大学物理期末复习题精选北京邮电大学第4版
大学物理(第四版)课后习题及答案_电介质

电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
大学物理试卷参考答案(对应北京邮电大学版)

物理试卷参考答案1解:理想气体分子的能量RT i E 2υ=平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r249330031.822=⨯⨯=r E内能5=i 5.623230031.825=⨯⨯=i E J 2解: ∵ xv v t x x v t v ad d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得c x x v ++=322221 由题知,0=x时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v3.解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t,00=v ,∴01=c故 2234t t v +=又因为 2234d d t t t x v +== 分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v4. )由题知,0=t时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt 5)222υυ+=u 52202=+=υυu m/s=4.47υυθ00)90tan(=-2142== 6)由图知,0=t时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值) ∴P 点振动方程为)3410cos(1.0ππ-=t y p∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m Y=-1/2M 7) 解: bt v tsv -==0d dRbt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n-+=+=τ8)又 11x k F A∆= 22x k F B ∆=Mg F F B A ==弹性势能之比为12222211121212k kx k x k E E p p =∆∆=二.填空题答案1)解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgRv +=22)正比3)v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度 4)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数5) 卡诺热机效率121T T -=η%7010003001=-=η6)W E Q+∆=7) E=1/2KA 2 8)书P144 三.计算题解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l+=将上式对时间t 求导,得tss t l l dd 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ ts v v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度322d d sv h t v a ==船2)解:由题图(a),∵0=t时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 3)解: (1)射入的过程对O 轴的角动量守恒ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω(2)020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ4)解:由abc 过程可求出b 态和a 态的内能之差 W E Q+∆=224126350=-=-=∆W Q E Jabd过程,系统作功42=WJ26642224=+=+∆=W E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=W E Q J 系统放热5)解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N,(2)由归一化条件可得⎰⎰==+0002032d d v v v v N a Nv a N v v avN(3)可通过面积计算 N v v a N 31)5.12(00=-=∆(4) N 个粒子平均速率⎰⎰⎰⎰+===∞∞00202d d d )(1d )(v v v v av v v av v v vNf Nv v vf v02020911)2331(1v av av N v =+=(5)05.0v 到01v 区间内粒子平均速率⎰⎰==0005.0115.0d d v v v v NNv N N N Nv v ⎰⎰==00005.05.00211d d )(v v v v v Nv av N N v v vf N N 2471)243(1d 12103003015.002100av N v av v av N v v av N v v v =-==⎰ 05.0v 到01v 区间内粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==6)解: (1)如题5-11图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为])(cos[0φω++=uxt A y(2) 如题5-11图(a),则Q 点的振动方程为])(cos[0φω+-=ubt A A Q如题5-11图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q。
大学物理 北京邮电大学习题

习题解答 习题一1-1 |r ∆|与r ∆ 有无不同?t d d r 和t d d r 有无不同? t d d v 和td d v 有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆;(2)t d d r 是速度的模,即t d d r ==v ts d d . trd d 只是速度在径向上的分量. ∵有r r ˆr =(式中r ˆ叫做单位矢),则tˆr ˆt r t d d d d d d rrr += 式中trd d 就是速度径向上的分量, ∴tr t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,tv d d 是加速度a 在切向上的分量.∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以tvt v t v d d d d d d ττϖϖϖ+= 式中dt dv就是加速度的切向分量. (tt r d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =tr d d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jty i t x t r a jty i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴ 故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v yxyx而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d tr a trv ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。
大学物理(第四版)课后习题及答案_相对论

第十六章相对论题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。
(1)若有一事件,在 S 系中发生于t = 2.0×10-7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10-7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少?题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为s 1025.1/1'7221211-⨯=--=c v x c v t t(2)同理,第二个事件发生的时刻为s 105.3/1'7222222-⨯=--=c v x c v t t所以,在S ′系中两事件的时间间隔为s 1025.2'''721-⨯=-=∆t t t题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。
有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少?题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/1''22=-+=c v vt x x 0'==y y0'==z zs 105.2/1''7222-⨯=-+=c v x c v t t题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。
问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。
北京邮电大学大学物理期末考试试卷(含答案)

北京邮电大学大学物理期末考试试卷(含答案)一、大学物理期末选择题复习 1.运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确答案D2.如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ答案D3.一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿x 轴的分量是: ( )(A) 0(B) ()()2/32220/4/z y x Ixdl ++-πμ(C) ()()2/12220/4/z y x Ixdl ++-πμ(D)()()2220/4/z y x Ixdl ++-πμ答案B4.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的( )(A) 动量不守恒,动能守恒(B) 动量守恒,动能不守恒(C) 对地心的角动量守恒,动能不守恒1、(D) 对地心的角动量不守恒,动能守恒答案C5.静电场中高斯面上各点的电场强度是由:( )(A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的(C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的答案C6.将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 答案A7.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: ( )(A) 00,4QE U rπε== (B) 00,4Q E U R πε== (C) 200,44QQ E U rr πεπε== (D)200,44QQ E U r R πεπε==答案B8. 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是:(A )只有(1)(2)正确 (B )只有(2)正确(C )只有(2)(3)正确 (D )只有(3)(4)正确答案 D9. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
《大学物理》习题答案4-匡乐满主编-北京邮电大学出版社省名师优质课赛课获奖课件市赛课一等奖课件

0.5
0.30s
7. 粒子在加速器中被加速到动能为静止能量旳4倍时,其质量 m
与静止质量 m0 旳关系为:
(A)m 4m0;(B) m 5m0;(C) m 6m0; (D) m 8m0
答案(B) mc2 Ek m0c2 4m0c2 m0c2 5m0c2
大学物理 盛忠志主讲
8. Ek 是粒子旳动能,p 是它旳动量,那么粒子旳静能 m0c 2等于
大学物理 盛忠志主讲
大学物理作业四参照答案
一、选择题
1. 一刚性直尺固定在S系中,它与 X 轴正向夹角 45,
在相对 S系以速度 u 沿 X 轴作匀速直线运动旳 S 系中,
测得该尺与 X 轴正向夹角为 (A) 45;(B) 45 ; (C) 45; (D)不懂得
答案(A)
大学物理 盛忠志主讲
2. 惯性系 S 、S沿X 轴做相对运动,在 S 系中测得两个同步发 生旳事件沿运动方向空间距离为1m,在 S系中测得这两个事件
旳空间间隔为2m。则在 S 系中测得这两个事件旳时间间隔为
(A)
3c
;
(B)1 3
c
;
(C) 3 c
; (D)3 c
x x
1
u c
2 2
答案(C)
u 3c 2
t t1 t2
1 (t u x) 3
1
u2 c2
c2
c
3. 两火箭A、B沿同一直线相向运动,测得两者相对地球旳速度
大小分别是 vA 0.9c ,vB 0.8c 。则两者互测旳相对运动速度为
(A)1.7c ; (B) 0.988c ; (C) 0.956c ; (D) 0.975c
答案(B)
v v u 0.9c (0.8c) 0.988c
大学物理考试试卷(对应北京邮电大学版)

大学物理考试复习试卷限时:120分钟一.选择题(8*4=32分)1)1mol 氢气,在温度为27℃时,它的平动动能、转动动能和内能各是多少J?( )A 3739.5、2493、3739.5 B.1897.75、1246.5、4144.25C.7479、4986、12465D.3739.5、2493、6232.52)质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2sm -⋅,x 的单位为 m. 质点在x =0处,速度为101sm -⋅,试求质点在任何坐标处的速度值( ) A.13s m 252-⋅++=x x v B. 13s m 252-⋅+=x v C. 13s m 25-⋅++=x x v D. 12s m 252-⋅++=x x v3) 已知一质点作直线运动,其加速度为 a =4+3t 2sm -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置( )A.600MB.700MC.352.5 MD.705M .4) 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:由起始位置运动到cm 12=x 处所需的最短时间;( )A.1/2 SB. 2/3 SC.1/3 SD.3/ 4 S5) 在河水流速υ0=2 m·s -1的地方有小船渡河.如果希望小船以υ=4 m·s -1的速率垂直于河岸横渡,问小船相对于河水的速度大小和方向应如何?( )A.v=4.47m/s ¢=arctan5+900B.v=4m/s ¢=arctan 55+900C.v=4.47m/s ¢=arctan 55+900D.v=4.47m/s ¢=arctan 555+9006) 一列机械波沿x 轴正向传播,t =0时的波形如题图所示,已知波速为10 m ·s -1,波长为2m ,则P 点的坐标为( )A.(5/3,1/2)B.(4/3,-1/2) C(5/3,-1/2) D.(1/2,-1/2)7)质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,t 时刻质点的加速度大小为( )A. 240)(R bt v b a -+= B. 2402)(R bt v b a -+= C. 3402)(R bt v b a --= D. 2402)(R bt v b a --=8)一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-9图.求这一系统静止时两弹簧的弹性势能之比( ). A.EP 1/EP 2B. K 1/K 2C.K 2/K 1D.EP 2/EP 1第1)图填空题二.填空题(8*4=32分)1)质量为M 的大木块具有半径为R 的四分之一弧形槽,如题图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,小木块脱离大木块时的速度为2)绕定轴转动的刚体的角加速度与作用于刚体上的合力矩成 比3)v v nf d )(的物理意义(n 为分子数密度)4)⎰21d )(v v v v Nf 的物理意义N 为系统总分子数5) 一卡诺热机在1000 K 和300 K 的两热源之间工作其热机效率为6)热力学第一定律公式7)简谐运动的总能量表达式是 (用颈度系数K,振幅A 表示)8)波动方程为三.计算题(6*6=36分)1)在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.2)x-曲线,试分别写出其谐振动方程.题图为两个谐振动的t3)一质量为m、半径为R的自行车轮,假定质量均匀分布在轮缘上,可绕轴自由转动.另一质量为0m的v射入轮缘(如题图所示方向).子弹以速度(1)开始时轮是静止的,在质点打入后的角速度为何值?(2)用m,0m和θ表示系统(包括轮和质点)最后动能和初始动能之比.4)如题图所示,一系统由状态a沿acb到达状态b的过程中,有350 J热量传入系统,而系统作功126 J.(1)若沿adb时,系统作功42 J,问有多少热量传入系统?(2)若系统由状态b沿曲线ba返回状态a时,外界对系统作功为84 J,试问系统是吸热还是放热?热量传递是多少?5)设有N 个粒子的系统,其速率分布如题6-9图所示.求(1)分布函数)(v f 的表达式;(2)a 与0v 之间的关系;(3)速度在1.50v 到2.00v 之间的粒子数.(4)粒子的平均速率.(5)0.50v 到10v 区间内粒子平均速率.6)如题图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0ϕω+t ).(1)分别就图中给出的两种坐标写出其波动方程;(2)写出距P 点距离为b 的Q 点的振动方程.。
大学物理(第四版)课后习题及答案_分子运动

题5.1:一打足气的自行车内胎,在7.0 ℃时,轮胎中空气的压强为Pa 100.45⨯,则当温度变为37.0 ℃时,轮贻内空气的压强为多少?(设内胎容积不变)题5.1分析:胎内空气可视为一定量的理想气体,其始末均为平衡态(即有确定的状态参量p 、V 、T 值)由于气体的体积不变,由理想气体物态方程RT MmpV =可知,压强p 与温度T 成正比。
由此即可求出末态的压强。
解:由分析可知,当C 0.372 =T 时,轮胎内空气压强为P a 1043.451122⨯==T p T p 可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎。
题5.2:在水面下50.0 m 深的湖底处(温度为4.0 ℃),有一个体积为1.0⨯10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0 ℃,求气泡到达湖面的体积。
(取大气压强为p 0 = 1.013⨯105 Pa )题5.2分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为gh p gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ 题5.3:氧气瓶的容积为32m 102.3-⨯,其中氧气的压强为71030.1⨯Pa ,氧气厂规定压强降到61000.1⨯Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3压强为51001.1⨯Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变)题5.3分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B]1.2填空题(1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又是位移对时间的两阶导数。
于是可得(3)为匀变速直线运动。
其速度和加速度表达式分别为22484dxv t dtd x a dt==+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。
因加速度为正所以是加速的。
1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零?(1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。
解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。
1.10 已知一质点作直线运动,其加速度为 a =4+3t 2s /m ,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1.13 一质点在半径为0.4 m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α= 0.2 rad/2s ,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度.解:当s 2=t 时,4.022.0=⨯==t αω 1s rad -⋅则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==ατR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n习题22.1 选择题(1) 一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变。
(B)它的动量不变,对圆心的角动量不断改变。
(C)它的动量不断改变,对圆心的角动量不变。
(D)它的动量不断改变,对圆心的角动量也不断改变。
[答案:C](2) 质点系的内力可以改变(A)系统的总质量。
(B)系统的总动量。
(C)系统的总动能。
(D)系统的总角动量。
[答案:C](3) 对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中:(A)①、②是正确的。
(B)②、③是正确的。
(C)只有②是正确的。
(D)只有③是正确的。
[答案:C]2.2填空题(1) 某质点在力i x F)54(+=(SI )的作用下沿x 轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为 。
[答案:290J ](2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。
则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。
[答案:22;22v v s gs](3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。
(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。
[答案:2;3k k E E ]2.3 在下列情况下,说明质点所受合力的特点:(1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。
解:(1)所受合力为零;(2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力;(4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。
2.5质点系动量守恒的条件是什么?在什么情况下,即使外力不为零,也可用动量守恒定律近似求解?解:质点系动量守恒的条件是质点系所受合外力为零。
当系统只受有限大小的外力作用,且作用时间很短时,有限大小外力的冲量可忽略,故也可用动量守恒定律近似求解。
2.7 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,题2.7图由图(b)可知,为 a a a '-=12 ① 又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =- ②222a m g m T =- ③ 联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.2.14 一质量为m 的质点在xOy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为)cos sin (j t b i t a m v m pωωω+-==将0=t 和ωπ2=t 分别代入上式,得 j b m pω=1,i a m p ω-=2 ,则动量的增量亦即质点所受外力的冲量为)(12j b i a m p p p I+-=-=∆=ω习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。
(B )动量不变,动能改变。
(C )角动量不变,动量不变。
(D )角动量改变,动量改变。
(E )角动量不变,动能、动量都改变。
[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5 rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n = 。
[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的 守恒,原因是 。
木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的 守恒。
题3.2(2)图[答案:对o 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o 轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρB (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A J B 。
(填>、<或=)[答案: <]3.3刚体平动的特点是什么?平动时刚体上的质元是否可以作曲线运动?解:刚体平动的特点是:在运动过程中,内部任意两质元间的连线在各个时刻的位置都和初始时刻的位置保持平行。