通过实验测量得到的数据,可以计算出液体的粘滞系数。
二、毛细管法测量液体粘滞系数毛细管法是在液体中将毛细管插入一定深度,并测量液柱高度和时间关系来求解液体粘滞系数。
首先通过调节进口控制阀进入合适的液体流量,使毛细管中液面维持稳定,然后记录下毛细管中液面的高度和时间。
通过实验测量得到的数据,可以计算出液体的粘滞系数。
三、旋转杯法测量液体粘滞系数旋转杯法是利用液体在旋转杯中产生的离心力和摩擦力来测量液体的粘滞系数。
实验装置主要包括旋转杯、电机和测力装置。
首先,将被测液体注入旋转杯中,然后通过电机驱动旋转杯旋转,测力装置测量旋转杯的转矩。
通过测力装置测得的数据,可以计算出液体的粘滞系数。
通过以上三种常用的方法,我们可以测量液体粘滞系数,进而了解液体的粘滞特性。
液体粘滞系数的测量对于工业生产和科学研究都具有重要意义。
在工业领域中,液体粘滞系数的测量可以用于衡量液体的黏稠度,从而确定液体在输送、泵送和混合等过程中的流动性能。
在科学研究中,液体粘滞系数的测量可以用于研究液体的流变学特性,从而推断液体分子结构和力学性质的变化。
液体粘滞系数的测量

液体粘滞系数的测试液体流动时,平行于流动方向的各层流体速度都不相同,即存在着相对滑动,于是在各层之间就有摩擦力产生,这一摩擦力称为粘滞力,它的方向平行于接触面,其大小与速度梯度及接触面积成正比,比例系数η称为粘滞系数,它是表征液体粘滞性强弱的重要参数。
液体的粘滞系数和人们的生产,生活等方面有着密切的关系,比如医学上常把血粘滞系数的大小做为人体血液健康的重要标志之一。
又如,石油在封闭管道中长距离输送时,其输运特性与粘滞性密切相关,因而在设计管道前,必须测量被输石油的粘滞系数。
测量液体粘滞系数可用落球法,毛细管法,转筒法等方法,其中落球法适用于测量粘滞系数较高的透明或半透明的液体,比如:蓖麻油、变压器油、甘油等。
本实验用落球法测量蓖麻油的粘滞系数。
【预习思考题】1.为何要对公式(4)进行修正?2.如何判断小球在液体中已处于匀速运动状态? 3.影响测量准确度的因素有哪些?【实验原理】以下阐述落球法测量液体粘滞系数的基本原理。
处在液体中的小球受到铅直方向的三个力的作用:小球的重力mg (m 为小球质量)、液体作用于小球的浮力gV ρ(V 是小球体积,ρ是液体密度)和粘滞阻力F (其方向与小球运动方向相反)。
如果液体无限深广,在小球下落速度v 较小情况下,有rv F πη6= (1)上式称为斯托克斯公式,其中r 是小球的半径;η称为液体的粘滞系数,其单位是Pa·s 。
小球在起初下落时,由于速度较小,受到的阻力也就比较小,随着下落速度的增大,阻力也随之增大。
最后,三个力达到平衡,即r v gV mg 06πηρ+= (2)此时,小球将以0v 作匀速直线运动,由(2)式可得:rv g V m 06)(πρη-=(3)令小球的直径为d ,并用'36ρπd m =,t lv =0,2d r =代入(3)式得ltgd 18)(2'ρρη-= (4)其中'ρ为小球材料的密度,l 为小球匀速下落的距离,t 为小球下落l 距离所用的时间。
液体粘滞系数的测定

液体粘滞系数的测定在流动的液体中,各流体层的流速不同,则在互相接触的两个流体层之间的接触面上,形成一对阻碍两流体层相对运动的等值而反向的摩擦力,流速较慢的流体层给相邻流速较快的流体层一个使之减速的力,而该力的反作用力又给流速较慢的流体层一个使之加速的离,这一对摩擦力称内摩擦力或粘滞阻力,流体的这种性质称为粘滞性。
不同流体具有不同的粘度,同种流体在不同的温度下其粘度的变化也很大。
测定粘度在化学、医学、水利工程、材料科学、机械工业和国防建设中有着重要意义。
从实验中得到的粘滞定律:粘滞力f 的大小与所取流体层的面积S ∆和流体层之间的速度空间变化率dr du 的乘积成正比,即drdu s f ∆=η。
其中η为粘滞系数〔也称内摩擦系数〕,它决定于液体的性质和温度,对液体而言,它随温度的升高而迅速减少。
η的国际单位:s Pa ⋅但是依据粘滞定律直接测量难度很大,一般都采纳间接测量的方法。
测量液体粘滞系数的方法有很多种,如常用的落球法、落针法、转叶法。
本实验是用变温落针计测量液体在不同温度下的粘度系数。
中空长圆落针在待测液体中垂直下落,通过测量针的收尾速度确定粘度。
采纳霍尔传感器和多功能秒表计测量落针的速度,并将粘度显示出来。
对待测液体进行水浴加热,通过温控装置,达到预定的温度。
巧妙的取针和提针装置,使测量过程极为简单。
本实验既适用于牛顿液体,又适于非牛顿液体,还可测定液体密度。
【实验目的】1. 用落针法测液体的粘度系数。
2. 研究液体粘度系数在不同温度下的变化规律。
【实验仪器】PH--IV 型变温粘度器、落针图1 实验仪器实图【实验原理】一个物体在液体中运动时,将受到与运动方向相反的摩擦阻力的作用,这种力即为粘滞阻力。
它是由粘附在物体表面的液层与邻近的液层相对运动速度不同而引起的,其微观机理都是分子之间以及在分子运动过程中形成的分子团之间的互相作用力。
不同的液体这种不同液层之间的互相作用力大小是不相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验19 液体粘滞系数的测定
【实验目的】
掌握奥氏粘度计和沉降法测定液体粘滞系数的原理和方法。
【实验仪器】
奥氏粘度计、量筒、烧杯、停表、移液管、洗耳球、小钢球、游标卡尺、温度计(公用)、甘油、稀释甘油、水。
实验之一 用奥氏粘度计测稀释甘油的粘滞系数
【实验原理】
由泊肃叶公式可知,当液体在一段水平圆形管道中作稳定流动时,秒内流出圆管的液体体积为
(1)
式中为管道的的截面半径,为管道的长度,为流动液体的粘滞系数,
为管道两端液体的压强差。
如果先测出、、、各量,则可求得
液体的粘滞系数
(2)
1),采用比较法进行测量。
取一种已知粘滞系数的液体和一种待测粘滞系数的液体,设它们的粘滞系数分别为
和,令同体积的两种液体在同样条件下,由于
重力的作用通过奥氏粘度计的毛细管DB ,分别测出他们所需的时间和,两种液体的密度分别为、。
则
(3)
(4) 式中为粘度计两管液面的高度差,它随时间连续变
化,由于两种液体流过毛细管有同样的过程,所以由(3)式和(4)式可得
(5) 如测出等量液体流经DB 的时间和,根据已知数、、,即可求出待测液体的粘滞系数。
式中水的粘滞系数见附表一,实验温度下水的密度
见附表二。
【实验内容】
t t
L P R V ηπ84∆=R L ηP ∆V R P ∆L t
VL P R 84∆=πη0ηx ηV 1t 2t 1ρ2ρh
g VL
t R ∆=
11
408ρπηh
g VL
t R x ∆=
22
48ρπηh ∆221
10ρρ
ηηt t x =0
1
122ηρρη⋅=t t x 1t 2t 1ρ2ρ0η0η1ρ
(1) 用玻璃烧杯盛清水置于桌上待用,并使其温度与室温相同,洗涤粘度计,竖直地夹在试管架上。
(2) 用移液管经粘度计粗管端注入6毫升水。
用洗耳球将水压入细管刻度C 以上,用手指压住细管口,以免液面下降。
(3) 松开手指,液面下降,当夜面下降至刻度C 时,启动秒表,在液面经过刻度D 时停止秒表,记下时间。
(4) 重复步骤(2)、(3)测量3次,取平均值。
(5) 用稀释甘油清洗粘度计两次。
(6) 取6毫升的稀释甘油作同样实验,求出时间的平均值。
【数据记录与处理】
根据公式(5)求出稀释甘油溶液的粘滞系数。
【注意事项】
(1)(1)使用粘度计时要小心,不要同时控住两管,以免折断。
(2) 当粘度计注入水(或稀释甘油)时,不要让气泡进入管内,放置粘度计要求正、直。
(3) 在实验进行过程中,用洗耳球将待测液压入细管时,防止液体被压出粘度计或被吸入洗耳球内。
实验之二 用沉降法测定甘油粘滞系数
【实验原理】
当小球在无限大的粘滞液体中以不大的速度直线下降时,作用于小球粘滞阻力大小可由斯托克斯定律给出
式中为液体的粘滞系数,为圆球的半径,为圆球下降的速度。
当小圆球在粘滞液体中垂直下降时,除受粘滞阻力以外,还要受到重力和浮力的作用,如果以和分别表示圆球的质量和密度,表示液体密度,那么这三个力的大小可用下述各式计算
由此可列出小球运动的动力学方程
1t 1t 2t T rV F πη6=ηr V mg f m ρρ'g
r mg ρπ334
=g
r f ρπ'=334
rV F πη6=ma f F mg =--
式中、为恒量,随小球运动速度的增加而增加,小球运动的加速度将逐渐减小,当增大到时,小球开始匀速下降,速度可由下式求出
如果用实验的方法测出小球匀速下降的速度,那么通过上式就可以求出该液体的粘滞系数为
上式是小球在无界均匀流体中运动条件下导出的,如果小球在半径为的流体中运动,考虑界面的影响,应修正为
【实验内容】
(1) 将小球放在盛有待测液体的量筒管口中央,使其由液面垂直下降,当落至量筒上刻线A 时,启动停表,落到下刻线B 时,止动停表,测出小球通过A 、B 刻线所需时间(注意眼应平视刻线A 、B),见图2。
(2) 重复步骤(1)测5次,计算的平均值。
(3) 用米尺量出A 、B 间距,用游标卡尺量出量筒半径。
由修正公式即可求出液体粘滞系数。
【注意事项】
(1) 在测量过程中注意减少甘油的温度变化及甘油中的气泡,为此需尽早将甘油倒入量筒内。
(2) 尽量使小球沿筒的轴线下降。
(3) 上述流体粘度计算公式,必须在小球达到临界速度的条件下成立,即小球匀速运动。
判断方法是:向下改变A 的位置,若测得小球速度与A 的位置无关,表明以达到临界速度值。
【预习思考题】
(1) 在毛细管法中,要求对两种不同液体所加体积相等,为什么?
(2) 沉降法中,为什么要求小球沿轴线下降?A 点位置必须距离液面一定距离?
mg f F V F f mg F -=V =rV πη6()g
r ρρπ'-3
34()g
r V 2
92ρρη'-⋅=R ()g
V
R r r ⎪⎭⎫ ⎝⎛
+'-⋅=4.21922
ρρηt t L R g
V
R r r ⎪⎭⎫ ⎝⎛
+-⋅=4.2192η
3310-∙m Kg。