matlab实验报告3详解

合集下载

Matlab实验报告(三)-MATLAB绘图

Matlab实验报告(三)-MATLAB绘图

实验目的1.掌握MATLAB的基本绘图命令。

2.掌握运用MATLAB绘制一维、二维、三维图形的方法.3.给图形加以修饰。

一、预备知识1.基本绘图命令plotplot绘图命令一共有三种形式:⑴plot(y)是plot命令中最为简单的形式,当y为向量时,以y的元素为纵坐标,元素相应的序列号为横坐标,绘制出连线;若y为实矩阵,则按照列绘出每列元素和其序列号的对应关系,曲线数等于矩阵的列数;当y为复矩阵时,则按列以每列元素的实部为横坐标,以虚部为纵坐标,绘出曲线,曲线数等于列数。

⑵ plot(x,y,[linspec])其中linspec是可选的,用它来说明线型。

当x和y为同维向量时,以x为横坐标,y为纵坐标绘制曲线;当x是向量,y是每行元素数目和x维数相同的矩阵时,将绘出以x为横坐标,以y中每行元素为纵坐标的多条曲线,曲线数等于矩阵行数;当x为矩阵,y为相应向量时,使用该命令也能绘出相应图形。

⑶ plot(x1,y1,x2,y2,x3,y3……)能够绘制多条曲线,每条曲线分别以x和y为横纵坐标,各条曲线互不影响。

线型和颜色MATLAB可以对线型和颜色进行设定,线型和颜色种类如下:线:—实线:点线 -.虚点线——折线点:.圆点 +加号 *星号 x x型 o 空心小圆颜色:y 黄 r 红 g 绿 b 蓝 w 白 k 黑 m 紫 c 青特殊的二维图形函数表5 特殊2维绘图函数[1] 直方图在实际中,常会遇到离散数据,当需要比较数据、分析数据在总量中的比例时,直方图就是一种理想的选择,但要注意该方法适用于数据较少的情况。

直方图的绘图函数有以下两种基本形式。

·bar(x,y) 绘制m*n 矩阵的直方图.其中y 为m *n 矩阵或向量,x 必须单向递增。

·bar(y) 绘制y 向量的直方图,x 向量默认为x=1:m close all; %关闭所有的图形视窗。

x=1:10;y=rand (size(x )); bar(x,y ); %绘制直方图.123456789100.51Bar()函数还有barh ()和errorbar ()两种形式,barh()用来绘制水平方向的直方图,其参数与bar()相同,当知道资料的误差值时,可用errorbar ()绘制出误差范围,其一般语法形式为:errorbar (x,y,l,u)其中x,y 是其绘制曲线的坐标,l ,u 是曲线误差的最小值和最大值,制图时,l 向量在曲线下方,u 向量在曲线上方。

MATLAB实验报告三

MATLAB实验报告三

掌握符号计算的基本方法;
三、使用仪器、材料
掌握程序设计控制流、M 函数文件、编写程序。
一台装有MATLAB7.0或以上的计算机
二、实验内容
1. 2.
计算二重积分 1
2

x2
四、实验过程原始记录(程序、数据、图表、计算等)
1
( x y )dydx。
2 2
63
1.
计算二重积分 1
2
Байду номын сангаас
x2
1
( x 2 y 2 )dydx
2.请分别写出用 for 和 while 循环语句计算 K 2i 1 2 2 2... 2 63 的程
i 0
63
序。此外,还请写出一种避免循环的计算程序。
4. 等比数列公式法
2 求一阶微分方程 x at bt, x(0) 2 的解
五、实验结果及分析
5.
2 2 求方程 x y 1, xy 2 的解。(提示:正确使用 solve)
广州大学学生实验报告
开课学院及实验室:
学院 机电学院
计算机 301B
电气 122 姓名 黄柱
2014 年
学号 成绩 指导 老师
5 月 20 日
年级、专 业、班
1207300074
实验课程名称 实验项目名称
MATLAB 语言及应用
实验三
符号计算及程序设计
姚菁
一、实验目的 二、实验内容 三、使用仪器、材料 四、实验过程原始记录(程序、数据、图表、计算等) 五、实验结果及分析 一、实验目的
请分别写出用 for 和 while 循环语句计算 K 2i 1 2 2 2... 2 63 的

程序设计实验报告(matlab)

程序设计实验报告(matlab)

程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。

实验内容:运用Matlab进行简单的程序设计。

实验方法:基于Matlab环境下的简单程序设计。

实验结果:成功掌握简单的程序设计和Matlab基本编程语法。

实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。

实验内容:在Matlab环境下进行多项式拟合和插值的计算。

实验方法:结合Matlab的插值工具箱,进行相关的计算。

实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。

实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。

实验内容:利用Matlab进行最小二乘法计算。

实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。

实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。

实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。

实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。

实验方法:基于Matlab的ODE工具箱,进行ODE求解。

实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。

总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。

通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。

这些知识和技能对我未来的学习和工作都将有着重要的帮助。

MATLAB实验报告(1-4)

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。

2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。

4.学会运用MATLAB进行连续信号时移、反折和尺度变换。

5.学会运用MATLAB进行连续时间微分、积分运算。

6.学会运用MATLAB进行连续信号相加、相乘运算。

7.学会运用MATLAB进行连续信号的奇偶分解。

二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。

三、实验内容1.MATLAB软件基本运算入门。

1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。

2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn为结束值。

矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。

2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。

3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。

举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。

MATLAB实验报告3

MATLAB实验报告3

MATLAB 实验三:图形可视化
一、实验目的:
1、熟悉MATLAB 软件的文件操作的环境命令;
2、掌握数据可视化的基本步骤;
3、掌握基本MATLAB 绘制3D 曲线及3D 曲面的方法。

二、实验内容
1. 绘制曲线,绘图区间
[-2,2]
2. 以正弦数据为例,用subplot ()函数将图形分成四块(2×2),在四部分中分别绘制出阶梯曲线(红色),火柴杆曲线(黑色),条形图(蓝色),横坐标为对数分度的曲线(绿色);绘图横坐标范围为[0,2π];每一个子图命名。

3. 绘制三维曲线,x ,y ,z 坐标与时间t 的关系满足下面公式:(对应点采用五角星)
)sin(24),sin(24),
cos(8],2,0[t z t y t x t ===∈π
4. 绘制下列图像
三维曲线:226621z x xy y x y =++++-,1010x -<<,1010y -<< 实验结果:(以0.5为步长)(区别数组乘与乘的不同效果)
5、绘制如下函数的三维网格曲面(三维网线图),x ,y 的取值范围为 [-10,10]
[-10,10]
2222sin(),(y x y x y x z ++=
实验结果:
6.绘制函数()()()
221exp 2f x x y π=-+在33x -<<,33y -<<上的三维曲面图 实验结果:。

国家开放大学《Matlab语言及其应用》实验报告(第三章--绘制二维和三维图形)

国家开放大学《Matlab语言及其应用》实验报告(第三章--绘制二维和三维图形)
国家开放大学《Matlab语言及其应用》实验报告
——绘制二维和三维图形
姓名:学号:
实验名称
绘制二维和三维图形
实验目标
利用Matlab常见函数完成二维图形的绘制和图形的标注;实现三维曲线和曲面图形的绘制。
实验要求
熟悉Matlab基本绘图函数、图形处理函数,了解三维曲线和曲面图形的绘制方法。
实验步骤
1、用Matlab基本绘图函数绘制二维图形:根据已知数据,用plot函数画出正弦函数曲线,并进行相应标注。
enon
实验内容
1.二维曲线绘图
例:精细指令实例
2.三维曲线绘图
【例】三维曲线绘图基本指令演示一:plot3
t=(0:0.02:2)*pi;x=sin(t);y=cos(t);z=cos(2*t);
plot3(x,y,z,'b-',x,y,z, 'rd')三维曲线绘图(蓝实线和红菱形)
box on
legend('链','宝石')在右上角建立图例
subplot(121);
surf(x1,y1,z1);
subplot(122);
[x2,y2,z2]=sphere (30);
surf(x2,y2,z2);
clear;clf;
z=peaks;
subplot(1,2,1);mesh(z);% 透视
hidden off
subplot(1,2,2);mesh(z);%不透视
2、用三维曲线绘图基本指令plot 3绘制三维曲线图:t=0~2pi;x=sin(t);y=cos(t);z=cos(2*t);用plot3函数画出关于x,y,z的三维曲线图,并适当加标注。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告姓名:专业:学号:实验一MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。

2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。

MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2MATLAB算术运算符表3MATLAB关系运算符表4MATLAB逻辑运算符表5MATLAB特殊运算4.MATLAB的一维、二维数组的寻访表6子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8标准数组生成函数表9数组操作函数三、实验内容1、学习安装MATLAB软件。

2、学习使用help命令,例如在命令窗口输入helpeye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)3、学习使用clc、clear,观察commandwindow、commandhistory和workspace等窗口的变化结果。

4、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。

注意:每一次M-file的修改后,都要存盘。

四、实验结果练习A:(1)helprand,然后随机生成一个2×6的数组,观察commandwindow、commandhistory和workspace等窗口的变化结果。

Matlab实验报告

Matlab实验报告

实验结果及分析实验1:程序如下x=1:10y=2*x;plot(x,y)仿真结果:实验结果分析:仿真结果是条很规则的直线,X轴和Y轴一一对应,清楚明了,而序又特别简单。

所以用Maltab 软件很方便地画出规则的直线,方便研究。

实验结果及分析1、A=2、A=1A=实验结果及分析实验三 Matlab在信号与系统中的应用实验名称实验1、掌握信号与系统课程中基本知识的Matlab编程、仿真方法目的实验原理实验1程序:b=[1];a=[1 1];p=;t=0:p:5;x=exp(-3*t);subplot(1,2,1);impulse(b,a,0:p:5);title('冲激响应');subplot(1,2,2);step(b,a,0:p:5);title('阶跃响应');实验内容<设计性实验>1、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)= exp(-3t)ε(t)的冲激响应、阶跃响应。

在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。

<设计性实验>(选做)2、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)=(1+exp(-3t))ε(t)的冲激响应、阶跃响应,要求用conv编程实现系统响应。

在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。

实验结果及分析实验1仿真结果:simulink仿真环境下冲激响应阶跃响应实验名称实验四 Matlab在数字信号处理中的应用实验结果及分析实验1仿真结果:6khz12kHZ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四、LTI系统的响应课程名称: MATLAB应用技术专业班级:通信1422 学生学号: 1430119231 学生姓名:周妍智所属院部:电子信息工程系指导教师:徐树梅2015 —— 2016 学年第二学期实验项目名称: LTI 系统的响应 实验学时: 16 学生姓名: 周妍智 实验地点: 微机11 实验日期: 2016.4.17 实验成绩: 批改教师: 徐树梅 批改时间:一、 实验目的1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法3. 熟悉应用MATLAB 实现求解系统响应的方法二、 实验原理1.连续时间系统对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程:()()0()()nmi j i j i j a yt b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生的零状态响应称为系统的单位冲激响应,用h(t)表示。

若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。

系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。

我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。

因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。

在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。

如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。

若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。

但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。

在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。

lsim( )函数不仅能够求出连续系统在指定的任意时间范围内系统响应的数值解,而且还能同时绘制出系统响应的时域波形图。

以上各函数的调用格式如下: ⑴ impulse( ) 函数函数impulse( )将绘制出由向量a 和b 所表示的连续系统在指定时间范围内的单位冲激响应h (t )的时域波形图,并能求出指定时间范围内冲激响应的数值解。

impulse(b,a)以默认方式绘出由向量a和b所定义的连续系统的冲激响应的时域波形。

impulse(b,a ,t0) 绘出由向量a和b所定义的连续系统在0 ~ t0时间范围内冲激响应的时域波形。

impulse(b,a,t1:p:t2) 绘出由向量a和b所定义的连续系统在t1 ~ t2时间范围内,并且以时间间隔p均匀取样的冲激响应的时域波形。

y=impulse(b,a,t1:p:t2) 只求出由向量a和b所定义的连续系统在t1 ~ t2时间范围内,并且以时间间隔p均匀取样的冲激响应的数值解,但不绘出其相应波形。

⑵step( ) 函数函数step( )将绘制出由向量a和b所表示的连续系统的阶跃响应,在指定的时间范围内的波形图,并且求出数值解。

和impulse( )函数一样,step( )也有如下四种调用格式:step( b,a)step(b,a,t0)step(b,a,t1:p:t2)y=step(b,a,t1:p:t2)上述调用格式的功能和impulse( )函数完全相同,所不同只是所绘制(求解)的是系统的阶跃响应g(t),而不是冲激响应h(t)。

⑶lsim( )函数根据系统有无初始状态,lsim( )函数有如下两种调用格式:①系统无初态时,调用lsim( )函数可求出系统的零状态响应,其格式如下:lsim(b,a,x,t)绘出由向量a和b所定义的连续系统在输入为x和t所定义的信号时,系统零状态响应的时域仿真波形,且时间范围与输入信号相同。

其中x和t是表示输入信号的行向量,t为表示输入信号时间范围的向量,x则是输入信号对应于向量t所定义的时间点上的取样值。

y=lsim(b,a,x,t) 与前面的impulse 和step函数类似,该调用格式并不绘制出系统的零状态响应曲线,而只是求出与向量t定义的时间范围相一致的系统零状态响应的数值解。

②系统有初始状态时,调用lsim( )函数可求出系统的全响应,格式如下:lsim(A,B,C,D,e,t,X0)绘出由系数矩阵A,B,C,D所定义的连续时间系统在输入为e 和t所定义的信号时,系统输出函数的全响应的时域仿真波形。

t为表示输入信号时间范围的向量,e则是输入信号e(t)对应于向量t所定义的时间点上的取样值,X0表示系统状态变量X=[x1,x2,…..xn]'在t=0时刻的初值。

[Y,X]= lsim(A,B,C,D,e,t,X0)不绘出全响应波形,而只是求出与向量t定义的时间范围相一致的系统输出向量Y的全响应以及状态变量X的数值解。

显然,函数lsim( )对系统响应进行仿真的效果取决于向量t的时间间隔的密集程度,t 的取样时间间隔越小则响应曲线越光滑,仿真效果也越好。

说明:(1)当系统有初始状态时,若使用lsim( )函数求系统的全响应,就要使用系统的状态空间描述法,即首先要根据系统给定的方式,写出描述系统的状态方程和输出方程。

假如系统原来给定的是微分方程或系统函数,则可用相变量法或对角线变量等方法写出系统的状态方程和输出方程。

其转换原理如前面实验四所述。

(2)显然利用lsim( )函数不仅可以分析单输入单输出系统,还可以分析复杂的多输入多输出系统。

例题1:若某连续系统的输入为e(t),输出为r(t),系统的微分方程为:++=+y t y t y t f t f t''()5'()6()3'()2()①求该系统的单位冲激响应h (t )及其单位阶跃响应g (t )。

②若2()()tf t e t ε-= 求出系统的零状态响应y(t )分析: ① 求冲激响应及阶跃响应的MATLAB 程序:a=[1 5 6];b=[3 2];subplot(2,1,1), impulse(b,a,4) subplot(2,1,2), step(b,a,4)运行结果如右:② 求零状态响应的MATLAB 程序:a=[1 5 6];b=[3 2];p1=0.01; %定义取样时间间隔为0.01 t1=0:p1:5; %定义时间范围 x1=exp(-2*t1); %定义输入信号lsim(b,a,x1,t1), %对取样间隔为0.01时系统响应进行仿真hold on; %保持图形窗口以便能在同一窗口中绘制多条曲线 p2=0.5; %定义取样间隔为0.5 t2=0:p2:5; %定义时间范围 x2=exp(-2*t2); %定义输入信号lsim(b,a,x2,t2), hold off %对取样间隔为0.5时系统响应进行仿真并解除保持运行结果如下:例题2 已知一个过阻尼二阶系统的状态方程和输出方程分别为:010'()()()232x t X t f t ⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦, r (t )=[0 1]X (t ) 。

若系统初始状态为X (0)=[4 -5]T , 求系统在4()3()tf t e t ε-=作用下的全响应。

求全响应程序如下:A=[0 1 ; -2 -3] ;B=[0 2]';C=[0 1];D=[0];X0=[4 -5]'; %定义系统初始状态 t=0: 0.01:10;E =[3*exp(-4*t).*ones(size(t))]'; %定义系统激励信号[r , x]=lsim(A,B,C,D,E,t,X0); %求出系统全响应的数值解 plot(t,r) %绘制系统全响应波形 运行结果如右。

2.离散时间系统LTI 离散系统中,其输入和输出的关系由差分方程描述:00()()n mi ji j a y k i bf k j ==+=+∑∑ (前向差分方程)()()nmi ji j a y k i bf k n j ==-=-+∑∑ (后向差分方程)当系统的输入为单位序列δ(k )时产生的零状态响应称为系统的单位函数响应,用h (k )表示。

当输入为 ε(k )时产生的零状态响应称为系统的单位阶跃应,记为:g (k ),如下图所示。

如果系统输入为e (k ),冲激响应为h (k ),系统的零状态响应为y(k ),则有:()()()y k h k f k =*。

与连续系统的单位冲激响应h (t )相类似,离散系统的单位函数响应h (k )也包含了系统的固有特性,与输入序列无关。

我们只要知道了系统的单位函数响应,即可求得系统在不同激励信号作用下产生的响应。

因此,求解系统的单位函数响应h (k )对我们进行离散系统的分析也同样具有非常重要的意义。

MATLAB 中为用户提供了专门用于求解离散系统单位函数响应, 并绘制其时域波形的函数impz( )。

同样也提供了求离散系统响应的专用函数filter( ),该函数能求出由差分方程所描述的离散系统在指定时间范围内的输入序列作用时,产生的响应序列的数值解。

当系统初值不为零时,可以使用dlsim( )函数求出离散系统的全响应,其调用方法与前面连续系统的lsim( )函数相似。

另外,求解离散系统阶跃响应可以通过如下两种方法实现:一种是直接调用专用函数dstep( ),其调用方法与求解连续系统阶跃响应的专用函数step( )的调用方法相似;另一种方法是利用求解离散系统零状态响应的专用函数filter( ),只要将其中的激励信号看成是单位阶跃信号ε(k )即可。

函数的调用格式分别如下: ⑴ impz( )函数impz(b,a) 以默认方式绘出由向量a 和b 所定义的离散系统单位函数响应的时域波形。

impz(b,a,n) 绘出由向量a 和b 所定义的离散系统在0 ~ n (n 必须为整数)的离散时间范围内单位函数响应的时域波形。

impz(b,a,n1:n2) 绘出由向量a 和b 所定义的离散系统在n1 ~ n2 (n1、n2必须为整数)的离散时间范围内单位函数响应的时域波形。

y=impz(b,a,n1:n2) 求出由向量a 和b 所定义的离散系统在n1 ~ n2 (n1、n2必须为整数)的离散时间范围内单位函数响应的数值解,但不绘出波形。

⑵ filter( ) 函数filter(b,a,x) 其中a 和b 与前面相同,x 是包含输入序列非零样值点的的行向量。

相关文档
最新文档