大学物理 北京邮电大学习题

合集下载

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

大学物理课后习题答案北京邮电大学出版社

大学物理课后习题答案北京邮电大学出版社

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin Λ=+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀;(2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即 可知,当k a b a k '+=时明纹缺级.(1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为当6000=λoA 时,2=k x λλ=时,3=k重合时ϕ角相同,所以有得 4286600075=⨯=x λoA 13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为f na x λ2=∆ 半角宽度为na λθ1sin -=(1)空气中,1=n ,所以(2)浸入水中,33.1=n ,所以有13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k 由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ 当 3=k ,得60003=λoA 4=k ,得47004=λoA (2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯=mm 4100.2-⨯=o A由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=, 所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m(1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin所以有λ=+f x b a 1)(即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ (2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ故22103010602121--⨯=⨯⨯==f x m 30=cm这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )( 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为(2)由缺级条件知即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式∴86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得k d ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA 2=k 时,91.1245sin 75.22=⨯⨯=︒λo A3=k 时,30.1389.3==λo A4=k 时, 97.0489.3==λo A故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。

大学物理学第版修订版北京邮电大学出版社上册习题答案.docx

大学物理学第版修订版北京邮电大学出版社上册习题答案.docx

习题3 3.1 选择题(1)有一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度ω0转动,此时有一质量为 m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)J0(B)J0mR2m) R 2J(J(C)J0(D) 0 mR2[ 答案: (A)](2)如题3.1(2)图所示,一光滑的内表面半径为10cm的半球形碗,以匀角速度ω 绕其对称轴OC旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为(A)13rad/s(B)17rad/s(C)10rad/s(D)18rad/s(a)(b)题3.1 ( 2)图[ 答案: (A)](3)如 3.1(3) 图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度?在距孔为 R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[ 答案: (E)]3.2 填空题(1)半径为 30cm的飞轮,从静止开始以 0.5rad ·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240?时的切向加速度aτ =,法向加速度a n=。

[ 答案:0.15; 1.256 ](2)如题3.2 (2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴 O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的原因是。

木球被击中后棒和球升高的过程中,弹、细棒、地球系统的守恒。

守恒,对木球、子题3.2 (2)图[ 答案:对 o 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对 o 轴的合外力矩为零,机械能守恒](3)两个质量分布均匀的圆盘 A 和 B 的密度分别为ρA和ρB ( ρA>ρB) ,且两圆盘的总质量和厚度均相同。

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学答案(北京邮电大学第3版)赵近芳等编著

大学物理学(北邮第三版)习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

大学物理期末复习题精选(北京邮电大学第4版)

大学物理期末复习题精选(北京邮电大学第4版)

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dt r d || (D) 22)()(dtdy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)tRt R ππ2,2 (B) t R π2,0(C) 0,0 (D) 0,2tRπ [答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又是位移对时间的两阶导数。

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案

大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第九章_习题9_答案

习题9之阳早格格创做(1)正圆形的二对付角线处各搁置电荷Q,另二对付角线各搁置电荷q,若Q所受到合力为整,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[问案:A](2)底下道法精确的是:()(A)若下斯里上的电场强度到处为整,则该里内肯定不电荷;(B)若下斯里内不电荷,则该里上的电场强度肯定到处为整;(C)若下斯里上的电场强度到处不为整,则该里内肯定有电荷;(D)若下斯里内有电荷,则该里上的电场强度肯定到处不为整.[问案:D](3)一半径为R的导体球表面的里面荷稀度为σ,则正在距球里R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [问案:C](4)正在电场中的导体里里的()(A)电场战电势均为整;(B)电场不为整,电势均为整;(C)电势战表面电势相等;(D)电势矮于表面电势.[问案:C](1)正在静电场中,电势稳定的天区,场强肯定为 .[问案:相共](2)一个面电荷q搁正在坐圆体核心,则脱过某一致况的电通量为,若将面电荷由核心背中移动至无限近,则总通量将 .[问案:q/6ε0, 将为整](3)电介量正在电容器中效率(a)——(b)——.[问案:(a)普及电容器的容量;(b) 延少电容器的使用寿命](4)电量Q匀称分散正在半径为R的球体内,则球内球中的静电能之比 .[问案:5:6]9.3 电量皆是q的三个面电荷,分别搁正在正三角形的三个顶面.试问:(1)正在那三角形的核心搁一个什么样的电荷,便不妨使那四个电荷皆达到仄稳(即每个电荷受其余三个电荷的库仑力之战皆为整)?(2)那种仄稳与三角形的边少有无关系?(1) 以A处面电荷为钻研对付象,由力仄稳知:q 为背电荷解得 q q 33-=' (2)与三角形边少无关.9.4 二小球的品量皆是m ,皆用少为l 的细绳挂正在共一面,它们戴有相共电量,停止时二线夹角为2θ,如题9.4图所示.设小球的半径战线的品量皆不妨忽略不计,供每个小球所戴的电量.解:解得 θπεθtan 4sin 20mg l q = 9.5 根据面电荷场强公式204r q E πε=,当被观察的场面距源面电荷很近(r →0)时,则场强→∞,那是不物理意思的,对付此应怎么样明白?解: 020π4r r q Eε=仅对付面电荷创造,当0→r 时,戴电体不克不迭再视为面电荷,再用上式供场强是过失的,本量戴电体有一定形状大小,思量电荷正在戴电体上的分散供出的场强不会是无限大.9.6 正在真空中有A ,B 二仄止板,相对付距离为d ,板里积为S ,其戴电量分别为+q 战-q .则那二板之间有相互效率力f,有人道f =2024dq πε,又有人道,果为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问那二种道法对付吗?为什么? f 到底应等于几?解: 题中的二种道法均分歧过失.第一种道法中把二戴电板视为面电荷是分歧过失的,第二种道法把合场强Sq E 0ε=瞅成是一个戴电板正在另一戴电板处的场强也是分歧过失的.精确解允许为一个板的电场为Sq E 02ε=,另一板受它的效率力Sq S qq f 02022εε==,那是二板间相互效率的电场力.9.7 少l =的曲导线AB 上匀称天分散着线稀度λx10-9C ·m -1的正电荷.试供:(1)正在导线的延少线上与导线B 端相距1a =处P 面的场强;(2)正在导线的笔曲仄分线上与导线中面相距2d = 处Q 面的场强.解:(1) 正在戴电曲线上与线元x d ,其上电量q d 正在P面爆收场强为20)(d π41d x a xE P-=λε用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代进得21074.6⨯=P E 1C N -⋅ 目标火仄背左(2)共理2220d d π41d +=x x E Qλε由于对付称性⎰=l Qx E 0d ,即Q E惟有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代进得21096.14⨯==Q y Q E E 1C N -⋅,目标沿y 轴正背一个半径为R 的匀称戴电半圆环,电荷线稀度为λ,供环心处O 面的场强.ϕλλd d d R l q ==,它正在O 面爆收场强盛小为20π4d d R R E εϕλ=目标沿半径背中则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰ ∴ RE E x0π2ελ==,目标沿x 轴正背.9.9 匀称戴电的细线直成正圆形,边少为l ,总电量为q .(1)供那正圆形轴线上离核心为r 处的场强E ;(2)道明:正在l r >>处,它相称于面电荷q 爆收的场强E .解: 如9.9图示,正圆形一条边上电荷4q 正在P 面爆收物强P Ed 目标如图,大小为∵ 22cos 221l r l +=θ∴ 24π4d 22220l r l l r E P++=ελP Ed 正在笔曲于仄里上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ由于对付称性,P 面场强沿OP 目标,大小为 ∵ lq4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 目标沿OP(1)面电荷q 位于一边少为a 的坐圆体核心,试供正在该面电荷电场中脱过坐圆体的一个里的电通量;(2)如果该场源面电荷移动到该坐圆体的一个顶面上,那时脱过坐圆体各里的电通量是几?解: (1)由下斯定理0d εqS E s⎰=⋅坐圆体六个里,当q 正在坐圆体核心时,每个里上电通量相等∴ 各里电通量06εq e =Φ.(2)电荷正在顶面时,将坐圆体蔓延为边少a 2的坐圆体,使q 处于边少a 2的坐圆体核心,则边少a 2的正圆形上电通量6εq e =Φ 对付于边少a 的正圆形,如果它不包罗q 天圆的顶面,则24εq e =Φ,如果它包罗q 天圆顶面则0=Φe .如题9.10图所示. 题9.10 图匀称戴电球壳内半径6cm ,中半径10cm ,电荷体稀度为2×510-C ·m -3供距球心5cm ,8cm ,12cm 各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=41048.3⨯≈1C N -⋅, 目标沿半径背中.12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径背中. 半径为1R 战2R (2R >1R )的二无限少共轴圆柱里,单位少度上分别戴有电量λ战-λ,试供:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各面的场强.解: 下斯定理0d ε∑⎰=⋅qS E s与共轴圆柱形下斯里,正里积rl S π2=则 rl E S E Sπ2d =⋅⎰对付(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径背背中(3) 2R r > 0=∑q∴ 0=E9.13 二个无限大的仄止仄里皆匀称戴电,电荷的里稀度分别为1σ战2σ,试供空间各处场强.解: 如题9.13图示,二戴电仄里匀称戴电,电荷里稀度分别为1σ与2σ, 二里间, n E)(21210σσε-=1σ里中, n E)(21210σσε+-=2σ里中, n E)(21210σσε+=n:笔曲于二仄里由1σ里指为2σ里.9.14 半径为R 的匀称戴电球体内的电荷体稀度为ρ,若正在球内掘去一齐半径为r <R 的小球体,如题图所示.试供:二球心O 与O '面的场强,并道明小球空腔内的电场是匀称的.解: 将此戴电体瞅做戴正电ρ的匀称球与戴电ρ-的匀称小球的拉拢,睹题9.14图(a).(1) ρ+球正在O 面爆收电场010=E,ρ-球正在O 面爆收电场'dπ4π3430320OO r E ερ=∴ O 面电场'd33030OO r E ερ= ;(2) ρ+正在O '爆收电场'dπ4d 3430301OO E ερπ='ρ-球正在O '爆收电场002='E∴ O ' 面电场 003ερ='E'OO 题9.14图(a) 题9.14图(b)(3)设空腔任一面P 相对付O '的位矢为r',相对付O 面位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+='∴腔内场强是匀称的. 9.15 一电奇极子由q ×10-6C的二个同号面电荷组成,二电荷距离d=,把那电奇极子搁正在×105N ·C -1的中电场中,供中电场效率于电奇极子上的最大举矩.解: ∵ 电奇极子p正在中场E 中受力矩∴ qlE pE M ==max 代进数字二面电荷1q ×10-8C ,2q ×10-8C ,相距1r =42cm ,要把它们之间的距离形成2r =25cm ,需做几功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εε )11(21r r -中力需做的功 61055.6-⨯-=-='A A J9.17 如题图所示,正在A ,B 二面处搁有电量分别为+q ,-q 的面电荷,AB 间距离为2R ,现将另一正考查面电荷0q 从O 面通过半圆弧移到C 面,供移动历程中电场力做的功.解:∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题图所示的绝缘细线上匀称分散着线稀度为λ的正电荷,二曲导线的少度战半圆环的半径皆等于R .试供环核心O 面处的场强战电势.解: (1)由于电荷匀称分散与对付称性,AB 战CD 段电荷正在O 面爆收的场强互相对消,与θd d R l =则θλd d R q =爆收O 面Ed 如图,由于对付称性,O 面场强沿y 轴背目标R0π4ελ=[)2sin(π-2sin π-](2) AB 电荷正在O 面爆收电势,以0=∞U 共理CD 爆收 2ln π402ελ=U 半圆环爆收 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 9.19 一电子绕一戴匀称电荷的少曲导线以2×104m ·s -1的匀速率做圆周疏通.供戴电曲线上的线电荷稀度.(电子品量0m ×10-31kg ,电子电量e ×10-19C)解: 设匀称戴电曲线电荷稀度为λ,正在电子轨讲处场强 电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 气氛不妨启受的场强的最大值为E =30kV ·cm -1,超出那个数值时气氛要爆收火花搁电.今有一下压仄止板电容器,极板间距离为d =,供此电容器可启受的最下电压.解: 仄止板电容器里里近似为匀称电场9.21 道明:对付于二个无限大的仄止仄里戴电导体板(题图)去道,(1)相背的二里上,电荷的里稀度经常大小相等而标记差同;(2)相背的二里上,电荷的里稀度经常大小相等而标记相共.证: 如题9.21图所示,设二导体A 、B 的四个仄里匀称戴电的电荷里稀度依次为1σ,2σ,3σ,4σ(1)则与与仄里笔曲且底里分别正在A 、B 里里的关合柱里为下斯里时,有∴ +2σ03=σ道明相背二里上电荷里稀度大小相等、标记差同;(2)正在A 里里任与一面P ,则其场强为整,而且它是由四个匀称戴电仄里爆收的场强叠加而成的,即 又∵ +2σ03=σ ∴ 1σ4σ=道明相背二里上电荷里稀度经常大小相等,标记相共. 9.22 三个仄止金属板A ,B 战C 的里积皆是200cm 2,A 战B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 皆接天,如题图所示.如果使A 板戴正电×10-7C ,略去边沿效力,问B 板战C 板上的感触电荷各是几?以天的电势为整,则A 板的电势是几? 解: 如题9.22图示,令A 板左正里电荷里稀度为1σ,左正里电荷里稀度为2σ(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC 10172-⨯-=-=S q B σ (2)301103.2d d ⨯===AC AC AC A E U εσV 二个半径分别为1R 战2R (1R <2R )的共心薄金属球壳,现给内球壳戴电+q ,试估计:(1)中球壳上的电荷分散及电势大小;(2)先把中球壳接天,而后断启接天线沉新绝缘,此时中球壳的电荷分散及电势;*(3)再使内球壳接天,此时内球壳上的电荷以及中球壳上的电势的改变量.解: (1)内球戴电q +;球壳内表面戴电则为q -,中表面戴电为q +,且匀称分散,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε(2)中壳接天时,中表面电荷q +进天,中表面不戴电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -爆收: (3)设此时内球壳戴电量为q ';则中壳内表面戴电量为q '-,中壳中表面戴电量为+-q q ' (电荷守恒),此时内球壳电势为整,且得 q R R q 21=' 中球壳上电势半径为R 的金属球离大天很近,并用导线与天相联,正在与球心相距为R d 3=处有一面电荷+q ,试供:金属球上的感触电荷的电量.解: 如题9.24图所示,设金属球感触电荷为q ',则球接天时电势0=O U由电势叠加本理有: 得 -='q 3q 有三个大小相共的金属小球,小球1,2戴有等量共号电荷,相距甚近,其间的库仑力为0F .试供:(1)用戴绝缘柄的不戴电小球3先后分别交战1,2后移去,小球1,2之间的库仑力;(2)小球3依次接替交战小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3交战小球1后,小球3战小球1均戴电2q q =', 小球3再与小球2交战后,小球2与小球3均戴电 ∴ 此时小球1与小球2间相互效率力(2)小球3依次接替交战小球1、2很多次后,每个小球戴电量均为32q .∴ 小球1、2间的效率力00294π432322F r qq F ==ε正在半径为1R 的金属球除中包有一层中半径为2R 的匀称电介量球壳,介量相对付介电常数为r ε,金属球戴电Q .试供:(1)电介量内、中的场强; (2)电介量层内、中的电势; (3)金属球的电势.解: 利用有介量时的下斯定理∑⎰=⋅q S D Sd(1)介量内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介量中)(2R r <场强 (2)介量中)(2R r >电势 介量内)(21R r R <<电势 (3)金属球的电势9.27 如题图所示,正在仄止板电容器的一半容积内充进相对付介电常数为r ε的电介量.试供:正在有电介量部分战无电介量部分极板上自由电荷里稀度的比值. 解: 如题9.27图所示,充谦电介量部分场强为2E,真空部分场强为1E,自由电荷里稀度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε= ∴ r r E E εεεεσσ==102012二个共轴的圆柱里,少度均为l ,半径分别为1R 战2R (2R >1R ),且l >>2R -1R ,二柱里之间充有介电常数εQ 战-Q 时,供:(1)正在半径r 处(1R <r <2R =,薄度为dr ,少为l 的圆柱薄壳中任一面的电场能量稀度战所有薄壳中的电场能量; (2)电介量中的总电场能量; (3)圆柱形电容器的电容. 解: 与半径为r 的共轴圆柱里)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑ ∴ rlQD π2=(1)电场能量稀度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介量中总电场能量(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== 如题9.29 图所示,1C =μF ,2C =μF ,3C =μF .1C 上电压为50V .供:AB U . 解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 9.30 1C 战2C 二电容器分别标明“200 pF 、500 V”战“300 pF 、900 V”,把它们串联起去后等值电容是几?如果二端加上1000 V的电压,是可会打脱?解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超出耐压值会打脱,而后2C 也打脱.半径为1R = 的导体球,中套有一共心的导体球壳,壳的内、中半径分别为2R =战3R =,当内球戴电荷Q ×10-8C 时,供:(1)所有电场储藏的能量;(2)如果将导体壳接天,估计储藏的能量; (3)此电容器的电容值.解: 如图,内球戴电Q ,中球壳内表面戴电Q -,中表面戴电Q(1)正在1R r <战32R r R <<天区正在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴正在21R r R <<天区正在3R r >天区∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接天时,惟奇尔21R r R <<30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε。

《大学物理》习题答案4-匡乐满主编-北京邮电大学出版社省名师优质课赛课获奖课件市赛课一等奖课件

《大学物理》习题答案4-匡乐满主编-北京邮电大学出版社省名师优质课赛课获奖课件市赛课一等奖课件

0.5
0.30s
7. 粒子在加速器中被加速到动能为静止能量旳4倍时,其质量 m
与静止质量 m0 旳关系为:
(A)m 4m0;(B) m 5m0;(C) m 6m0; (D) m 8m0
答案(B) mc2 Ek m0c2 4m0c2 m0c2 5m0c2
大学物理 盛忠志主讲
8. Ek 是粒子旳动能,p 是它旳动量,那么粒子旳静能 m0c 2等于
大学物理 盛忠志主讲
大学物理作业四参照答案
一、选择题
1. 一刚性直尺固定在S系中,它与 X 轴正向夹角 45,
在相对 S系以速度 u 沿 X 轴作匀速直线运动旳 S 系中,
测得该尺与 X 轴正向夹角为 (A) 45;(B) 45 ; (C) 45; (D)不懂得
答案(A)
大学物理 盛忠志主讲
2. 惯性系 S 、S沿X 轴做相对运动,在 S 系中测得两个同步发 生旳事件沿运动方向空间距离为1m,在 S系中测得这两个事件
旳空间间隔为2m。则在 S 系中测得这两个事件旳时间间隔为
(A)
3c

(B)1 3
c

(C) 3 c
; (D)3 c
x x
1
u c
2 2
答案(C)
u 3c 2
t t1 t2
1 (t u x) 3
1
u2 c2
c2
c
3. 两火箭A、B沿同一直线相向运动,测得两者相对地球旳速度
大小分别是 vA 0.9c ,vB 0.8c 。则两者互测旳相对运动速度为
(A)1.7c ; (B) 0.988c ; (C) 0.956c ; (D) 0.975c
答案(B)
v v u 0.9c (0.8c) 0.988c

大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版 北京邮电大学出版社)习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-② 222a m g m T =-③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v ϖϖϖ(2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 答: (1)∵ t v m kv a d d =-= 分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k vv 00d d mkt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t e v x t m k (4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为 22g a a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴g g g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p ϖϖϖ-=∆ 由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p ϖϖϖ-=∆方向竖直向上, 大小mg mv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ϖϖϖωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为 )cos sin (j t b i t a m v m p ϖϖϖϖωωω+-== 将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t = (2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -=于是有km T v v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+=证毕. 2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F ϖ为恒力, ∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合 J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即 222122k k ky =-所以,22=y 于是钉子第二次能进入的深度为 cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解: 1d )(d )(+-==n r nk r r E r F 方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G -=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M Gr M G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,tv d d 是加速度a 在切向上的分量.∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττϖϖϖ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jty i t x t r a jty i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

在1-1题中已说明t rd d 不是速度的模,而只是速度在径向上的分量,同样,22d d tr也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=222d d d d t r t r a θ径。

或者概括性地说,前一种方法只考虑了位矢r ϖ在径向(即量值)方面随时间的变化率,而没有考虑位矢r ϖ及速度v ϖ的方向随间的变化率对速度、加速度的贡献。

1-3 一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0 s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1) j t t i t r ϖϖϖ)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有j i r ϖϖϖ5.081-= mj j r ϖϖϖ4112+=m j j r r r ϖϖϖϖϖ5.4312+=-=∆m(3)∵ j i r j j r ϖϖϖϖϖϖ1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v ϖϖϖϖϖϖϖϖ(4) 1s m )3(3d d -⋅++==j t i trv ϖϖϖϖ则 j i v ϖϖϖ734+= 1s m -⋅ (5)∵ j i v j i v ϖϖϖϖϖϖ73,3340+=+= 204s m 1444-⋅==-=∆∆=j v v t v a ϖϖϖϖϖ (6) 2s m 1d d -⋅==j tva ϖϖϖ这说明该点只有y 方向的加速度,且为恒量。

1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ ts v v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d s v h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船 1-5 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m. 质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值. 解: ∵ xvv t x x v t v a d d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-7 一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成ο45角时,有145tan ==︒na a τ即 βωR R =2亦即 t t 18)9(22= 则解得 923=t 于是角位移为rad 67.29232323=⨯+=+=t θ)sin (sin 2cos2sin 200t R t R Rt v R t v x ωωθθθ-=-=-=1-8 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v tsv -==0d d Rbt v R va b tva n 202)(d d -==-==τ 则 240222)(R bt v b a a a n-+=+=τ加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ (2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v Rbt v b b ∴当bv t 0=时,b a = 1-9 半径为R 的轮子,以匀速0v 沿水平线向前滚动:(1)证明轮缘上任意点B 的运动方程为x =R )sin (t t ωω-,y =R )cos 1(t ω-,式中0v =ω/R 是轮子滚动的角速度,当B 与水平线接触的瞬间开始计时.此时B 所在的位置为原点,轮子前进方向为x 轴正方向;(2)求B 点速度和加速度的分量表示式.解:依题意作出下图,由图可知题1-9图 (1))cos 1()cos 1(2sin2sin2t R R R y ωθθθ-=-== (2)⎪⎪⎩⎪⎪⎨⎧==-==)sin d d )cos 1(d d t R t y v t R tx v y x ωωω ⎪⎪⎩⎪⎪⎨⎧====t v t R a tv t R a yy x x d d cos d d sin 22ωωωω 1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o 60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-11 飞轮半径为0.4 m ,自静止启动,其角加速度为β= 0.2 rad ·2s -,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度. 解:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n1-12 如题1-12图,物体A 以相对B 的速度v =gy 2沿斜面滑动,y 为纵坐标,开始时A 在斜面顶端高为h 处,B 物体以u 匀速向右运动,求A 物滑到地面时的速度.解:当滑至斜面底时,h y =,则gh v A 2=',A 物运动过程中又受到B 的牵连运动影响,因此,A 对地的速度为jgh i gh u v u v AA ϖϖϖϖϖ)sin 2()cos 2('αα++=+=地题1-12图1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何? 解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅方向南偏东o87.361-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m 的甲板上,篷高4 m 但当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 m ·s -1,求轮船的速率.解: 依题意作出矢量图如题1-14所示.题1-14图∵ 船雨雨船v v v ϖϖϖ-= ∴ 船雨船雨v v v ϖϖϖ+= 由图中比例关系可知1s m 8-⋅==雨船v v。

相关文档
最新文档