hopfield神经网络模型
第五章霍普菲尔德(Hopfield)神经网络

(2)极限环
(3)混沌现象
(4)状态轨迹发散
离散型 Hopfield神经网络
• 1982年,美国加州工学院J.Hopfield提出了可用作联想存储 器和优化计算的反馈网络,这个网络称为Hopfield神经网络 (HNN)模型,也称Hopfield模型.并用它成功地探讨了旅行商 问题(TSP)的求解方法。
HNN是一种循环NN,从输 出到输入有反馈连接. HNN有离散型和连续型 两种.
• 反馈NN由于其输出端有反馈到其输入端,所以,HNN在 输入的激励下,会产生不断的状态变化.
– 当有输入之后,可以求取出HNN的输出,这个输出反馈到 输入从而产生新的输出,这个反馈过程一直进行下去. – 如果HNN是一个能稳定的网络,则这个反馈与迭代的计算 过程所产生的变化越来越小,一旦到达了稳定平衡状态, 那么HNN就会输出一个稳定的恒值. – 对于HNN来说,关键是在于确定它在稳定条件下的权系数. – 应该指出,反馈网络有稳定的,也有不稳定的. • 对于HNN来说,还存在如何判别它是稳定网络,亦或是 不稳定的问题.而判别依据是什么,也是需要确定的.
在不考虑外部输入时,则有
j 1,2,..., n
n y j (t 1) f w i, j yi (t) θ j i 1
•通常网络从某一初始状态开始经过多次更新后才可 能达到某一稳态。使用异步状态更新策略有以下优点: (1)算法实现容易,每个神经元节点有自己的状态 更新时刻.不需要同步机制; (2)以串行方式更新网络的状态可以限制网络的输 出状态,避免不同稳态以等概率出现。 一旦给出HNN的权值和神经元的阈值,网络的状态转 移序列就确定了。
hopfield神经网络及其应用教学课件

求解人员在旅行时路径最短方案的问题。
3 最短路问题
求解网格地图上从起点到目标的最短路径问题。
Hopfield神经网络在金融风险评估中的应用
应用场景
可用于预测市场波动、分析股票的波动风险、风险 指数的评估等。
数据处理
通过分析历史数据并训练神经网络模型进行预测, 可帮助投资者更好地控制风险。
优点
能够实现自我组织、自我修复和自我学习的功能,具有很强的容错能力。
2
缺点
存在模型建立时间长、计算复杂度高等问题,在大规模网络中应用受到限制。
3
发展趋势
将向更多交叉领域发展,如神经系统科学、人工智能等,同时将致力于提高网络计算效 率和准确度。
Hopfield神经网络及其应用实例介绍
电子显微镜图像处理
Hopfield神经网络在模式恢复与记忆中的应 用
图像恢复
绘画
能够自动去除损伤、扭曲等现象, 对于图像降噪也有一定效果。
将草图转化为具有更多细节和色 彩的绘画作品。
音乐恢复
将不同曲调的曲谱恢复成原音。
Hopfield神经网络在优化问题求解中的 应用
1 逆向工程
能够自动优化物理结构的技术,可应用于电路设计、芯片布局等领域。
Hopfield神经网络在交通流预测中的应 用
应用场景
能够应用于道路交通流预测、车流控制、智能交通系统等实践应用领域。
模型构建
通过分析交通流数据并构建合理的神经网络模型,可以精确预测交通流量及拥堵情况。
优势
较传统交通流预测算法更高效且具有更高的精确度。
Hopfield神经网络的优缺点与发展趋势
1
通过神经网络对显微镜图像进行 优化处理,提高图像清晰度和对 比度。
Hopfield神经网络模型与学习算法

2.9.3 Hopfield 神经网络的MATLAB实 现
MATLAB中与Hopfield网络有关的重要函数和功能
satlins( ) 功能 对称饱和线性传递函数 格式 A = satlins(N) A输出向量矩阵; N是由网络的输入向量组成的 S*Q矩阵,返回的矩阵 A与N的维数大小一致,A 的元素取值位于区间[0,1]内。当N中的元素介 于-1和1之间时,其输出等于输入;当输入值小 于-1时返回-1;当输入值大于1时返回1。
N N u dv d E d E dvi wij v j i I i i dt dvi dt Rj dt i 1 j 1
将下式代入得:
N dui u Ci wij v j I i i dt Ri j 1 N dE du dv Ci ( i ) i dt dt dt i 1
•在任一时刻,部分神经元或全部神经元的状 态同时改变。
2015/8/11
7
2.9.1离散Hopfield 神经网络
串行(异步)工作方式运行步骤 第一步 对网络进行初始化; 第二步 从网络中随机选取一个神经元; 第三步 按式(2-5)求出该神经元i的输出; 第四步 按式 (2-6) 求出该神经元经激活函数 处理后的输出,此时网络中的其他神经元的输 出保持不变; 第五步 判断网络是否达到稳定状态,若达 到稳定状态或满足给定条件则结束;否则转到 第二步继续运行。
2015/8/11
16
2.9.3 Hopfield 神经网络的MATLAB实 现 例2-8 设印刷体数字由10 10点阵构成,就
是将数字分成很多小方块,每个方块就对应数 字的一部分,构成数字本部分的方块用 1 表示, 空白处用-1表示。试设计一个Hopfield网络, 能够正确识别印刷体的数字。
HopfieldNetwork霍普菲尔德网络入门

HopfieldNetwork霍普菲尔德⽹络⼊门简介Hopfield Network (霍普菲尔德⽹络),是 Hopfield 在1982年提出的⼀种基于能量的模型,发表的⽂章是 Neural networks and physical systems with emergent collective computational abilities。
基本结构如下图所⽰:⾸先我们来看Hopfield Network的⼀句话定义:Hopfield Network is a model that can reconstruct data after being fed with corrupt versions of the same data.也就是说利⽤Hopfield Network的过程是:some data→Hopfield Network→full data可以看到Hopfield Network的⼏个基本特点:只有单层神经元节点之间是全连接的只有输⼊,没有输出主要功能是:联想记忆 associatIve memory,例如重新构建图形。
假设我们在⽹络中存储了右侧的三张图⽚,如果我们只输⼊⼀部分图⽚,例如左侧的六张图⽚,⽹络可以从记忆中取出完整的图像。
Energy Function能量函数:Energy Function,可以看作⼀种代价函数。
这个概念最先在热⼒学中被提出,⽤来描述系统的能量值。
当能量函数求得的能量值达到最⼩值的时候,整个热⼒学系统达到稳定状态。
在深度学习之中,引⼊这个概念也是为了使模型达到稳定的状态。
Energy Based Models利⽤了能量函数的模型被称为Energy Based Models,EBM。
Energy Function for Images对于有d个像素的⿊⽩图像,假设每⼀个图像都有参数x={x j}1≤j≤d,那么我们可以建⽴如下形式的能量函数:如果我们有p个图像,我们就能得到基于E(x)的p个极⼩值。
《hopfield神经网络》课件

神经网络的学习算法
1
Hebbian学习规则
根据同时激活的神经元之间的相关性来更新连接权重。
2
Delta规则
使用反向传播算法根据误差信号来调整连接权重,以逼近期望输出。
3
学习的稳定性
神经网络的学习算法可以保证网络的稳定性和收敛性。
神经网络的应用领域
1 模式识别
2 优化问题
通过学习和存储模式来实现模式识别和分类, 例如图像识别和语音识别。
《hopfield神经网络》PPT 课件
介绍《hopfield神经网络》的PPT课件,包含神经网络的基本概念与应用,学 习算法以及与其他神经网络的比较,展望神经网络未来的发展趋势。
Hopfield神经网络概述
Hopfield神经网络是一种用于模式识别和优化问题的反馈神经网络,基于神 经元之间的相互连接和信号传递。
Kohonen网络
Kohonen神经网络适用于聚类和自组织特征映射, 常用于无监督学习和可视化。
神经网络中的记忆与自组织
记忆
Hopfield神经网络可以学习和存储输入模式,并能够通过模式关联实现模式识别和记忆恢复。
自组织
神经网络中的神经元可以自动组织为有效的连接结构,以适应不同问题的处理和学习需求。
神经网络的基本形式
结构
Hopfield神经网络由神经元和它们之间的连接组成, 形成一个全连接的反馈网络结构。
激活函数
神经元通过激活函数将输入信号转换为输出信号, 常用的激活函数包括Sigmoid函数和ReLU函数。
反向传播算法
Hopfield神经网络使用反向传播算法来量函数
能量函数是Hopfield神经网络的核心概念,它通过计算网络状态的能量来衡 量模式之间的关联性和稳定性。
连续型Hopfield神经网络

CHENLI
3
CHENLI
4
CHENLI
5
神经元具有以下特点: ➢ 神经元是一多输入、单输出元件。 ➢ 它具有非线性的输入、输出特性。
➢ 它具有可塑性,其塑性变化的部分主要是权值 的变化,这相当于生物神经元的突触部分的变 化。
➢ 神经元的输出响应是各个输入值的综合作用的 结果。
➢ 输入分为兴奋型(正值)和抑制型(负值)两 种。
1) 递归网络 此类网络中,多个神经元互连组织成一个互连神经网络。 有些神经网络输出被反馈至同层或前层神经元。因此, 信号能从正向和反向流通。Hopfield 网络、Elmman 网 络和Jordan 网络是递归网络中具有代表性的例子。递 归网络又叫反馈网络。
CHENLI
8
图a 单层反馈型网络
CHENLI
CHENLI
6
国际著名的神经网络研究专家, 第一家 神经计算机公司的创立者与领导人HechtNielsen 给人工神经网络下的定义就是: “人工神经网络是由人工建立的、以有向 图为拓扑结构的动态系统,它通过对连续 或断续的输入作状态响应而进行信息处 理。”
CHENLI
7
人工神经网络的结构分类
人工神经网络的结构基本上分为两类,即递归 网络和前馈网络。
9
2) 前馈网络
前馈网络具有递阶分层结构,由一些同层神经 元不存在互连的层级组成。从输入层至输出层 的信号通过单向连接流通;神经元从一层连接 至下一层,不存在同层神经元间的连接,前馈 网络的例子有多层感知器(MLP),学习矢量化 (LVQ)网络、小脑膜型连接控制(CMCA)网络和数 据处理(GMDH)网络等。
CHENLI
17
Hopfield网络分为离散型和连续型两种, 都是对称互连网络(Wij=Wji),根据节点状 态的取值来划分是离散型的还是连续型。 离散网络节点取{-1,+1}或{0,+1},连 续网络节点状态在某个随机区间内连续取 值。
人工神经网络-连续型Hopfield神经网络

两点说明:
1)能量函数为反馈网络的重要概念。 根据能量函数可以方便的判断系统的稳定 性; 2)Hopfield选择的能量函数,只是保 证系统稳定和渐进稳定的充分条件,而不 是必要条件,其能量函数也不是唯一的。
* CHNN的几点结论
1)具有良好的收敛性; 2)具有有限个平衡点; 3)如果平衡点是稳定的,那么它也一定是渐进稳 定的; 4)渐进稳定平衡点为其能量函数的局部极小点; 5)能将任意一组希望存储的正交化矢量综合为网 络的渐进平衡点; 6)网络的存储信息表现为神经元之间互连的分布 式动态存储; 7)网络以大规模、非线性、连续时间并行方式处 理信息,其计算时间就是网络趋于平衡点的时间。
E 1 WijVj I i Ui Vi Ri j
由连续Hopfield运行方程可得
dVi d E dU i dU i C i C i C i f 1 i V dt dV Vi dt dVi i
将上式代入原式可得:
dV i dE C i dt dt j 1 f i V
WijViVj
i 1 j 1
n
n
ViIi
i 1
n
R i i
1
n
1
Vi
0
f 1 dV V
求取 其中:
dE
dt
dE dt
i
E dV i Vi dt
E 1 Vi 2
1 WijVj 2 j
W jiVj j
Ii
1
Ri
Ui
• 由于Wij=Wji 则有:
提 出
其原理与离散型Hopfield神经网络相似,它以模拟 量作为网络的输入输出量,各神经元采用并行方式工作
霍普菲尔德(Hopfield)神经网络概述

Hopfield网络的提出
1982年,美国加州理工学院物理学家 J .J.Hopfield教授提出一种单层反馈神经网 络,后来人们将这种反馈网络称为Hopfield 网络。 1985年,J.J.Hopfield和D.W.Tank用模拟电 子线路实现了Hopfield网络,并用它成功地 求解了旅行商问题(TSP)的求解方法。
Hopfield网络的特点
单层反馈式网络
x1 o1 W x2 o2 … … xn
on
Hopfield网络的特点
灌输式学习方式 灌输式学习中网络权值不是通过训练逐渐 形成的,而是通过某种设计方法得到的。 权值一旦设计好就一次灌输给网络,不再 变动, 这种学习是死记硬背式的,而不是训练式 的。
Hopfield网络的特点
权值一旦设计好就一次灌输给网络不再变动考虑了输入与输出的延迟因素hopfield网络的分类离散型hopfield神经网络dhnn连续型hopfield神经网络chnnnetnetnetnet组合优化tsp问题组合优化问题就是在给定约束条件下求出使目标函数极小或极大的变量组合问题
霍普菲尔德(Βιβλιοθήκη opfield Hopfield) Hopfield 神经网络概述
旅行商问题(TSP)
旅行商问题(Traveling Saleman Problem, TSP)又译为旅行推销员问题、货郎担问题, 简称为TSP问题,是最基本的路线问题。
是指一名推销员要拜访多个地点时,如何 找到在拜访每个地 TSP问题点一次后再回 到起点的最短路径。
旅行商问题(TSP)
旅行商问题(TSP)
Hopfield网络的应用
分类、模式识别
联想记忆
各神经元的状态在运行中不断更新
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j
bi vi
i 1
9 2012-7-7
2.9.1离散Hopfield 神经网络
网络中神经元能量函数变化量
Ei 1
w v v 2
ij i i 1 i j
n
j
bi vi
E i E i (t 1) E i (t ) 1
8 2012-7-7
2.9.1离散Hopfield 神经网络
稳定状态
若网络从某一时刻以后,状态不再发生变化, 则称网络处于稳定状态
v(t t ) v(t ) t 0
网络为对称连接,即;神经元自身无连接 能量函数在网络运行中不断降低,最后达到 n 稳定 1 n n
E
w v v 2
13 2012-7-7
2.9.3 Hopfield 神经网络的MATLAB实现
MATLAB中Hopfield网络的重要函数和功能
函 数 名
功
能
satlin( ) 饱和线性传递函数
satlins( ) 对称饱和线性传递函数
newhop( ) 生成一个Hopfield回归网络
nnt2hop( ) 更新NNT 2.0 Hopfield回归 网络
14 2012-7-7
2.9.3 Hopfield 神经网络的MATLAB实现
MATLAB中与Hopfield网络有关的重要函数和功能
newhop( )
功能 生成一个Hopfield回归网络。 格式 net = newhop(T) 说明 net为生成的神经网络,具有在T中的向量上稳 定的点;T是具有Q个目标向量的R*Q矩阵(元素必须为 -1或1)。Hopfield神经网络经常被应用于模式的联想 记忆中。Hopfield神经网络仅有一层,其激活函数用 satlins( )函数,层中的神经元有来自它自身的连接 权和阈值。
16 2012-7-7
2.9.3 Hopfield 神经网络的MATLAB实现
例2-8 设印刷体数字由10 10点阵构成,就 是将数字分成很多小方块,每个方块就对应数 字的一部分,构成数字本部分的方块用1表示, 空白处用-1表示。试设计一个Hopfield网络, 能够正确识别印刷体的数字。
由点阵构成 的数字1 由点阵构成 的数字2
Hopfield网络状态向着能量函数减小的 方向演化。由于能量函数有界,所以系 统必然会趋于稳定状态 。
w v (t 1)v 2
ij i i 1 i j
n
j
bi vi (t 1)
1
w v (t )v -b v (t ) 2
ij i j i i i 1 i j
n
n 1 = vi (t 1) vi (t ) wij v j bi 2 i 1 i j
在任一时刻,部分神经元或全部神经元 的状态同时改变。
7 2012-7-7
2.9.1离散Hopfield 神经网络
串行(异步)工作方式运行步骤 第一步 对网络进行初始化; 第二步 从网络中随机选取一个神经元; 第三步 按式(2-5)求出该神经元i的输出; 第四步 按式(2-6)求出该神经元经激活函 数处理后的输出,此时网络中的其他神经元 的输出保持不变; 第五步 判断网络是否达到稳定状态,若 达到稳定状态或满足给定条件则结束;否则 转到第二步继续运行。
15 2012-7-7
2.9.3 Hopfield 神经网络的MATLAB实现
MATLAB中与Hopfield网络有关的重要函数和功能
satlins( ) 功能 对称饱和线性传递函数 格式 A = satlins(N) A输出向量矩阵;N是由网络的输入向量组成 的S*Q矩阵,返回的矩阵A与N的维数大小一致, A的元素取值位于区间[0,1]内。当N中的元 素介于-1和1之间时,其输出等于输入;当输 入值小于-1时返回-1;当输入值大于1时返回 1。
稳定性分析
dE N u dvi wij v j i I i dt dvi dt Rj dt i 1 j 1 dE dvi
N
将下式代入得:
Ci dui dt wij v j I i
j 1
N
N
ui Ri
1
因为
df (vi ) dvi 0, 又 0, Ci 0, dvi
12
2012-7-7
2.9.2 连续Hopfield 神经网络
连续Hopfield网络模型的主要特性 1)连续Hopfield网络的神经元作为I/O转换,其传输 特性具有Sigmoid特性; 2)具有时空整合作用; 3)在神经元之间存在着大量的兴奋性和抑制性连接, 这种联接主要是通过反馈来实现。 4)具有既代表产生动作电位的神经元,又有代表按 渐进方式工作的神经元,即保留了动态和非线性两 个最重要的计算特性。 Hopfield神经网络设计的目标就是使得网络存储一些 特定的平衡点,当给定网络一个初始条件时,网络最后 会在这样的点上停下来
Ei 0
10
2012-7-7
2.9.2 连续Hopfield 神经网络
网络模型
w 11
+
I1
R 10
u1
1
v 1
C1
wi1 Ii
+
ui
Ri 0 Ci
i
vi
w j1
+
I
j
uj
j
vj
Rj0
Cj
wN1
+
IN RN 0
uN
N
vN
CN
11 2012-7-7
2.9.2 连续Hopfield 神经网络
17 2012-7-7
例2-8程序
%数 字 1的 点 阵 表 示 one=[-1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1]; %数 字 2的 点 阵 表 示 two=[1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 1 1 1 1 1 1 1 1 -1 -1]; %设 定 网 络 的 目 标 向 量 T=[one;two]'; %创 建 一 个 Hopfield神 经 网 络2 NhomakorabeadE
du dv Ci ( i ) i dt dt dt i 1
Ci
i 1 N
df
1
(vi ) dvi dt
dvi
dt
df
1
dE
Ci
i 1
N
( vi ) dvi dt
0
Ci
i 1
N
df
(vi ) dvi 2 ( ) dvi dt
1
dvi
dt 连续Hopfield网络模型是稳定的
2 2012-7-7
2.9.1离散Hopfield 神经网络
网络模型表示法一
z
1
z
1
z
1 1
z
1
3 2012-7-7
2.9.1离散Hopfield 神经网络
网络模型表示法二
4 2012-7-7
2.9.1离散Hopfield 神经网络
相关参数说明 任意神经元 i与 j间的突触权值 wij 为,神经元之间 连接是对称的,神经元自身无连接. 每个神经元都同其他的神经元相连,其输出信号经 过其他神经元又有可能反馈给自己 设Hopfield网络中有n个神经元,其中任意神经元 的输入用 u i 表示,输出 v i用表示,它们都是时间的 函数,其中 v (t )也称为神经元在时刻 t 的状态。
Hopfield神经网络模型与学习算法
智能中国网提供学习支持
概述
Hopfield网络是神经网络发展历史上的一个重要的 里程碑。由美国加州理工学院物理学家J.J.Hopfield教 授于1982年提出,是一种单层反馈神经网络。 Hopfield网络是一种由非线性元件构成的反馈系统,其 稳定状态的分析比前向神经网络要复杂得多。1984年, Hello,I’m John Hopfield设计并研制了网络模型的电路,并成功地解决 Hopfield 了旅行商(TSP)计算难题(优化问题)。 Hopfield网络分为离散型和连续型两种网络模型, 分别记作DHNN (Discrete Hopfield Neural Network) 和CHNN (Continues Hopfield Neural Network) 。
2012-7-7
18
小结
概述 离散Hopfield神经网络及工作过程 连续Hopfield神经网络 稳定性分析 Hopfield神经网络的MATLAB实现 实例分析
19 2012-7-7
谢谢!
20 2012-7-7
w v
ij j 1 j i
n
j