一元二次方程根与系数关系中考强化练习题

合集下载

一元二次方程根与系数的关系大题专练(真题7道模拟30道)-中考数学重难题型押题培优导练案原卷版】

一元二次方程根与系数的关系大题专练(真题7道模拟30道)-中考数学重难题型押题培优导练案原卷版】

专题09一元二次方程根与系数的关系大题专练(真题7道模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率一元二次方程根与系数的关系(大题) 2021、2019、2018、2017、2016、2014、2013十年7考一元二次方程根与系数的关系是北京中考的常考大题之一,主要涉及根的判别式和根与系数的关系根的判别式:根与系数的关系:【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)已知关于x的一元二次方程x2−4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)已知关于x的一元二次方程x2+2x+2k−4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.2.(2014·北京·中考真题)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.3.(2016·北京·中考真题)关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.4.(2018·北京·中考真题)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.5.(2019·北京·中考真题)关于x的方程x2−2x+2m−1=0有实数根,且m为正整数,求m的值及此时方程的根.6.(2017·北京·中考真题)已知关于x的方程x2−(k+3)x+2k+2=0(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京四中模拟预测)已知关于x的一元二次方程mx2−(2m+1)x+m+2=0(1)若这个方程有两个不相等的实数根,求m的取值范围;(2)当x1⋅x2=0时,求方程的两个根2.(2022·北京·二模)已知关于x的一元二次方程x2+ax−5=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是1,求方程另一个根.3.(2022·北京市十一学校模拟预测)已知关于x的一元二次方程mx2+(2m+1)x+m+2=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x1⋅x2=0,求方程的两个根.4.(2022·北京大兴·一模)已知关于x的方程x2−2mx+m2−9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,若x1+x2=6,求m的值.5.(2022·北京朝阳·一模)已知关于x的一元二次方程x2−ax+a−1=0.(1)求证:该方程总有两个实数根;(2)若该方程的两个实数根都是整数,且其中一个根是另一个根的2倍,求a的值.6.(2022·北京市三帆中学模拟预测)关于x的一元二次方程x2+(k−2)x+k−3=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于0,求k的取值范围.7.(2021·北京·一模)已知,关于x的一元二次方程x2+ax−a−1=0.(1)求证:方程总有两个实数根;(2)若该方程有一个根是负数,求a的取值范围.8.(2021·北京顺义·一模)已知关于x的一元二次方程x2+bx−3=0.(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根是1,求方程的另一个根.9.(2020·北京市三帆中学模拟预测)已知关于x的一元二次方程x2+(a+1)x+a=0.(1)求证:此方程总有两个实数根;(2)如果此方程有两个不相等...的实数根,写出一个满足条件的a的值,并求此时方程的根.10.(2020·北京海淀·二模)已知关于x的一元二次方程x2−2x+n=0.(1)如果此方程有两个相等的实数根,求n的值;(2)如果此方程有一个实数根为0,求另外一个实数根.11.(2022·北京·模拟预测)已知关于x的一元二次方程x2−3x+(m+1)=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m是非负整数,且该方程的根是整数,求m的值.12.(2021·北京四中模拟预测)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则ac=0;我们记另一个根为2t,因此ax2+bx+c=a(x−t)(x−2t)=ax2−3atx+2t2a,所以有b2−92ac”即K=0时,方程ax2+bx+c=0为倍根方程;“K=b2−92下面我们根据此结论来解决问题:(1)方程①2x2−3x+1=0;方程①x2−2x−8=0;方程①x2+x=−2这几个方程中,是倍根方程的是9_________(填序号即可);(2)若(x−1)(mx−n)=0是倍根方程,则2n的值为______;m13.(2020·北京·北理工附中三模)已知关于x的方程x2+2x+m−2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围:(2)当该方程的一个根为-3时,求m的值及方程的另一根.14.(2022·北京十一学校一分校模拟预测)关于x的一元二次方程x2−(m+3)x+m+2=0.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.15.(2022·北京东城·二模)已知关于x的一元二次方程x2−2kx+k2−1=0.(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求代数式−2k2+8k+5的值.16.(2022·北京密云·二模)已知关于x的一元二次方程x2+(2k−1)x+k2−k=0.(1)求证:此方程总有两个不相等的实数根;(2)如果方程有一个根为0,求k的值.17.(2022·北京门头沟·二模)已知关于x的二次方程mx2−(2m−3)x+(m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,求此方程的根.18.(2022·北京昌平·二模)已知关于x的一元二次方程x2+4x+k=0有两个不相等的实数根,写出一个满足条件k的值,并求此时方程的根.19.(2022·北京海淀·二模)关于x 的方程x2−(2m+1)x+m2=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取最小的整数时,求此时的方程的根.20.(2022·北京东城·一模)已知关于x的一元二次方程x2−2x+k−2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且方程的两个根均为整数,求k的值及方程的两个根.21.(2022·北京市十一学校二模)已知关于x的方程(k−2)x2−2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.22.(2022·北京石景山·一模)已知:关于x的一元二次方程x2−2mx+m2−1=0.(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)选择一个你喜欢的整数m的值代入原方程,并求出这个方程的解.23.(2022·北京丰台·一模)已知关于x的一元二次方程x2﹣(m+2)x+m+1=0.(1)求证:该方程总有两个实数根;(2)若该方程的两个实数根互为相反数,求m的值.24.(2022·北京市燕山教研中心一模)已知关于x的方程x2+2x+k=0总有两个不相等的实数根.(1)求k的取值范围;(2)写出一个k的值,并求此时方程的根.25.(2022·北京·中国人民大学附属中学分校一模)关于x的一元二次方程x2−2x+3m−2=0有实数根.(1)求m的取值范围;(2)若方程有一根为4,求方程的另一根.26.(2022·北京顺义·一模)已知关于x的一元二次方程mx2−(2m−1)x+m−2=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根是0,求方程的另一个根.27.(2022·北京十一学校一分校一模)已知关于x的一元二次方程x2−(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)若△ABC的一边长a=6,另两边长b、c恰好是这个方程的两个根,求k的取值范围.28.(2022·北京房山·二模)已知关于x的一元二次方程x2−3x+2a−1=0有两个不相等的实数根.(1)求a的取值范围;(2)若a为正整数,求方程的根.29.(2022·北京昌平·模拟预测)已知关于x的一元二次方程x2﹣kx﹣2k2=0.(1)若x=1是方程的一个根,求k的值;(2)求证:不论k取何值,方程总有两个实数根.30.(2022·北京师大附中模拟预测)已知关于x的方程x2−4mx+4m2−9=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程有一个根-1,求m的值.。

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题一(附答案详解)1.若x=1是一元二次方程)0(02≠=++a c bx ax 的根,则判别式△=b 2-4ac 和完全平方式M=2)2(b a +的关系是( )A .△=MB .△>MC .△<MD .大小关系不能确定2.我们知道,一元二次方程x 2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i 2=﹣1(即方程x 2=﹣1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=﹣1,i 3=i 2•i=(﹣1)•i=﹣i ,i 4=(i 2)2=(﹣1)2=1,从而对于任意正整数n ,我们可以得到i 4n+1=i 4n •i=(i 4)n •i=i ,同理可得i 4n+2=﹣1,i 4n+3=﹣i ,i 4n =1.那么i+i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .iC .﹣1D .13.我们已探究过一元二次方程的根与系数有如下关系:方程()的两个根是,,则,,若,是一元二次方程的两个根,则的值等于___________.4.阅读材料:设一元二次方程(≠0)的两根为,,则两根与方程的系数之间有如下关系:+=-,·=.根据该材料完成下列填空: 已知,是方程的两根,则(1)+= ,; (2)()()= . 5.如果是一元二次方程的一个根,是一元二次方程的一根,那么的值是________. 6.已知如下一元二次方程:第1个方程: 01232=-+x x ;第2个方程: 01452=-+x x ;第3个方程: 01672=-+x x ; ⋯⋯按照上述方程的二次项系数、一次项系数、常数项的排列规律,则第8个方程为 ;第n (n 为正整数)个方程为 ,其两个实数根为 . 7.已知,,满足,,则关于的一元二次方程的根是________. 8.设是一元二次方程的两个实数根,且,则a =__________. 9.阅读:一元二次方程的根,与系数存在下列关系:,;理解并完成下列各题:若关于的方程的两根为、.求和;求.10.如果21,x x 分别是一元二次方程a 2x +b x +c =0(a ≠0)的两根,请你解决下列问题: (1)推导根与系数的关系:21x x +=-a b , 21x x =ac(2)已知1x ,2x 是方程2x -4x +2=0的两个实根,利用根与系数的关系求221)(x x -的值; (3)已知sin a ,cos a (0090a <<)是关于x 的方程22x -0)13(=++m x 的两个根,求角a 的度数.11.阅读理解:若x 1,x 2是关于x 的一元二次方程ax 2+bx+c=0(a≠0)的两个根,则方程的两个根x 1,x 2和系数a ,b ,c 有如下关系:x 1+x 2=﹣b a ,x 1•x 2=ca,我们把它们称为一元二次方程的根与系数关系定理.问题解决:请你参考根与系数关系定理,解答下列问题:(1)若关于x 的方程x 2+3x+a=0有一个根为﹣1,则另一个根为 .(2)求方程2x2﹣3x=5的两根之和,两根之积.12.如果一元二次方程的两根为、,那么就有:,;人们称之为韦达定理,即根与系数的关系.如:的两根为、,则,.(1)如果方程的两根为、,且满足,,则________,________;(2)已知、是关于的方程的两实根,求的最大值.13.若,是关于的一元二次方程的两个根,则方程的两个根,和系数,,有如下关系:,,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:已知,是一元二次方程的两个实数根.(1)是否存在实数,使成立?若存在,求出的值,若不存在,请你说明理由;(2)若,求的值和此时方程的两根.答案: 1.A解:把x=1代入)0(02≠=++a c bx ax 得a+b+c=0. 即b=-a-c ,△△=b 2-4ac=(-a-c )2-4ac=a 2-2ac+c2=(a-c )2,M=(2a+b )2=(2a-a-c )2=(a-c )2, 则△=M . 2.B 解:3.-2解:△x 1,x 2是一元二次方程x 2﹣4x +2=0的两个根,△x 1+x 2=4,x 1•x 2=2,△(x 1﹣2)(x 2﹣2)=x 1•x 2﹣2(x 1+x 2)+4=2﹣2×4+4=﹣2. 故答案为:-2. 4.(1)2011,2012;(2)2解:(1)根据题意得m+n=2012,mn=2013; (2)△m ,n 是方程x 2-2012x+2013=0的两根, △m 2-2012m+2013=0,n 2-2012n+2013=0, △m 2-2012m=-2013,n 2-2012n=-2013,△(m 2-2013m+2014)(n 2-2013n+2014)=(-m-2013+2014)(-n-2013+2014) =(-m+1)(-n+1)=mn-(m+n )+1=2013-2012+1=2. 5.0或3解:△a 是一元二次方程x 2−3x +m =0的一个根,−a 是一元二次方程x 2+3x −m =0的一个根, △a 2−3a +m =0△,a 2−3a −m =0△,+△,得2(a 2−3a )=0, △a =或 故选:或 6.17x 2+16x-1=0,(2n+1)x 2+2nx-1=0,x 1=-1,1212+=n x 解:由题意得第8个方程为17x 2+16x-1=0,第n (n 为正整数)个方程为(2n+1)x 2+2nx-1=0[]01)12()1(=-++x n x ,解得x 1=-1,1212+=n x .7.; 解:△,△△-△得: 3a=b ,c=2a , △ax 2+bx+c=0, △x==,△x 1==-1,x 2==-2;故答案为:x 1=-1;x 2=-2.8.8解:△x 1,x 2是一元二次方程x 2+5x-3=0的两个根, △x 2+5x 2-3=0,x 1x 2=-3, △2x 1(x 22+6x 2-3)+a=3, △2x 1x 2+a=3,△-6+a=3,△a=8,故答案是:8. 9.,;.解:△关于的方程的两根为、,△,;.10.(1)推导过程;(2)8;(3)30°或60°.解:(1)因为1x ,2x 是方程20(0)ax bx c a ++=≠的两根,所以224(40)2b b ac x b ac a-±-=-≥,即2142b b ac x a-+-=,2224(40)2b b ac x b ac a---=-≥∴1x +2x =242b b ac a -+-+242b b ac a ---=ba -;1x 2x =242b b ac a -+-×242b b ac a -+-=c a(2)△x 1,x 2是方程x 2-4x+2=0的两根, △x 1+x 2=4,x 1•x 2=2,△(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×2=8; (3)由题意得,31sin cos 2a a ++=,sin cos 2m a a = △2423sin cos 4a a ++=() 即 1+23122m ⨯=+ △32m =△原方程变为22x -3(31)02x ++=,解这个方程得:112x =,232x = ∴1sin 2a =或3sin 2a =即030=a 或060a = 答:a 的值是30°或60° 11.(1)﹣2(2)x 1+x 2=32,x 1x 2=﹣52解:(1)设一元二次方程的两根为x 1,x 2,且x 1=﹣1, 则根据一元二次方程根与系数的关系, 得﹣1+x 2=﹣3, 解得:x 2=﹣2. 故答案是:﹣2.(2)解:原方程可以转化为:2x 2﹣3x ﹣5=0, △a =2,b =﹣3,c =﹣5,△b 2﹣4ac =(﹣3)2﹣4×2×(﹣5)=49>0, △方程有两个不相等的实数根, 设方程的两个实数根分别x 1,x 2,则 x 1+x 2=32,x 1x 2=﹣52. 12.(1)(2)解:(1)由韦达定理得,,解得m=4,n=-1;(2)△、是关于的方程的两实根,△,,△=.△的最大值是.13.(1)存在,12(2),;,解:(1)存在.△,是一元二次方程的两个实数根,△且,△的取值范围为且,根据根与系数的关系得,,△,△,△,△;(2)△,△,即,△,解得,,当时,原方程变形为,解得,;当时,原方程变形为,解得,.。

中考数学专项练习一元二次方程系数与根的关系(含解析)

中考数学专项练习一元二次方程系数与根的关系(含解析)

中考数学专项练习一元二次方程系数与根的关系(含解析)一、单选题1.若、是一元二次方程的两根,则的值是()A.-2B.2C.3D.12.一元二次方程x2+3x﹣a=0的一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣33.已知方程x2-5x+2=0的两个解分别为m,n,则m+n-mn的值是()A.-7B.-3C.7D.34.若关于x一元二次方程x2﹣x﹣m+2=0的两根x1 ,x2满足(x1﹣1)(x2﹣1)=﹣1,则m的值为()A.3B.-3C.2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0两根互为倒数有()A.0个B.1个C.2个D.3个6.设x1 ,x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.1D.127.一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.28.方程x2+2x-4=0的两根为x1 ,x2 ,则x1+x2的值为()A.2B.-2C.D.-9.若矩形的长和宽是方程x2﹣7x+12=0的两根,则矩形的对角线之和为()A.5B.7C.8D.1010.假如a,b是一元二次方程x2﹣2x﹣4=0的两个根,那么a3b﹣2a2b 的值为()A.-8B.8C.-16D.1611.假如是一元二次方程的两个实数根,那么的值是()A.B.C.D.二、填空题12.设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________.13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0的两根为x1 ,x2 ,则x1*x2=________.14.若x1、x2是方程2x2﹣3x﹣4=0的两个根,则x1•x2+x1+x2的值为________.15.若a、b是一元二次方程x2+2x﹣1=0的两个根,则的值是_____ ___.16.写出一个以2和3为两根且二项系数为1的一元二次方程,你写的是________.17.若方程x2﹣3x+1=0的两根分别为x1和x2 ,则代数式x1+x2﹣x 1x2=________.18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程________.三、运算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.四、解答题21.已知关于x的方程x2+x+a﹣1=0有一个根是1,求a的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 ,x2 ,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.请依照该材料解题:已知x1 ,x2是方程x2+6x+3=0的两实数根,求+和x12x2+x1x22的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方程的两根分别是、,∴==3.故选C.2.【答案】A【考点】根与系数的关系【解析】【解答】解:设x1、x2是关于x的一元二次方程x2+3x﹣a=0的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】依照一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出m+n与mn的值,代入所求式子中运算即可求出值.【解答】∵x2-5x+2=0的两个解分别为m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选D【点评】此题考查了根与系数的关系,熟练把握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:依照题意得x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选A.【分析】依照根与系数的关系得到x1+x2=1,x1x2=﹣m+2,再变形等式(x 1﹣1)(x2﹣1)=﹣1得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为1且△≥0,可得出答案。

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)1.先阅读,再回答问题:如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-=-=,x1x2===-.若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2(2)求+的值.(3)求(x1-x2)22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.3.已知关于的一元二次方程.若是此方程的一个根,求的值和它的另一个根;若方程有两个不相等的实数根,试判断另一个关于的一元二次方程的根的情况.4.已知关于的一元二次方程.若方程有实数根,求的取值范围;如果是满足条件的最大的整数,且方程一根的相反数是一元二次方程的一个根,求的值及这个方程的另一根.5.根据下列命题完成以下问题。

(命题)若、是关于的一元二次方程的两个实数根,则有,。

〖问题1〗若、是关于的一元二次方程的两个实数根,则有____________,___________。

〖问题2〗若、是一元二次方程的两个实数根,则有____________,___________。

〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为2和7,乙看错了常数项,得两根为1和-10。

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

2019届中考复习《一元二次方程的根与系数的关系》专题练习含答案

北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA 10. -a/b c/a 11. -4 12. 2019 13. 1014. 10 -4 0 0 15. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m =32.∵m =32<2,∴m 的值为32 18. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k =0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1 (2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12 (2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=aa -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a 为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A.120°B.135°C.150°D.165°2.下列计算正确的是()3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.164.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=5.如图,在平面直角坐标系中,矩形ABCD的面积为定值,它的对称中心恰与原点重合,且AB∥y轴,CD 交x轴于点M,过原点的直线EF分别交AD、BC边于点E、F,以EF为一边作矩形EFGH,并使EF的对边GH所在直线过点M,若点A的横坐标逐渐增大,图中矩形EFGH的面积的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()724a =5===;④= )A .①B .②C .③D .④8.如图所示物体的俯视图是( )A .B .C .D .9.如图是二次函数2y ax bx c =++(a 、b 、c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①当13x -<<时,0y >;②0ab <;③20a b +=;④3a+c>0,其中正确的是( )A .①③B .①④C .②③D .②④10.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°11.如图,半径为3的⊙A 的ED 与▱ABCD 的边BC 相切于点C ,交AB 于点E ,则ED 的长为( )A.94πB.98πC.274πD.278π12.已知,四边形ABCD和四边形AEFG均为正方形,,连接BE与DG,则BEDG=()A B.1 C D.二、填空题13.如图,将矩形ABCD绕点C沿逆时针方向旋转,使点B的对应点刚好落在DC延长线上,形成矩形A'B'CD',AB=4,AD=8,则阴影部分的面积为____.14.若关于x的一元二次方程240x x a++=有两个相等的实数根,则a的值是______.15.如图,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分线,与BC相交于点E,点G是BC上一点,E为线段BG的中点,DG⊥BC于点G,交AC于点F,则FG的长为_____.16.计算:30=_____;=_____.17.分解因式:2a2b-8b=______.18.扬州2月份某日的最高气温是6℃,最低气温是-3℃,则该日扬州的温差(最高气温-最低气温)是______℃.三、解答题19.已知:如图,△ABC中,∠ACB=90°,以AC为直径作⊙O,D为⊙O上一点,BD=CB,DO的延长线交20.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)本次调查的学生共有人,扇形统计图中喜欢乒乓球的学生所占的百分比为;(2)请补全条形统计图(图2),并估计全校500名学生中最喜欢“足球”项目的有多少人?(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.21.已知直线y1=﹣x+2和抛物线222y kx kx=-相交于点A,B.(1)当k=32时,求两函数图象的交点坐标;(2)二次函数y2的顶点为P,PA或PB与直线y1=﹣x+2垂直时,求k的值.(3)当﹣4<x<2时,y1>y2,试直接写出k的取值范围.22.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.23﹣2019024.如图,已知在平面直角坐标系内,点A(1,﹣4),点B(3,3),点C(5,1)(1)画出△ABC;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求四边形ABB1A1的面积.25.某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):七年级:89,92,92,92,93,95,95,96,98,98八年级:88,93,93,93,94,94,95,95,97,98整理得到如下统计表根据以上信息,完成下列问题(1)填空:a=;m=;n=;(2)两个年级中,年级成绩更稳定;(3)七年级两名最高分选手分别记为:A1,A2,八年级第一、第二名选手分别记为B1,B2,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.【参考答案】***一、选择题二、填空题14.1516.17.2b(a+2)(a-2)18.9三、解答题19.(1)证明见解析;(2)AB=.【解析】【分析】(1)连接OB,只要证明OD⊥BD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OCE中,根据OE2=EC2+OC2,可得(8−r)2=r2+42,推出r=3,由tan∠E=OC BDCE DE=,可得BD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)连接OB.∵CB=BD,BO=BO,OC=OD,∴△OCB≌△OCD(SSS),∴∠OCB=∠ODB,∵∠ACB=90°,∴∠ODB=90°,∴OD⊥BD,又∵OD是⊙O的半径,∴BD是⊙O的切线.(2)设⊙O的半径为r.在Rt△OCE中,∵OE2=EC2+OC2,∴(8﹣r)2=r2+42,∴r=3,∴AC=6,∵∠ODB=∠OCE=90°,∴tan∠E=OC BD CE DE=,∴348BD =,∴BD=6,∴BC=6,在Rt△ABC中,AB==【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线.20.(1)50,28%;(2)见解析,全校500名学生中最喜欢“足球”项目的约有80人;(3)见解析,16.【解析】【分析】(1)利用参加篮球活动的人数÷所占百分比,可得被调查的学生总数;先计算出其他所占的百分比,然后用总体减去除乒乓球外所有活动的百分比即可得出答案;(2)根据乒乓球所占的百分比求出人数即可补全条形统计图;用360°乘以喜欢足球项目人数所占的百分比即可;(3)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【详解】解:(1)学生总数=2040%=50,∵其他所占的百分比=2=450%,∴乒乓球所占的百分比=1-4%-12%-16%-40%=28%;(2)补全条形统计图如下:乒乓球项目人数=50×28%=14(人),500×16%=80,答:全校500名学生中最喜欢“足球”项目的约有80人. (3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2, 所以抽取的两人恰好是甲和乙的概率=21126=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 21.(1)A(2,0),B(﹣23,83);(2)1或-133;(3) 1-2<k <14且k≠0. 【解析】 【分析】(1)联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩即可求交点; (2)当PA 与y 1=-x+2垂直时,k=1;当PB 与y 1=-x+2垂直时,k=-133; (3)当x=-4时,y 1>y 2,6>24k ;只有开口向上时成立,所以k >0; 【详解】 (1)当k =32时,22332y x x =-, 联立方程组22332y x y x x =-+⎧⎪⎨=-⎪⎩, ∴20x y =⎧⎨=⎩或2383x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴A(2,0),B(﹣23,83); (2)222y kx kx =-的顶点P(1,﹣k),当PA 与y 1=﹣x+2垂直时,k =1; 当PB 与y 1=﹣x+2垂直时,k =﹣133; (3)当x =2时,y 1=y 2=0, 当x =﹣4时,y 1>y 2, 当k >0时, ∴6>24k ,∴k <14, ∴0<k <14;当k <0时,直线与抛物线有一个交点时:-x+2=kx 2-2kx , ∵△=(1+2k )2=0,∴k=1 -2,∴1-2<k<0;综上所述;1-2<k<14且k≠0;【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握函数交点的求法,数形结合解不等式是解题的关键.22.(1)本次参加抽样调查的居民有600人;(2)见解析;(3)16.【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为180600×100%=30%;喜欢C类的人数的百分比为120600×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.23.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.24.(1)见解析;(2)见解析;(3)28. 【解析】 【分析】(1)根据A ,B ,C 三点坐标画出三角形即可. (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可. (3)四边形是梯形,利用梯形的面积公式计算即可. 【详解】解:(1)△ABC 如图所示.(2)△A 1B 1C 1如图所示. (3)1112ABB A S =四边形×(2+6)×7=28. 【点睛】本题考查作图﹣轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)94;(2)94,92,94;八;(3)2 3【解析】【分析】(1)根据中位数、众数和平均数的定义求解;(2)根据方差的意义进行判断;(3)画树状图展示所有12等可能的结果数,再找出这两人分别来自不同年级的结果数,然后利用概率公式求解.【详解】(1)n=110(88+93+93+93+94+94+95+95+97+98)=94(分);把七年级的10名学生的成绩从小到大排列,最中间的两个数的平均数是:93+952=94(分),则中位数a=94;七年级的10名学生的成绩中92分出现次数最多,故众数为92分;(2)七年级和八年级的平均数相同,但八年级的方差较小,所以八年级的成绩稳定;(3)列表得:共有12种等可能的结果,这两人分别来自不同年级的有8种情况,∴P(这两人分别来自不同年级的概率)=82= 123.【点睛】题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.2019-2020学年数学中考模拟试卷一、选择题1.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.5B.﹣5C.3D.﹣32.如图,在Rt△ABC中,∠C=90°,∠CBA=30°,AE平分∠CAB交BC于D,BE⊥AE于E,给出下列结论:①BD=2CD;②AE=3DE;③AB=AC+BE;④整个图形(不计图中字母)不是轴对称图形.其中正确的结论有()A.1个B.2个C.3个D.4个3.下列命题是真命题的是()A.一元二次方程一定有两个实数根B.对于反比例函数y=2x,y随x的增大而减小C.有一个角是直角的四边形是矩形D.对角线互相平分的四边形是平行四边形4.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A. B.13 C. D.185.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=426.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A. B.C. D.7④)A.①②B.③④C.①③D.①④8.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°9.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A.22.4m B.23.2m C.24.8m D.27.2m10.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1411.一艘轮船从A港出发,沿着北偏东63︒的方向航行,行驶至B处时发现前方有暗礁,所以转向北偏西27︒方向航行,到达C后需要把航向恢复到出发时的航向,此时轮船航行的航向向顺时针方向转过的度数为()A.63︒B.27︒C.90︒D.50︒12.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形二、填空题13.如图,,,,,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,则线段的长为______.14.在矩形ABCD中,AB=3cm,BC=4cm,则点A到对角线BD的距离为___________15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____16.4与9的比例中项是_____.17在实数范围内有意义,则x的取值范围是_____.18.﹣95的绝对值是_____.三、解答题19.在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.20.解方程:1112x xx x-+-=.21.如图,A、B两点在反比例函数kyx=(k>0,x>0)的图象上,AC⊥y轴于点C,BD⊥x轴于点D,点A的横坐标为a,点B的横坐标为b,且a<b.(1)若△AOC的面积为4,求k值;(2)若a=1,b=k,当AO=AB时,试说明△AOB是等边三角形;(3)若OA=OB,证明:OC=OD.22.先化简,再求值:(a+22ab ba+)÷222a ba ab--,其中a=﹣2,b=3.23.如图,AB⊥EF,DC⊥EF,垂足分别为B、C,且AB=CD,BE=CF.AF、DE相交于点O,AF、DC相交于点N,DE、AB相交于点M.(1)请直接写出图中所有的等腰三角形;(2)求证:△ABF≌△DCE.24.如图,在△ABC中,∠BAC=90°,以AC为直径的⊙O交BC于点D,点E在AB上,连接DE并延长交CA的延长线于点F,且∠AEF=2∠C.(1)判断直线FD与⊙O的位置关系,并说明理由;(2)若AE=2,EF=4,求⊙O的半径.25.某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【参考答案】***一、选择题二、填空题13.14.125cm15.16.±6 17.x≥﹣118.9 5三、解答题19.(1)(a,2);(2)EF=;(3)2<t≤11.【解析】【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,进而可得出顶点C 的坐标;(2)由抛物线的开口方向及点C 到直线l 的距离为2,可得出直线l 的解析式为直线y=4,再利用二次函数图象上点的坐标特征可求出点E ,F 的坐标,进而可得出线段EF 的长;(3)代入y=t 可求出点E ,F 的坐标,进而可得出线段EF 的长,结合存在实数m ,使得x 1≥m -1且x 2≤m+5成立,可得出关于t 的不等式组,解之即可得出t 的取值范围.【详解】(1)∵y =x 2﹣2ax+a 2+2=(x ﹣a)2+2,∴抛物线顶点C 的坐标为(a ,2);(2)如图:∵1>0,∴抛物线开口向上,又∵点C(a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点,∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax+a 2+2=4,解得:x 1=a,x 2=,∴点E 的坐标为(a,4),点F 的坐标为,4),∴EF =﹣(a)=;(3)当y =t 时,x 2﹣2ax+a 2+2=t ,解得:x 1=ax 2=∴EF =又∵存在实数m ,使得x 1≥m﹣1且x 2≤m+5成立,∴206t ->⎧⎪⎨⎪⎩, 解得:2<t≤11.【点睛】本题考查了二次函数的三种性质、二次函数图象上点的坐标特征、两点间的距离公式以及解不等式组,解题的关键是:(1)利用配方法将二次函数解析式由一般式变形为顶点式;(2)利用二次函数图象上点的坐标特征,求出点E ,F 的坐标;(3)由线段EF 长度的范围,找出关于t 的不等式组.20.x =﹣3【解析】【分析】两边都乘以2x 化分式方程为整式方程,解整式方程求得x 的值,最后代入最简公分母检验即可得;【详解】解:方程两边都乘以2x ,得2(x ﹣1)﹣(x+1)=2x2x ﹣2﹣x ﹣1=2x﹣x =3x =﹣3检验:把x =﹣3代入2x =﹣6≠0,∴原方程的解为:x =﹣3.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤.21.(1)8(2)△AOB 是等边三角形(3)见解析【解析】【分析】(1)由反比例函数系数k 的几何意义解答;(2)根据全等三角形△ACO ≌△BDO (SAS )的性质推知AO =BO ,结合已知条件AO =AB 得到:AO =BO =AB ,故△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,结合已知条件OA =OB ,得到:AC 2+OC 2=BD 2+OD 2,由坐标与图形性质知:2222()()kka b a b +=+,整理得到:2222()()k k a b b a -=- ,2222222(k a b a b a b --=),易得k b a =,故OC =OD . 【详解】解:(1)∵AC ⊥y 轴于点C ,点A 在反比例函数k y x=(k >0,x >0)的图象上,且△AOC 的面积为4, ∴12|k|=4, ∴k =8;(2)由a =1,b =k ,可得A (1,k ),B (k ,1),∴AC =1,OC =k ,OD =k ,BD =1,∴AC =BD ,OC =OD .又∵AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,∴∠ACO =∠BDO =90°,∴△ACO ≌△BDO (SAS ).∴AO =BO .又AO =AB ,∴AO =BO =AB ,∴△AOB 是等边三角形;(3)证明:在Rt △ACO 和Rt △BDO 中,根据勾股定理得:AO 2=AC 2+OC 2,BO 2=BD 2+OD 2,∵OA =OB ,∴AC 2+OC 2=BD 2+OD 2, 即有:2222()()kka b a b +=+, ∴2222()()k k a b b a -=-,2222222(k a b a b a b --=), 因为0<a <b ,所以a 2﹣b 2≠0, ∴2221=k a b, ∴1k ab =±,负值舍去,得:1k ab=, ∴k b a =, ∴OC =OD .【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义以及全等三角形的判定与性质,利用数形结合解决此类问题,是非常有效的方法.22.a+b ,1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 与b 的值代入计算即可求出值.【详解】 原式=2222()()()()()()()a ab b a a b a b a a b a a b a b a a b a b ++-+-⋅=⋅+-+-=a+b , 当a =﹣2,b =3时,原式=1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)△EOF ,△AOM ,△DON ;(2)证明见解析【解析】【分析】(1)可以证明△ABF ≌△DCE ,根据全等三角形对应角相等可得∠A =∠D ,∠DEC =∠AFB ,所以△EOF 是等腰三角形,再根据等角的余角相等可得∠A =∠AMO ,∠D =∠DNO ,从而得到△AOM 与△DON 也都是等腰三角形;(2)由BE =CF ,可以证明EC =BF ,然后根据方法“边角边”即可证明△ABF 与△DCE 全等.【详解】(1)解:△EOF ,△AOM ,△DON ;(2)证明:∵AB ⊥EF 于点B ,DC ⊥EF 于点C ,∴∠ABC =∠DCB =90°,∵CF =BE ,∴CF+BC =BE+BC ,即BF =CE…在△ABF 和△DCE 中,AB DC DCB BF CE =⎧⎪⎨⎪=⎩∠ABC=∠, ∴△ABF ≌△DCE ,【点睛】本题主要考查了全等三角形的证明,常用的方法有“边边边”,“边角边”,“角边角”,“角角边”,本题证明得到BF =CE 是解题的关键.24.(1)直线FD 与⊙O 相切,理由详见解析;(2)⊙O 的半径为【解析】【分析】(1)连接OD ,根据已知条件得到∠AEF =∠AOD ,等量代换得到∠AOD +∠AED =180°,求得∠ODF =90°,于是得到结论;(2)解直角三角形得到∠F =30°,AF=OF =2OD ,于是得到OD =FA ,即可得到结论.【详解】解:(1)直线FD 与⊙O 相切;理由:连接OD ,∵∠AEF =2∠C ,∠AOD =2∠C ,∴∠AEF =∠AOD ,∵∠AEF+∠AED =180°,∴∠AOD+∠AED =180°,∵∠BAC =90°,∴∠ODF=90°,∴直线FD与⊙O相切;(2)∵∠BAC=90°,AE=2,EF=4,∴∠F=30°,AF=,∵∠ODF=90°,∴OF=2OD,∴OD=FA,∴⊙O的半径为【点睛】本题利用了切线的判定和性质,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(1)40、12、=0.40;(2)90;(3)13.【解析】【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能结果,然后根据概率公式计算即可得解.【详解】(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率21 ()63P A==;【点睛】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.。

初中数学一元二次方程根与系数关系专项练习题(附答案详解)

初中数学一元二次方程根与系数关系专项练习题(附答案详解)

初中数学一元二次方程根与系数关系专项练习题(附答案详解)1.若一个关于x 的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2﹣9x+20=0D .x 2+9x+20=02.关于x 的方程kx 2+2x ﹣1=0有两个实数根,则k 的取值范围是( )A .k≥1B .k≥﹣1C .k≥1且k≠0D .k≥﹣1且k≠03.若m ,n 是方程2250x x --=两根,则()()22m m m n -+的值为( ) A .5 B .10 C .5- D .10-4.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .155.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( )A .2OB = B .2OB >C .2OB ≥D .2OB <6.若方程x 2 +x-1 = 0的两实根为α、β,那么下列说法不正确的是( ) .A .α+β=-1B .αβ=-1C .11+αβ=1D .α2+β2=1 7.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣38.下列关于x 的一元二次方程中,有两个不相等的实数的是( ).A .2x +2 =0B .2x +x-1=0C .2x +x+3=0D .42x -4x+1=0. 9.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m ,n 的值分别为()A .m =-2,n =8B .m =-2,n =-8C .m =2,n =-8D .m =2,n =8 10.已知α,β是方程2201610x x ++=的两个根,则()()221201812018ααββ++++的值为( ) A .1 B .2 C .3 D .411.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.12.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.13.已知a 、b 是一元二次方程2410x x --=的两根,则a +b =_____.14.有一个一元二次方程,它的一个根 x 1=1,另一个根-2<x 2<0. 请你写出一个符合这样条件的方程:_________.15.已知方程 x 2﹣4x+3=0 的两根分别为 x 1、x 2,则 x 1+x 2=______.16.已知x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两实数根,则1132x ++2132x +的值是_____.17.已知x 1,x 2是关于x 的方程x 2-(2m -2)x +(m 2-2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=-1,那么m 的值为( )A .1-或3B .3-或1C .3-D .118.设一元二次方程2230x x --=的两个实数根为x 1,x 2,则x 1+x 1x 2+x 2等于( ). A .1 B .-1 C .0 D .319.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____.20.求作一个方程,使它的两个根分别是4-和3,这个方程的一般式是________. 21.关于x 的一元二次方程226250x x p p -+-+=的一个根为2。

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)

中考数学专题复习-一元二次方程的根与系数的关系(含解析)一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 152.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 63.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 44.设方程的两个根为、,那么的值等于( )。

A. B. C. D.5.已知一元二次方程x2﹣3x﹣3=0的两根为α与β,则的值为()A. -1B. 1C. -2D. 26.设x1、x2是一元二次方程x2+x﹣3=0的两根,则x13﹣4x22+15等于()A. -4B. 8C. 6D. 07.若、是一元二次方程x2+5x+4=0的两个根,则的值是().A. -5B. 4C. 5D. -48.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A. 1B. 2C. -2D. -19.一元二次方程的两实数根相等,则的值为()A. B. 或 C. D. 或10.若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A. x1+x2=1,x1•x2=﹣2B. x1+x2=﹣1,x1•x2=2C. x1+x2=1,x1•x2=2D. x1+x2=﹣1,x1•x2=﹣211.下列一元二次方程两实数根和为﹣4的是()A. x2+2x﹣4=0B. x2﹣4x+4=0C. x2+4x+10=0D. x2+4x﹣5=012.已知x1,x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A. 6B. 0C. 7D. -113.若方程x2+x﹣1=0的两实根为α、β,那么下列式子正确的是()A. α+β=1B. αβ=1C. α2+β2=2D. =1二、填空题14.写出以2,﹣3为根的一元二次方程是________.15.一元二次方程的两根和是________;16.已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+2αβ+β2的值为________.17.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x1﹣1)2+(x2﹣1)2的最小值是________18.若关于x的一元二次方程为ax2+bx+c=0的两根之和为3,则关于x的方程a(x+1)2+b(x+1)+c=0的两根之和为________.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.设方程4x2﹣7x﹣3=0的两根为x1,x2,不解方程求下列各式的值:(1)x12x2+x1x22.(2)+ .21.已知是方程的两个根,利用根与系数的关系,求下列各式的值:(1);(2)22.已知一元二次方程x2﹣6x+4=0的两根分别是a,b,求(1)a2+b2(2)a2﹣b2的值.23.已知a、b是一元二次方程x2﹣2x﹣1=0的两个根且a2﹣2a﹣1=0,求a2﹣a+b+3ab的值.四、解答题24.关于x的方程(k﹣1)x2﹣x+1=0有实根.(1)求k 的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=k﹣1,求实数k的值.25.若关于x的一元二次方程x2+kx+3x+k=0的一个根是﹣2,求方程另一个根和k的值.26.若关于x的方程x2+6x+m=0的一个根为3﹣,求方程的另一个根及m的值.五、综合题27.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.28.已知抛物线的不等式为y=﹣x2+6x+c.(1)若抛物线与x轴有交点,求c的取值范围;(2)设抛物线与x轴两个交点的横坐标分别为x1,x2.若x12+x22=26,求c的值.(3)若P,Q是抛物线上位于第一象限的不同两点,PA,QB都垂直于x轴,垂足分别为A,B,且△OPA与△OQB全等.求证:c>﹣.答案解析部分一、单选题1.设方程x2﹣5x+k=0的一个根比另一个根的2倍少1,则k的值为()A. B. 6 C. -6 D. 15【答案】B【考点】根与系数的关系【解析】【解答】解:设方程x2﹣5x+k=0另一个根为a,则一个根为2a﹣1,则a+2a﹣1=5,解得a=2,2×2﹣1=3因此k=2×3=6.故选:B.【分析】设方程的另一个根为a,则一个根为2a﹣1,根据根与系数的关系得出a+2a﹣1=5,得出a=3,另一个跟为5,进一步利用两根的积得出k的数值即可.2.已知a、b是一元次方程x2﹣2x﹣3=0的两个根,则a2b+ab2的值是()A. -1B. -5C. -6D. 6【答案】C【考点】根与系数的关系【解析】【解答】解:∵a、b是一元次方程x2﹣2x﹣3=0的两个根,∴ab=﹣3,a+b=2,∴a2b+ab2=ab(a+b)=﹣3×2=﹣6,故选C.【分析】根据根与系数的关系,可得出ab和a+b的值,再代入即可.3.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A. ﹣4B. ﹣1C. 1D. 4【答案】C【考点】根与系数的关系【解析】【解答】解:根据题意得x1•x2=1.故选C.【分析】直接根据根与系数的关系求解.4.设方程的两个根为、,那么的值等于( )。

一元二次方程根与系数关系专题

一元二次方程根与系数关系专题

一元二次方程根与系数关系专项训练一.填空题1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。

2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。

3、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。

4、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。

5、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。

6、已知方程x 2-mx+2=0的两根互为相反数,则m= 。

7、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。

若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。

8、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。

9、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k=10、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。

二.解答题1、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: x 31x 2+x 1x 322、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: 2221x 1x 1+ 3、已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值: (x 21-x 22)24、已知x1和x2是方程2x2-3x-1=0的两个根,利用根与系数的关系,求下列各式的值:x1-x25、已知关于x的方程2x2-(m-1)x+m+1=0的两根满足关系式x1-x2=1,求m的值及两个根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根与系数关系中考强化练习题
(时间:90分钟) 姓名:_________
一、填空:
1、 如果一元二次方程c bx ax ++2
=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .
2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .
5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .
6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .
7、以13+,13-为根的一元二次方程是 .
8、若两数和为3,两数积为-4,则这两数分别为 .
9、以23+和23-为根的一元二次方程是 .
10、若两数和为4,两数积为3,则这两数分别为 .
11、已知方程04322=-+x x 的两根为1x ,2x ,那么2221x x += .
12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .
13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .
14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数
范围内可分解为 .
二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:
1、1x 2+2x 2= ;2、2
111x x += ; 3、=-221)(x x = ;4、)1)(1(21++x x = .
三、选择题:
1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )
(A )0 (B )正数 (C )-8 (D )-4
2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12
21221x x x x ( )
(A )-7 (B) 3 (C ) 7 (D) -3
3、已知方程0322=--x x 的两根为1x ,2x ,那么2
11
1
x x +=( )
(A )-31
(B) 31
(C )3 (D) -3
4、下列方程中,两个实数根之和为2的一元二次方程是( )
(A )0322=-+x x (B ) 0322=+-x x
(C )0322=--x x (D )0322=++x x
5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是(
) (A )5或-2 (B) 5 (C ) -2 (D) -5或2
6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是(

(A )-21
(B) -6 (C ) 21
(D) -25
7、分别以方程122--x x =0两根的平方为根的方程是( )
(A )0162=++y y (B ) 0162=+-y y
(C )0162=--y y (D )0162=-+y y
四、解答题:
1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.
2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.
3、 若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.
4、已知方程032
=--m x x 的两根之差的平方是7,求m 的值.
5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.
7、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.
7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.
8、已知关于x 的方程04
1222=+-n mx x ,其中n m ,分别是一个等腰三角形的腰和底的长,求证这个方程有两个不相等的实数根.。

相关文档
最新文档