2013年中考数学压轴题专项练习

合集下载

2013年中考数学压轴题精选

2013年中考数学压轴题精选

2013年中考数学冲刺必备压轴题汇编安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10B .54C . 10或54D .10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯14.如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_____________解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立 安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG . 解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴DE ∥21AB ,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等 即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2cb +(2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。

2013中考数学压轴题(含答案)

2013中考数学压轴题(含答案)

1、如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x =>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1,∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) .过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON .S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点C 在双曲线8y x =上,当y = 8时,x = 1 .∴ 点C 的坐标为 ( 1, 8 ).图12O x A y B x y 21x y 8=∵ 点C 、A 都在双曲线8y x =上 ,∴ S △COE = S △AOF = 4 。

∴ S △COE + S 梯形CEFA = S △COA + S △AOF .∴ S △COA = S 梯形CEFA .∵ S 梯形CEFA = 12×(2+8)×3 = 15 ,∴ S △COA = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠),得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 .∴ 18(2)(4)62m m +⋅-=.4141m8解得m = 2,m = - 8(舍去) .∴ P (2,4).若 m > 4,如图12-4,∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,∴ S 梯形PEFA = S △POA = 6 .∴18(2)(4)62m m +⋅-=,解得m = 8,m = - 2 (舍去) .∴ P (8,1).∴ 点P 的坐标是P (2,4)或P (8,1).2、如图,抛物线212y x mx n =++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A的横坐标是-3,点B 的横坐标是1.(1)求m 、n 的值;(2)求直线PC 的解析式;(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(参考数:2 1.41≈,3 1.73≈,5 2.24≈) 解: (1)由已知条件可知: 抛物线212y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2m n m n ⎧=-+⎪⎪⎨⎪=++⎪⎩ ……………………………………2分解得 31,2m n ==-. ………………………3分 (2) ∵21322yx x =+-, ∴ P (-1,-2),C 3(0,)2-. …………………4分设直线PC 的解析式是y kx b =+,则2,3.2k b b -=-+⎧⎪⎨=-⎪⎩ 解得13,22k b ==-. ∴ 直线PC 的解析式是1322yx =-. …………………………6分 说明:只要求对1322k b ==-,,不写最后一步,不扣分.(3) 如图,过点A 作AE ⊥PC ,垂足为E .设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分 在Rt△O CD 中,∵ O C =32,3O D =, ∴ 2233()3522C D =+=. …………8分∵ O A =3,3O D =,∴AD =6. (9)分 ∵ ∠C O D =∠AED =90o ,∠CD O 公用,∴ △C O D ∽△AED . ……………10分 ∴ OCC D AEAD =, 即335226AE =. ∴ 655AE =. …………………11分 ∵ 65 2.688 2.55> ,∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分。

2013年中考数学压轴题 2-含答案

2013年中考数学压轴题 2-含答案

1.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y =a (x -2)2+1.∵抛物线经过原点,∴a (0-2)2+1=0,∴a =-41. ∴抛物线的解析式为y =-41(x -2)2+1=-41x 2+x . ························· 3分 (2)△AOB 和所求△MOB 同底不等高,若S △MOB =3S △AOB ,则△MOB 的高是△AOB 高的3倍,即M 点的纵坐标是-3. ············································································· 5分∴-41x 2+x =-3,整理得x 2-4x -12=0,解得x 1=6,x 2=-2. ∴满足条件的点有两个:M 1(6,-3),M 2(-2,-3) ····························· 7分(3)不存在. ········································································································ 8分理由如下:由抛物线的对称性,知AO =AB ,∠AOB =∠ABO .若△OBN ∽△OAB ,则∠BON =∠BOA =∠BNO .设ON 交抛物线的对称轴于A ′ 点,则A ′ (2,-1).∴直线ON 的解析式为y =-21x .由21x =-41x 2+x ,得x 1=0,x 2=6. ∴N (6,-3).过点N 作NC ⊥x 轴于C .在Rt △BCN 中,BC =6-4=2,NC =3∴NB =2232+=13.∵OB =4,∴NB ≠OB ,∴∠BON ≠∠BNO ,∴△OBN 与△OAB 不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.∴在x 轴下方的抛物线上不存在点N ,使△OBN 与△OAB 相似. ····· 10分2.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(1)如图1,过点B 作BM ⊥x 轴于M .由旋转性质知OB =OA =2.∵∠AOB =120°,∴∠BOM =60°.∴OM =OB ·cos60°=2×21=1,BM =OB ·sin60°=2×23=3. ∴点B 的坐标为(1,3). ··········································· 1分(2)设经过A 、O 、B 三点的抛物线的解析式为y =ax 2+bx +c∵抛物线过原点,∴c =0. ∴⎪⎩⎪⎨⎧=+=-3024b a b a 解得⎪⎪⎩⎪⎪⎨⎧==33233b a ∴所求抛物线的解析式为y =33x 2+332x . ······································ 3分 (3)存在. ·········································································································· 4分如图2,连接AB ,交抛物线的对称轴于点C ,连接OC .∵OB 的长为定值,∴要使△BOC 的周长最小,必须BC +OC 的长最小. ∵点A 与点O 关于抛物线的对称轴对称,∴OC =AC .∴BC +OC =BC +AC =AB .由“两点之间,线段最短”的原理可知:此时BC +OC 最小,点C 的位置即为所求.设直线AB 的解析式为y =kx +m ,将A (-2,0),B (1,3)代入,得⎪⎩⎪⎨⎧=+=+-302m k m k 解得⎪⎪⎩⎪⎪⎨⎧==33233m k∴直线AB 的解析式为y =33x +332. 抛物线的对称轴为直线x =332332⨯-=-1,即x =-1. 将x =-1代入直线AB 的解析式,得y =33×(-1)+332=33. ∴点C 的坐标为(-1,33). ································································· 6分 (4)△PAB 有最大面积. ·················································································· 7分如图3,过点P 作y 轴的平行线交AB 于点D .∵S △PAB =S △PAD +S △PBD=21(y D -y P )(x B -x A ) =21[(33x +332)-(33x 2+332x )](1+2) =-23x 2-23x +3 =-23(x +21)2+839 ∴当x =-21时,△PAB 的面积有最大值,最大值为839.··············· 8分 此时y P =33×(-21)2+332×(-21)=-43. ∴此时P 点的坐标为(-21,-43). ···················································· 9分。

2013年中考数学压轴题真题分类汇编:三角形

2013年中考数学压轴题真题分类汇编:三角形

2013年中考数学压轴题真题分类汇编:三角形六、三角形 1.(北京)在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图2中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.2.(北京模拟)已知,点P 是∠MON 的平分线OT 上的一动点,射线P A 交直线OM 于点A ,将射线P A 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°. (1)求证:P A =PB ;(2)若点C 是直线AB 与直线OP 的交点,当S △POB=3S △PCB时,求PBPC的值; (3)若∠MON =60°,OB =2,直线P A 交射线ON 于点D ,且满足∠PBD =∠ABO ,求OP 的长.3.(北京模拟)已知△ABC 和△DEC 都是等腰直角三角形,C 为它们的公共直角顶点,连接AD 、BE ,F 为线段AD 的中点,连接CF .(1)如图1,当点D 在BC 边上时,BE 与CF 的数量关系是____________,位置关系是____________,请证明;(2)如图2,把△DEC 绕点C 顺时针旋转α角(0°<α<90°),其他条件不变,问(1)中的关系是否仍然成立?若成立,请证明;若不成立,请写出相应的正确的结论并加以证明;图1 A B C Q M (P ) 图2 ABC Q PM M T N O M T N O 备用图 MTNO备用图(3)如图3,把△DEC 绕点C 顺时针旋转45°,BE 、CD 交于点G .若∠DCF =30°,求BGCG及ACDC的值.4.(上海模拟)如图,∠ACB =90°,CD 是∠ACB 的平分线,点P 在CD 上,CP =2.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)当点F 在射线CA 上时 ①求证:PF =PE .②设CF =x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)连接EF ,当△CEF 与△EGP 相似时,求EG 的长.5.(上海模拟)已知△ABC 中,AB =AC ,BC =6,sin B =45.点P 从点B 出发沿射线BA 移动,同时点Q 从点C 出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由; (3)如图③,当PQ 经过△ABC 的重心G 时,求BP 的长.6.(上海模拟)如图,三角形纸片ABC 中,∠C =90°,AC =4,BC =3.将纸片折叠,使点B 落在AC 边上的点D 处,折痕与BC 、AB 分别交于点E 、F .A CB F P D G E AC BP D备用图A D CB P Q 图② E A DC B P Q 图① AD CB PQ图③ G AB C D EF图1 A B C DEF图2 A B C D EF图3 G(1)设BE =x ,DC =y ,求y 关于x 的函数关系式,并确定自变量x 的取值范围; (2)当△ADF 是直角三角形时,求BE 的长; (3)当△ADF 是等腰三角形时,求BE 的长(4)过C 、D 、E 三点的圆能否与AB 边相切?若能,求BE 的长;若不能,说明理由.7.(上海模拟)如图,在Rt △ABC 中,∠BAC =90°,AB =6,AC =8,AD ⊥BC 于D ,点E 、F 分别是AB 边和AC 边上的动点,且∠EDF =90°,连接EF . (1)求DEDF的值; (2)设AE 的长为x ,△DEF 的面积为S ,求S 关于x 的函数关系式;(3)设直线DF 与直线AB 相交于点G ,△EFG 能否成为等腰三角形?若能,求AE 的长;若不能,请说明理由.8.(上海模拟)如图,在Rt △ABC 中,∠C =90°,AC =4,BC =5,D 是BC 边上一点,CD =3,P 是AC 边上一动点(不与A 、C 重合),过点P 作PE ∥BC 交AD 于点E . (1)设AP =x ,DE =y ,求y 关于x 的函数关系式;(2)以PE 为半径的⊙E 与以DB 为半径的⊙D 能否相切?若能,求tan ∠DPE 的值;若不能,请说明理由;(3)将△ABD 沿直线AD 翻折,得到△AB ′D ,连接B ′C ,当∠ACE =∠BCB ′时,求AP 的长.9.(上海模拟)已知Rt △ABC 中,∠ACB =90°,点P 是边AB 上的一个动点,连接CP ,过AB C DE F A B C C B A D EFC B AD 备用图 CB AD 备用图 AD C B 备用图 A D C B P E点B 作BD ⊥CP ,垂足为点D .(1)如图1,当CP 经过△ABC 的重心时,求证:△BCD ∽△ABC ;(2)如图2,若BC =2厘米,cot A =2,点P 从点A 向点B 运动(不与点A 、B 重合),点P 的速度是5厘米/秒,设点P 运动的时间为t 秒,△BCD 的面积为S 平方厘米,求S 关于t 的函数解析式,并写出自变量t 的取值范围;(3)在(2)的条件下,若△PBC 是以CP 为腰的等腰三角形,求△BCD 的面积.10.(上海模拟)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,AB =10,tan A =43.点P 是CE 延长线上的一动点,过点P 作PQ ⊥CB ,交CB 延长线于点Q .设EP =x ,BQ =y .(1)求y 关于x 的函数关系式及定义域;(2)连接PB ,当PB 平分∠CPQ 时,求∠PE 的长;(3)过点B 作BF ⊥AB 交PQ 于F ,当△BEF 和△QBF 相似时,求x 的值.11.(上海模拟)如图1,在Rt △AOC 中,AO ⊥OC ,点B 在OC 边上,OB =6,BC =12,∠ABO +∠C =90°,动点M 和N 分别在线段AB 和AC 边上. (1)求证:△AOB ∽△COA ,并求cos C 的值;(2)当AM =4时,△AMN 与△ABC 相似,求△AMN 与△ABC 的面积之比; (3)如图2,当MN ∥BC 时,以MN 所在直线为对称轴将△AMN 作轴对称变换得△EMN .设MN =x ,△EMN 与四边形BCNM 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围.C A P BD 图1 C A PB D图2 C AB备用图 AB PC Q E A B C E 备用图 AB C E 备用图 A O NC B M 图1 AO N EC B M 图212.(上海模拟)把两块边长为4的等边三角板ABC 和DE 如图1放置,使三角板DEF 的顶点D 与三角板ABC 的AC 边的中点重合,DF 经过点B ,射线DE 与射线AB 相交于点M .把三角板ABC 固定不动,将三角板DEF 绕点D 按逆时针方向旋转,设旋转角为α,其中0°<α<90°,射线DF 与线段BC 相交于点Q (如图2). (1)当0°<α<60°时,求AM ·CN 的值; (2)当0°<α<60°时,设AM =x ,两块三角板重叠部分的面积为y ,求y 与x 的函数关系式并确定自变量x 的取值范围;(3)当BM =2时,求两块三角板重叠部分的面积.13.(上海模拟)如图,在△ABC 中,∠ACB =90°,∠A =60°,AC =2,CD ⊥AB ,垂足为点D ,点E 、F 分别在边AC 、BC 上,且∠EDF =60°.设AE =x ,BF =y . (1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)△BDF 能否成为等腰三角形?如果能,请求出x 的值,如果不能,请说明理由.14.(上海模拟)如图,P 是线段AB 上任意一点(不与点A 、B 重合),分别以AP 、BP 为边,在AB 的同侧作等边△APD 和等边△BPC ,连接BD 与PC 交于点E ,连接CD . (1)当BC ⊥CD 时,试求∠DBC 的正切值;(2)若线段CD 是线段DE 和DB 的比例中项,试求此时APPB的值; (3)记四边形ABCD 的面积为S ,当P 在线段AB 上运动时,S 与BD 2是否成正比例?若成正比例,试求出比例系数;若不成正比例,请说明理由.A B C DE F M图1 AB C D E FM 图2 N A B C备用图AFBC DE D AC B PED AC BP E备用图15.(上海模拟)如图,在△ABC中,AB=AC=5,BC=6,D是AC边的中点,E是BC边上一动点(不与端点重合),EF∥BD交AC于F,交AB延长线于G,H是BC延长线上的点,且CH=BE,连接FH.设BE=x,CF=y.(1)求y关于x的函数关系式;(2)连接AE,当以GE为半径的⊙G和以FH为半径的⊙F相切时,求tan∠BAE的值;(3)当△BEG与△FCH相似时,求BE的长.16.(上海模拟)如图,△ABC中,∠ABC=90°,AB=BC=4,点O为AB边的中点,点M 是BC边上一动点(不与点B、C重合),AD⊥AB,垂足为点A.连接MO,将△BOM沿直线MO翻折,点B落在点B1处,直线MB1与AC、AD分别交于点F、N.(1)当∠CMF=120°时,求BM的长;(2)设BM=x,y=△CMF的周长△ANF的周长,求y关于x的函数关系式。

2013年中考数学二次函数压轴题(详细答案)

2013年中考数学二次函数压轴题(详细答案)

26. (2010彬州市)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标; (2)当b =0时(如图(2)),ABE 与ACE 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么?(3)是否存在这样的b ,使得BOC 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.26. (1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)…………………..2分(2)当b =0时,直线为y x =,由24y x y x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩ 所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S =⨯⨯= ,14242ACE S =⨯⨯=所以ABE ACE S S = (利用同底等高说明面积相等亦可) …………………..4分 当4b >-时,仍有ABE ACE S S = 成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得1144x b y b b ⎧=+⎪⎨=++⎪⎩,2244x b y b b⎧=-+⎪⎨=-++⎪⎩ 所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ), 作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则4BF CG b ==+,y xCBAOE y xCBAOE 第26题图(1) 图(2)GFyBCQO R而ABE 和ACE 是同底的两个三角形,所以ABE ACE S S = . …………………..6分 (3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒ 所以BEF CEG ≅所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC 为直角三角形 …………………..8分 因为44GE b b b b GC =++-=+= 所以 24CE b =⋅+,而OE b = 所以24b b ⋅+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形. ………………….10分 25.(常德)如图9,已知抛物线212y x bx c x =++与轴交于点A (-4,0)和B (1,0)两点,与y 轴交于C 点. (1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF ∥AC 交BC 于F ,连接CE ,当CEF 的面积是BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.25.解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.ABOC 图9yx故所求二次函数的解析式为213222y x x =+-. ………………3分 (2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =………………4分∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,∴△BEF ~△BAC ,………………5分 ∴1,3BE BF BA BC ==得5,3BE = ………………6分 故E 点的坐标为(23-,0).………………7分(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.………………8分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有: 2131[(2)](2)222PQ a a a =-+----=2122a a --=()21222a -++即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)………10分 解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC的面积取大值时即可.………………8分设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+- 梯形 =111()222AD PD PD OC OD OA OC ⋅++⋅-⋅ =()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+--- ⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)25.(长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.25.解:(1)∵一次函数过原点∴设一次函数的解析式为y =kx∵一次函数过(1,-b ) ∴y =-bx ……………………………3分 (2)∵y =ax 2+bx -2过(1,0)即a +b =2 …………………………4分 由2(2)2y bxy b x bx =-⎧⎨=-+-⎩得 ……………………………………5分22(2)20ax a x +--=① ∵△=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根∴方程组有两组不同的解∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x 1、x 2分别是方程①的解 ∴122(2)24a a x x a a--+== 122x x a -= ∴2121212()4x x x x x x -=+-=22248164(1)3a a a a-+=-+ 或由求根公式得出 ………………………………………………………8分∵a >b >0,a +b =2 ∴2>a >1令函数24(1)3y a=-+ ∵在1<a <2时y 随a 增大而减小.∴244(1)312a<-+< ……………………………………………9分∴242(1)323a<-+< ∴12223x x <-< ………………10分26.(长春)如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y = 12x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S . (1)求OA 所在直线的解析式. (2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN = 32.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.25.(滨州市)(本题满分l0分)如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线c bx ax y ++=2恰好经过x 轴上A 、B 两点.(1)求A 、B 、C 三点的坐标;(2)求过A 、B 、C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?25.(本题满分l0分)解:①由抛物线的对称性可知AM=BM 在Rt △AOD 和Rt △BMC 中, ∵OD=MC ,AD=BC , ∴△AOD ≌△BMC .∴OA=MB=MA .………………………………………l 分 设菱形的边长为2m , 在Rt △AOD 中,OOA ABB CCP DEQP DN MR Eyyxx 图①图②222)2()3(m m =+解得m=1.∴DC=2,OA=1,OB=3.∴A 、B 、C 三点的坐标分别为(1,0)、(3,0)、(2,3)………………… 4分 ②设抛物线的解析式为y=a (x —2)2+3 代入A 点坐标可得a =—3抛物线的解析式为y=—3(x —2)2+3……………………………………7分 ③设抛物线的解析式为y =—3(x 一2)2+k 代入D (0,3)可得k=53所以平移后的抛物线的解析式为y =—3(x 一2)2+53…………………………9分 平移了53一3=43个单位.…………………………………………………l0 26. (本溪市)如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,53OA OC ==,.(1)在AB 边上取一点D ,将纸片沿OD 翻折,使点A 落在BC 边上的点E 处,求点D ,E 的坐标;(2)若过点D E ,的抛物线与x 轴相交于点(50)F -,,求抛物线的解析式和对称轴方程; (3)若(2)中的抛物线与y 轴交于点H ,在抛物线上是否存在点P ,使PFH △的内心在坐标轴...上?若存在,求出点P 的坐标,若不存在,请说明理由. (4)若(2)中的抛物线与y 轴相交于点H ,点Q 在线段OD 上移动,作直线HQ ,当点Q 移动到什么位置时,O D ,两点到直线HQ 的距离之和最大?请直接写出此时点Q 的坐标及直线HQ 的解析式.BCEy3(第26题)28.(甘肃)(12分) 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的顶点为D .(1)求该抛物线的解析式与顶点D 的坐标;(2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由.28.本小题满分12分解:(1)设该抛物线的解析式为c bx ax y ++=2,由抛物线与y 轴交于点C (0,-3),可知3-=c .即抛物线的解析式为32-+=bx ax y . ………………………1分 把A (-1,0)、B (3,0)代入, 得30,9330.a b a b --=⎧⎨+-=⎩解得2,1-==b a .∴ 抛物线的解析式为y = x 2-2x -3. ……………………………………………3分 ∴ 顶点D 的坐标为()4,1-. ……………………………………………………4分说明:只要学生求对2,1-==b a ,不写“抛物线的解析式为y = x 2-2x -3”不扣分. (2)以B 、C 、D 为顶点的三角形是直角三角形. ……………………………5分 理由如下:过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F.在Rt △BOC 中,OB=3,OC=3,∴ 182=BC . …………………………6分 在Rt △CDF 中,DF=1,CF=OF-OC=4-3=1,∴ 22=CD . …………………………7分 在Rt △BDE 中,DE=4,BE=OB-OE=3-1=2,∴ 202=BD . …………………………8分 ∴ 222BD CD BC =+, 故△BCD 为直角三角形. …………………………9分 (3)连接AC ,可知Rt △COA ∽ Rt △BCD ,得符合条件的点为O (0,0). ………10分过A 作AP 1⊥AC 交y 轴正半轴于P 1,可知Rt △CAP 1 ∽ Rt △COA ∽ Rt △BCD ,求得符合条件的点为)31,0(1P . …………………………………………11分 过C 作CP 2⊥AC 交x 轴正半轴于P 2,可知Rt △P 2CA ∽ Rt △COA ∽ Rt △BCD , 求得符合条件的点为P 2(9,0). …………………………………………12分∴符合条件的点有三个:O (0,0),)31,0(1P ,P 2(9,0).。

2013年中考压轴题精选2013.05.15

2013年中考压轴题精选2013.05.15

2013年中考压轴题精选”“XX专题训练一.解答题(共7小题)1.(2010•绵阳)如图,抛物线y=ax2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.2.已知抛物线y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)抛物线与x轴的另一个交点坐标;_________;(2)方程ax2+bx+c=0的两个根是_________;(3)不等式ax2+bx+c<0的解是_________;(4)y随x的增大而减小的自变量x的取值范围是_________;(5)求出抛物线的解析式及顶点坐标.3.(2012•遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.4.如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求新抛物线的解析式.5.(2009•柳州)如图,已知抛物线y=ax2﹣2ax﹣b(a>0)与x轴的一个交点为B(﹣1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.6.如图,在直角坐标平面内,O为原点,抛物线y=ax2+bx经过点A(6,0),且顶点B(m,6)在直线y=2x上.(1)求m的值和抛物线y=ax2+bx的解析式;(2)如在线段OB上有一点C,满足OC=2CB,在x轴上一点D(10,0),连接DC,且直线DC与y轴交于点E.①求直线DC的解析式;②如点M是直线DC上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)7.(2008•宜宾)已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0)、B(0,﹣5)、C(5,0).(1)求此抛物线的表达式;(2)若平行于x轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与x轴相切,求该圆的半径;(3)在点B、点C之间的抛物线上有点D,使△BDC的面积最大,求此时点D的坐标及△BDC的面积.,解得因为抛物线的对称轴为直线解得:解得所以圆的半径为答:该圆的半径是.)代入得:解得:时,,,﹣,,﹣的面积是.。

2013中考部分地市中考数学压轴题集(含答案)

2013中考部分地市中考数学压轴题集(含答案)

2013中考压轴试题代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.()求抛物线的解析式;()若直线平分四边形OBDC 的面积,求k 的值.()把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . ()由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2,把2交(((D (点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2,点P 的坐标为(m ,m-12 )或(m ,1- m2 );②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。

2013年中考数学压轴题精选

2013年中考数学压轴题精选

2013年中考数学压轴题精选1. 如图,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为 9∶10?若存在,直接写出m 的值;若不存在,请说明理由.2. 如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.3.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图24.如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E 作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图C 5. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12 cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学压轴题专项练习
1,观察下列一组等式: 1
1×2=1-
1
2

1
2×3

1
2

1
3

1
3×4

1
3

1
4
,….
解答下列问题:
将以上三个等式两边分别相加得: 1
1×2+
1
2×3

1
3×4
=1-
1
2

1
2

1
3

1
3

1
4

(1)对于任意的正整数n:
1
n(n+1)
=.
【证】
(2)计算: 1
1×2

1
2×3

1
3×4
+…+
1
2011×2012
=.
【解】
(3)已知m为正整数化简: 1
1×3+
1
3×5

1
5×7
+…+
1
(2m-1)(2m+1)
=.
2、在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧
..作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.
(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=.
(2)设∠BAC=α,∠DCE=β:
①如图1,当点D在线段BC的延长线上移动时,α与β之间有何的数量关系?请说
明理由;
②当点D在直线BC上(不与B、C重合)移动时,α与β之间有何的数量关系?请直
接写出你的结论.
A
B C D E
B C B C
A A
备用图备用图
3、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).
根据图象提供的信息解答下面问题:
(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?
若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?
4、阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;
这个结论可以推广为表示在数轴上,对应点之间的距离;
例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2
例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3
例3:解方程。

由绝对值的几何意义知,该方程表示求在数轴上与1
和-2的距离之和为5的点对应的x 的值。

在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题: (1)方程的解为
(2)解不等式≥9;
(3)若
≤a 对任意的x 都成立,求a 的取值范围.
5、某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储
藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
销售方式 批发 零售 储藏后销售
售价(元/吨)
3000
4500
5500
成本(元/吨) 700 1000 1200
若经过一段时间,蒜薹按计划全部售出获得的总利润为y (元),蒜薹零售x (吨),且零售量是批发量的
3
1.
(1)求y 与x 之间的函数关系式;
(2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完
蒜薹获得的最大利润.
O
x y
6、已知二次函数的图象与x 轴只有一个交点A (-2,0)、与y 轴的交点为B (0,4),且其对称轴与y 轴平行.
(1)求该二次函数的解析式,并在所给坐标系中画出它的大致图象;
(2)在二次函数位于A 、B 两点之间的图象上取一点M ,过点M 分别作x 轴、y 轴的垂线,
垂足分别为点C 、D .求矩形MCOD 的周长的最小值和此时的点M 的坐标.
7、在直角梯形ABCD 中,∠B =90°,AD =1,AB =3,BC =4,M 、N 分别是底边BC 和腰CD
上的两个动点,当点M 在BC 上运动时,始终保持AM ⊥MN 、NP ⊥BC .
(1)证明:△CNP 为等腰直角三角形;
(2)设NP =x ,当△ABM ≌△MPN 时,求x 的值; (3)设四边形ABPN 的面积为y ,求y 与x 之间的函数
关系式,并指出x 取何值时,四边形ABPN 的面
积最大,最大面积是多少.
A
B
M
P
C
D
N
8、以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=(0°<<90°),
①试用含的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
1
1
1
C B A C
B
A
9、三角形中,顶角等于36°的等腰三角形称为黄金三角形,如图1,在△ABC 中,已知:
AB =AC ,且∠A =36°. (1)在图1中,用尺规作AB 的垂直平分线交AC 于D ,并连接BD (保留作图痕迹,不写
作法);
(2)△BCD 是不是黄金三角形,如果是,请给出证明;如果不是,请说明理由; (3)设
k AC
BC ,试求k 的值;
(4)如图2,在△A 1B 1C 1中,已知A 1B 1=A 1C 1,∠A 1=108°,且A 1B 1=AB ,请直接写出
1
1C B BC 的值.
图1 图2 第23题图。

相关文档
最新文档