最新高中数学必修5第三章测试题含答案

合集下载

高中数学必修五第三章测试题有详细答案

高中数学必修五第三章测试题有详细答案

精品文档第三章能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M=2a(a-2)+7,N=(a-2)(a-3),则有()A.M>N B.M≥NN≤M.DC.M<N【答案】A13??2222+a=+6)=a1+NM>. 【解析】M-N=(2a(-4a+7)-aa-5a++>0,∴??24) (2.下列结论成立的是,则a>b bcA.若ac>22 b,则a>bB.若a>+d+C.若a>b,c<d,则ac>b >b-ccD.若a>b,>d,则a-d【答案】D,,不成立;对于C2【解析】对于A,当c<0时,不成立;对于B,取a=-1,b=-,>>-c,又ab,∴a-d>b-c>,,取a=2b=1,c=0d=3,不成立;对于D,∵cd,∴-d 因此成立.故选D.26x-x-)的解集为(>3.不等式01x-3} 1<<x或<-|{xA.{x|<-2或x>3} B.xx23} <x<1或1<x<2><-.C{x|2<x1或x3} -|x{.D C【答案】x1x|{,-1)(x(【解析】原不等式可化为x+2)(-x3)>0则该不等式的解集为x-2<<或3}.>22) {B0}xxx=设集合年四川自贡模拟.4(2017)A{|-3<,=x=BA,则∩(4}x|>2,3) -(B.2,0)-(A.(2,3)(0,2).C.D D【答案】精品文档.精品文档22B2},则A∩x|x>2或x<x<3},B={x|x<->4}={【解析】A={x|xx-3x<0}={|0D.x<3}.故选={x|2<1??2,0∈对于一切0xx+ax+1≥成立,则a的取值范围是() 5.若不等式??25??-∞,-.B 2]A.(-∞,-??25??,+∞-)[2,+∞D.C.??2【答案】C21x--11????2,0,0∈≥对于一切x成立成立?【解析】x+ax+1≥0对于一切x∈?a ????22x111111????,0,0∈-x-对于一切xa上是增函数,∴-x-≤-=-成立.∵yx-在区间-2≥????222xxx55 .≥-.故选C=-.∴a22p),+∞x)在(1(p 为常数且p>0),若f(x6.(2017年上海校级联考)已知函数f(x)=+1-x)的值为(上的最小值为4,则实数p99B.A.424.DC.2B【答案】p2=即=p1,当且仅当(x-1)+(【解析】由题意得x-1>0,fx)=x-1+1≥x2p+1x-9.p=4p+1=4xp+1时取等号.∵f()在(1,+∞)上的最小值为,∴,解得242) (的取值范围是12xx-8-4-a≥0在≤x≤4内有解,则实数a若关于7.x的不等式) -4-∞,-A.(4],+∞[.B 12]-∞,-(.D-C.[12,+∞)A【答案】22xx-a4x在=4时,取最大值-,∴当≤4时,2-84)x4(1xx=∵【解析】y2-8-≤≤内有解.[1,4]a -4≥在吨;B3A.8某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用原料吨,原料2乙两种产品的总量不原料吨,原料A生产每吨乙种产品要用1B3该工厂每天生产甲、吨.吨.如果设每天甲种产品吨且每天消耗的2少于B吨,10A原料不能超过9原料不能超过精品文档.精品文档的产量为x吨,乙种产品的产量为y吨,则在坐标系xOy中,满足上述条件的x,y的可行域用阴影部分表示正确的是()A BC D【答案】A,≥2x+y??,≤103x+y?故选A【解析】由题可知.,≤9y2x+3?,≥0x?0.≥y9.(2016年广东佛山模拟)若a>b>0,c<d<0,则一定有()abbaB.<A.>dcdcaabbD>C..< cdcd【答案】B1111abab 【解析】∵c<d<0,∴<<0,∴->->0.而a>b>0,∴->->0,∴<.故选dcdcdcdcB.精品文档.精品文档10.下列函数中,最小值是4的函数是()4A.y=x+x4(0<x<x+π) B.y=sin xsinxx-=e4e+C.yD.y=logx+log81 x3【答案】C44【解析】当x<0时,y=x+≤-4,排除A;∵0<x<π,∴0<sin x≤1,y=sin x+xxsin4xxxxx-=2时成立;若0<xe<1,则y=elog+4e4≥,等号在ex=,排除>4B;e即>0,x3e <0,log81<0,排除D.故选C.x2+qx+r>0的解集是{x|α<x<β}(β>α>0),那么另一个关于x11.关于x的不等式px2-qx+p>0的解集应该是(的不等式rx)1111??????<<x<<x A.xx B.??????αββα????1111??????<--<--<x<xx .C.xD??????αβαβ????【答案】D2+qx+r>0的解集是{x|α<x<【解析】因为关于x的不等式pxβ},所以α和β可看作qr2+qx+r=0的两个根且p<0,则α+β=-,α·β=.因为0<α方程px<β,p<0,所以r pprq11222+(α+β)x+1<0,解得-<x<-.故所以0.rx0-qx+p>,即x<-x+10,即α·βx<αβpp选D.,≥0-2?x-y??x+y???)的取值范围为(满足则x+2y12.已知实数x,y?,4x≤1≤??A.[12,+∞)B.[0,3] D.[3,12]C.[0,12]【答案】C【解析】作出不等式组表示的平面区域如图,作直线l:x+2y=0,平移l可见当经过00可行域内的点A,B时,z=x+2y分别取得最大值与最小值,∴z=12,z=0,故选C.minmax 精品文档.精品文档) 分,共20分.将正确答案填在题中横线上(本大题共4个小题,每小题5二、填空题22________. m=(1,m)ax-6x+a,则<0的解集是13.若关于x的不等式2【答案】222x2a=2.-6x+a∴不等式为=0的一个根,∴【解析】由题意知a>0且1是方程ax22.=<2.∴m0.x+2<∴1<-6x+4<0,即xx-3,x≥0???,3y≥4x+y若直线所表示的平面区域为D14.(2016年湖南郴州二模)记不等式组.??4≤3x+y .a的取值范围是__________(x?,0x≥??,≥4x+3y-过定点(a(x++1)与D有公共点,则=a1??4,【答案】??21)的平面区域如图所示.因为y=【解析】满足约束条件??43x+y≤1.=1)时,得到a(x+1)过点A(1,;过点y=a(x+1)B(0,4)时,得到a=4当y=a所以当1,0),214.≤a≤有公共点,所以(x+1)与平面区域D=又因为直线ya2 Array22b1a+???2≠-x的最小值为>+2x+b0的解集为x则.>且ab,15已知二次不等式ax???aba-?? ________.22【答案】1???2-≠xx>0的解集为bxax【解析】0a,∴>且对应方程有两个∵二次不等式+2+???a??精品文档.精品文档2222+?a-ba?+b1b11??--a.由根与系数的关系得-·==(=,即ab=1,故相等的实根-??aaaabbaa--22222,当且b??a-b)+≥a2-=-b)+.∵a>b,∴ab>0.由基本不等式可得(aa--bba-b22b+a2.时取等号,故的最小值为2=仅当a-b2ba-,≥52a-b???,a-b≤2满足不等式组,b男教师16.某校今年计划招聘女教师a名,b名,若a??<7.a______.设这所学校今年计划招聘教师最多x名,则x=【答案】13+:b+b,如图所示,画出约束条件所表示的可行域,作直线l=【解析】由题意得xa13.+b=x=7时,x取最大值,∴=a,,a=0,平移直线l,再由ab∈N,可知当a=6b三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)22=0k的两个实kx-2+1分)设x,x是关于x的一元二次方程x-1017.(本小题满分2122+x的最小值.根,求x212. -kx,x=1【解析】由题意,得x+x=2k21211222kΔ=4≥k.≥0--4(1k,∴)2222+x=(x+x)-2xx∴x 22121122) k2(1=4k--12-2≥6×-2=6k=1.222+xx的最小值为1.∴212两个代数式值的大小,并说明理由;+6) 与5)((x+x+7)(x比较分本小题满分.18(12)(1)22<0. -x的不等式解关于(2)x56+axa 精品文档.精品文档222+12x+36)=-(x1<0x+6),=(x +12x+35)-(【解析】(1)∵x+5)(x+7)-(2.+6)<(xx+5)(x+7)∴(aa??????22--xx-<0,即a)(8x-a+ax-a)<0,∴(7x+<0. (2)∵56x ??????87aa2<0,解得x∈=,不等式化为x?.①当a=0时,-78aa②当a>0时,-<,不等式的解集为78aa???<x-<. x???78??aa③当a<0时,->,不等式的解集为78aa???<x<-.x???87??2+(lg a+2)x+lg b满足f(-1)=-19.(本小题满分12分)已知函数f(x)=x2且对于任意x∈R,恒有f(x)≥2x成立.(1)求实数a,b的值;(2)解不等式f(x)<x+5.【解析】(1)由f(-1)=-2知lg b-lg a+1=0,a所以=10.b又f(x)≥2x恒成立,即f(x)-2x≥0恒成立,2+x·lg a+lg b≥则有x0恒成立,2-4lg b≤0,(lg 故Δ=a)22≤1)0. (lg b-1)-4lg b≤0,即所以(lg b+故lg b=1,即b=10,a=100.2+4x+1,f(x)=x)<x+5,(由(2)(1)知fx2+4x+1<x即x+5,2+3x-4<0,解得-4<所以xx<1,因此不等式的解集为{x|-4<x<1}.20.(本小题满分12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,精品文档.精品文档出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y(万元)与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x应在什么范围内?【解析】(1)依题意得y=[1.2×(1+0.75x)-1×(1+x)]×1 000×(1+0.6x)(0<x<1),2+20x+200(0<x<1)整理,得y=-60x.∴本年度年利润与投入成本增加的比例的关系式为2+20x+200(0<x<y=-60x1).(2)要保证本年度的年利润比上年度有所增加,?,×1 000>01.2-1?y-???当且仅当?,x<10<?2?,>0x+20x-60?1?,<x即<解得03?,<10<x?1∴为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0<x<.32+bx-a+(x)=ax2.(21.本小题满分12分)已知函数f(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【解析】(1)∵不等式f(x)>0的解集是(-1,3),2+bx-a+2=是方程ax0的两根且a<0.∴-1,3??,a=-1a+2=0,ba--????解得∴??2.==0,b-9a+3ba+2?? ??2a-2??>1)(x+0.,∴>,∵+-1)(x=+-2=xf2b(2)当=时,()ax+xa2(+axa2)a0-x??a精品文档.精品文档a-2①若-1=,即a=1,解集为{x|x≠-1}.aa-2②若-1>,即0<a<1,解集为a???2-a???x.??1>-x<或x?a????a-2③若-1<,即a>1,解集为 a???2-a???.x??>或x<-1x?a????22.(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元?【解析】设派用甲型卡车x辆,乙型卡车y辆,获得的利润为z元,z=450x+350y.,≤x8≤0??,0≤7≤y?,12yx+≤? y满足关系式由题意,x,,+10x6y??,yx,∈N作出相应的平面区域如图阴影部分所≥72?,19x2+y≤示.精品文档.精品文档z=450x+350y=50(9x+7y),?,12yx+=??4 900. y有最大值450x+350时,,由,∴当得交点(7,5)x=7y=5?19=x+y2?4 900元.最大利润为辆,乙型卡车7答:该公司派用甲型卡车辆,5获得的利润最大,精品文档.。

高中数学必修5第三章测试题含答案实用资料

高中数学必修5第三章测试题含答案实用资料

高中数学必修5第三章测试题含答案实用资料(可以直接使用,可编辑优秀版资料,欢迎下载)高中数学必修5第三章测试题一、 选择题1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) A .a >b ⇒a -c >b -c B.a >b ⇒ac >bc C.a >b ⇒a 2>b 2 D. a >b ⇒ac 2>bc 2 2.不等式02<-+y x 表示的平面区域在直线20x y +-=的( ) A.右上方 B.左上方 C.右下方 D .左下方 3.不等式5x +4>-x 2的解集是( ) A .{x |x >-1,或x <-4} B.{x |-4<x <-1} C.{x |x >4,或x <1}D. {x |1<x <4}4.设集合{}20<≤=x x M ,集合{}0322<--=x x x N ,则集合N M ⋂等于( )。

A.{}10≤≤x x B .{}20<≤x x C.{}10<≤x x D. {}20≤≤x x 5.函数241xy -=的定义域是( )A .{x |-2<x <2}B.{x |-2≤x ≤2}C.{x |x >2,或x <-2}D. {x |x ≥2,或x ≤-2}6.二次不等式20ax bx c ++> 的解集是全体实数的条件是( ).A .00a >⎧⎨∆>⎩B .00a >⎧⎨∆<⎩C .00a <⎧⎨∆>⎩D .00a <⎧⎨∆<⎩7.已知x 、y 满足约束条件5503x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则y x z 42+=的最小值为( )。

A.6B.6-C.10D.10- 8.不等式()()023>--x x 的解集是( )A.{}32><x x x 或 B .{}32<<x x C.{}32≠≠x x x 且 D.{}32≠≠x x x 或 9.已知x >0,若x +81x的值最小,则x 为( ). A . 81 B . 9 C . 3 D .1810.已知22ππαβ-≤<≤,则2αβ-的范围是( ).A .(,0)2π-B .[,0]2π-C .(,0]2π-D .[,0)2π- 11.在直角坐标系中,满足不等式x 2-y 2≥0的点(x,y )的集合(用阴影部分来表示)是( )B12.对于10<<a ,给出下列四个不等式( ) ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 ( ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、 填空题13.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,ba的取值范围是________. 14.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________.11615.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.-116.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+,3003,0x y x y x ,则z =2x -y 的最大值为_ ___.9三、 解答题17.若a >b >0,m >0,判断a b 与ma mb ++的大小关系并加以证明.18.画出下列不等式(组)表示的平面区域:(1)3x +2y +6>0 (2)⎪⎩⎪⎨⎧≥+--≥≤.01,2,1y x y x19.解不等式:(1)255122x x -+>(2)21122log (4)log 3x x -≤20.若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围.已知每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A 、B 两种产品各多少吨,才能获得最大利润?解:设生产A 、B 两种产品各为x ,y 吨,利润为z 万元,则:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.0,0,20054,36049,300103y x y x y x y x 目标函数z =7x +12y . 作出可行域如图,作直线l 0:7x +2y =0,平行移动直线l 0至直线l ,从图形中可以发现,当直线l 经过点M 时,z 取最大值,点M 是直线4x +5y =200与直线3x +10y =300的交点,解得M (20,24).∴该企业生产A 、B 两种产品分别为20吨和24吨时,才能获得最大利润.22某工厂有甲、乙两种产品,计划每天各产品生产量不少于15 t .已知生产甲产品1 t 需煤9 t ,电力4 kW·h ,劳力3个;生产乙产品1 t 需煤4 t ,电力5 kW·h ,劳力10个;甲产品每吨利润7万元,乙产品每吨利润12万元;但每天用煤不超过300 t ,电力不超过200 kW·h ,劳力只有300个.问每天各生产甲、乙两种产品多少,能使利润总额达到最大?[解] 设每天生产甲、乙两种产品分别为x t ,y t ,利润总额为z 万元,那么⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15.作出以上不等式组的可行域,如下图所示.目标函数为z =7x +12y ,整理得y =-712x +z12,得到斜率为-712,在y 轴上截距为z12,且随z 变化的一组平行直线. 由图可以得到,当直线经过可行域上点A 时,截距z12最大,即z 最大,解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点A 的坐标为(20,24),所以z max =7×20+12×24=428(万元).高一数学月考试题一.选择题(本大题共12小题,每小题5分,共60分)1.已知数列{a n }中,21=a ,*11()2n n a a n N +=+∈,则101a 的值为 ( )A .49B .50C .51D .522121,两数的等比中项是( )A .1B .1C .1 D .123.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,BC b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20D .24 6.在各项均为正数的等比数列{}n b 中,若783b b ⋅=,则3132log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)87.已知b a,满足:a =3,b =2,b a +=4,则b a -=( )A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、839.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ).A .4B .8C .15D .3110.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ).A .有一种情形B .有两种情形C .不可求出D .有三种以上情形11.已知D 、C 、B 三点在地面同一直线上,DC=a ,从C 、D 两点测得A 的点仰角分别为α、β(α>β)则A 点离地面的高AB 等于( )A .)sin(sin sin βαβα-a B .)cos(sin sin βαβα-aC .)sin(cos cos βαβα-a D .)cos(cos cos βαβα-a12.若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为( ).A .4B .5C .7D .8二、填空题(本题共4小题,每小题5分,共20分)13.在数列{a n }中,其前n 项和S n =3·2n +k ,若数列{a n }是等比数列,则常数k 的值为 14.△ABC 中,如果A a tan =B b tan =Cctan ,那么△ABC 是 15.数列{}n a 满足12a =,112n n n a a --=,则n a = ; 16.两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且,327++=n n T S n n则157202b b a a ++等于 _三.解答题 (本大题共6个小题,共70分;解答应写出文字说明、证明过程或演算步骤)17.(10)分已知c b a,,是同一平面内的三个向量,其中a ()1,2=.(1)若52=c ,且c //a ,求c的坐标;(2) 若|b |=,25且b a 2+与b a -2垂直,求a 与b 的夹角θ.18.(12分)△ABC 中,BC =7,AB =3,且B Csin sin =53. (1)求AC ; (2)求∠A .19.(12分) 已知等比数列{}n a 中,45,106431=+=+a a a a ,求其第4项及前5项和.20.(12分)在ABC ∆中,cos ,sin ,cos ,sin 2222C C C C ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭m n ,且m 和n 的夹角为3π. (1)求角C ;(2)已知c =27,三角形的面积s =,求.a b + 21.(12分)已知等差数列{a n }的前n 项的和记为S n .如果a 4=-12,a 8=-4. (1)求数列{a n }的通项公式;(2)求S n 的最小值及其相应的n 的值;22.(12分)已知等比数列n a 的前n 项和为n S ,且n a 是n S 与2的等差中项, 等差数列n b 中,12b ,点1(,)n n P b b 在一次函数2y x =+的图象上.⑴求1a 和2a 的值;⑵求数列,n n a b 的通项n a 和n b ;⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .高一数学月考答案一.选择题。

高中数学必修5第3章《不等式》基础训练题

高中数学必修5第3章《不等式》基础训练题

必修5第三章《不等式》基础训练题一、选择题1.若b <0,a +b >0,则a -b 的值( )A .大于0B .小于0C .等于0D .不能确定2.已知M =x 2+y 2-4x +2y ,N =-5,若x ≠2或y ≠-1,则( )A .M >NB .M <NC .M =ND .不能确定3.不等式(x -2)(x +3)>0的解集是( )A .(-3,2)B .(2,+∞)C .(-∞,-3)∪(2,+∞)D .(-∞,-2)∪(3,+∞)4.函数y =x (x -1)+x 的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}5.不论x 为何值,二次三项式ax 2+bx +c 恒为正值的条件是( )A .a >0,b 2-4ac >0B .a >0,b 2-4ac ≤0C .a >0,b 2-4ac <0D .a <0,b 2-4ac <06.下列命题中正确的是( )A .不等式x 2>1的解集是{x |x >±1}B .不等式-4+4x -x 2≤0的解集是RC .不等式-4+4x -x 2≥0的解集是空集D .不等式x 2-2ax -a -54>0的解集是R7.若关于x 的不等式2x -1>a (x -2)的解集是R ,则实数a 的取值范围是( )A .a >2B .a =2C .a <2D .a 不存在8.已知点M (x 0,y 0)与点A (1,2)在直线l :3x +2y -8=0的两侧,则( )A .3x 0+2y 0>10B .3x 0+2y 0<0C .3x 0+2y 0>8D .3x 0+2y 0<89.不等式组⎩⎪⎨⎪⎧(x -y +1)(x +y -1)≥00≤x ≤2,表示的平面区域的面积是( )A .2B .4C .6D .810.在直角坐标系内,满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影表示)是( )二、填空题11.一个两位数个位数字为a ,十位数字为b ,且这个两位数大于50,可用不等关系表示为________.12.已知x <1,则x 2+2与3x 的大小关系为________.13.设集合A ={x |(x -1)2<3x -7,x ∈R },则集合A ∩Z 中有________个元素.14.不等式x +1x -2>0的解集是________.15.原点O (0,0)与点集A ={(x ,y )|x +2y -1≥0,y ≤x +2,2x +y -5≤0}所表示的平面区域的位置关系是________,点M (1,1)与集合A 的位置关系是________.必修5第三章《不等式》基础训练题命题:水果湖高中 胡显义答案1.解析:由题意知a >0,又b <0,∴a -b >0.答案:A2.解析:∵M =x 2+y 2-4x +2y=(x -2)2+(y +1)2-5>-5=N ,∴M >N .答案:A3.解析:不等式(x -2)(x +3)>0的解集是(-∞,-3)∪(2,+∞),故选C.答案:C4.解析:要使函数有意义,需,即x ≥1,或x =0.所以函数的定义域为{x |x ≥1}∪{0},故选C.答案:C5.解析:须a >0且Δ<0.答案:C6.解析:结合三个二次的关系.答案:B7.解析:不等式即为(2-a )x >1-2a ,当a ≠2时,不等式为条件不等式,不合要求;当a =2时,不等式即0·x >-3对一切x 成立,故a 的取值范围是a =2.答案:B8.解析:∵点M 和点A 在直线l 的两侧,又把点A 代入得3×1+2×2-8=-1<0,∴3x 0+2y 0-8>0,即3x 0+2y 0>8,故选C.答案:C9.解析:如图,不等式组⎩⎪⎨⎪⎧ (x -y +1)(x +y -1)≥00≤x ≤2表示的平面区域为一等腰直角三角形,其斜边长为4,斜边上的高为2,得其面积为4.故选B.答案:B10.解析:不等式x 2-y 2≤0可化为(x +y )(x -y )≤0,即⎩⎪⎨⎪⎧ x +y ≥0x -y ≤0或⎩⎪⎨⎪⎧x +y ≤0x -y ≥0,作出直线x +y =0和x -y =0,判定区域,可知选D.答案:D11.答案:50<10b +a <10012.解析:(x 2+2)-3x =(x -1)(x -2).∵x<1,∴x-1<0,x-2<0,∴(x-1)(x-2)>0,∴x2+2>3x.答案:x2+2>3x13.解析:由(x-1)2<3x-7得x2-5x+8<0,∵Δ<0,∴集合A为Ø,因此A∩Z的元素不存在.答案:014.解析:不等式等价于(x+1)·(x-2)>0,∴x>2或x<-1.答案:{x|x<-1,或x>2}15.解析:若点满足各不等式⇒点在不等式组所表示的平面区域内,否则,点不在不等式组所表示的平面区域内,代入原点(0,0),显然0+2×0-1<0.故原点不满足不等式x+2y-1≥0.∴点O在平面区域之外,同理点M在平面区域之内.答案:原点O在集合A所表示的平面区域之外点M在集合A所表示的平面区域之内。

新版高中数学人教A版必修5习题:第三章不等式 检测A(1)

新版高中数学人教A版必修5习题:第三章不等式 检测A(1)

第三章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若M=2a(a-2),N=(a+1)(a-3),则有().A.M>NB.M≥NC.M<ND.M≤N解析:∵M-N=2a(a-2)-(a+1)(a-3)=2a2-4a-(a2-2a-3)=2a2-4a-a2+2a+3=a2-2a+3=a2-2a+1+2=(a-1)2+2>0,∴M>N.答案:A<0的解集为().2不等式x-3x+2A.{x|-2<x<3}B.{x|x<-2}C.{x|x<-2,或x>3}D.{x|x>3}解析:原不等式等价于(x-3)(x+2)<0,解得-2<x<3.答案:A3若集合A={x|x2-2x>0},B={x|−√5<x<√5},则().A.A∩B=⌀B.A∪B=RC .B ⊆AD .A ⊆B解析:∵x 2-2x=x (x-2)>0,∴x<0或x>2.∴集合A 与B 在数轴上表示为由图象可以看出A ∪B=R ,故选B . 答案:B4不等式组{x ≥0,x +3y ≥6,3x +y ≤6所表示的平面区域的面积等于( ).A .32B.23C.13D.3答案:D5若2x +2y =1,则x+y 的取值范围是( ). A.[0,2] B.[-2,0]C.[-2,+∞)D.(-∞,-2]解析:∵2x +2y =1≥2√2x+y ,∴(12)2≥2x+y ,即2x+y ≤2-2.∴x+y ≤-2.答案:D6若变量x ,y 满足约束条件{x +y -1≤0,3x -y +1≥0,x -y -1≤0,则z =2x +y 的最大值为( ).A.1B.2C.3D.4解析:画出可行域,如图中的阴影部分所示.由图知,z是直线y=-2x+z在y轴上的截距,当直线y=-2x+z经过点A(1,0)时,z取最大值,此时x=1,y=0,则z的最大值是2x+y=2+0=2.答案:B7若a,b∈R,且ab>0,则下列不等式中恒成立的是().A.a2+b2>2abB.a+b≥2√abC.1a +1b>√abD.3ba +a27b≥23解析:由ab>0,得a,b同号.当a<0,b<0时,B,C不成立;当a=b时,A不成立;∵ba >0,∴3ba+a27b≥2√3ba ·a27b=23.答案:D8在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x-2≤0,x+y≥0, x-3y+4≥0中的点在直线x+y−2=0上的投影构成的线段记为AB,则|AB|=().A.2√2B.4C.3√2D.6解析:画出不等式组{x-2≤0,x+y≥0,x-3y+4≥0表示的平面区域如图阴影部分所示.作出直线x+y-2=0.设直线x-3y+4=0与x+y=0的交点为C ,直线x=2与直线x+y=0的交点为D. 过C 作CA ⊥直线x+y-2=0于点A , 过D 作DB ⊥直线x+y-2=0于点B ,则区域中的点在直线x+y-2=0上的投影为AB.∵直线x+y-2=0与直线x+y=0平行, ∴|CD|=|AB|.由{x -3y +4=0,x +y =0,得{x =-1,y =1,∴C 点坐标为(-1,1).由{x =2,x +y =0,得{x =2,y =-2,∴D 点坐标为(2,-2).∴|CD|=√9+9=3√2,即|AB|=3√2.故选C .答案:C9已知正实数a ,b 满足4a+b=30,当1a +1b 取最小值时,实数对(a,b)是( ). A.(5,10) B.(6,6)C.(10,5)D.(7,2)解析:1a +1b =(1a +1b )×130×30=130(1a +1b )(4a +b)=130(5+b a +4a b) ≥130(5+2√b a ·4ab)=310, 当且仅当{ba=4ab ,4a +b =30,即{a =5,b =10时取等号.故选A .答案:A10某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元;乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,则甲、乙两车间每天总获利最大的生产计划为( ).A.甲车间加工原料10箱,乙车间加工原料60箱B.甲车间加工原料15箱,乙车间加工原料55箱C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱 解析:设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意,得{x +y ≤70,10x +6y ≤480,x ≥0,y ≥0,x ,y ∈N ,目标函数z=280x+200y.画出可行域,如图中的阴影部分所示.由图知,目标函数过点A 时,z 取最大值.解方程组{x +y =70,10x +6y =480,得x=15,y=55,即A (15,55).所以甲车间加工原料15箱,乙车间加工原料55箱时,甲、乙两个车间每天总获利最大. 答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11已知x>0,y>0,若x ,y 满足x 3+y4=1,则xy 的最大值为 . 解析:∵x>0,y>0,∴1=x3+y4≥2√x 3·y4=√33√xy,则xy ≤3,当且仅当x3=y4,即x =32,y =2时,等号成立,∴xy 的最大值为3.答案:312若x ,y 满足约束条件{y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为 .如图,作出不等式组所表示的可行域.由z=x+3y ,得y=−13x +z 3.取l 0:x+3y=0,在可行域内平移直线l 0,由图可知直线过A 点时z 最大,由{y -x =1,x +y =3,得A (1,2).所以z max =1+3×2=7. 答案:713当x>1时,log 2x 2+log x 2的最小值为 . 解析:当x>1时,log 2x>0,log x 2>0,所以log 2x 2+log x 2=2log 2x +1log 2x≥2√2log 2x ·1log 2x =2√2,当且仅当2log 2x =1log 2x,即x =2√22时,等号成立,所以log 2x 2+log x 2的最小值为2√2. 答案:2√214如果实数x ,y 满足条件{x -y +1≥0,y +1≥0,x +y +1≤0,那么y -1x -1的取值范围是 .解析:画出可行域如图中的阴影部分所示.设P (x ,y )为可行域内的一点,M (1,1),则y -1x -1=kPM. 由于点P 在可行域内,则由图知k MB ≤k PM ≤k MA .又可得A (0,-1),B (-1,0),则k MA =2,k MB =12,则12≤k PM ≤2,即y -1x -1的取值范围是[12,2].答案:[12,2]15若不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是 . 解析:不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立. 若a+2=0,则显然不成立;若a+2≠0,则{a +2>0,16-4(a +2)(a -1)<0⇔{a >-2,16-4(a +2)(a -1)<0⇔{a >-2,a <-3或a >2⇔a>2.答案:(2,+∞)三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)解不等式组{3x -2x -6≤1,2x 2-x -1>0.解由3x -2x -6≤1得2x+4x -6≤0,∴-2≤x<6.由2x 2-x-1>0得(2x+1)(x-1)>0,∴x>1或x<−12.∴原不等式组的解集为{x |-2≤x <-12,或1<x <6}.17(8分)某工厂建造一间地面面积为12 m 2的背面靠墙的矩形小房,房屋正面的造价为1 200元/m 2,房屋侧面的造价为800元/m 2,屋顶的造价为5 800元.若墙高为3 m,且不计房屋背面的费用,则建造此小房的最低总造价是多少元?解设房子的长为x m,宽为y m,总造价为t元,则xy=12,且t=3×x×1200+3×y×800×2+5800 =1200(3x+4y)+5800≥1200×2√12xy+5800=34600(当且仅当3x=4y,即x=4,y=3时,等号成立).故最低总造价是34600元.18(9分)已知函数f(x)=x2-2x-8,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.解f(x)=x2-2x-8.当x>2时,f(x)≥(m+2)x-m-15恒成立,则x2-2x-8≥(m+2)x-m-15,即x2-4x+7≥m(x-1).于是对一切x>2,均有不等式x 2-4x+7x-1≥m成立.∵x2-4x+7x-1=(x−1)+4x-1−2≥2√(x-1)·4x-1−2=2(当且仅当x=3时,等号成立), ∴实数m的取值范围是(-∞,2].19(10分)解关于x的不等式x2-(3m+1)x+2m2+m<0.解∵x2-(3m+1)x+2m2+m=(x-m)[x-(2m+1)],∴方程x2-(3m+1)x+2m2+m=0的两解是x1=m,x2=2m+1.当m<2m+1,即m>-1时,原不等式的解为m<x<2m+1;当m=2m+1,即m=-1时,原不等式无解;当m>2m+1,即m<-1时,原不等式的解为2m+1<x<m.综上所述,当m>-1时,原不等式的解集为{x|m<x<2m+1};当m=-1时,原不等式的解集为⌀;当m<-1时,原不等式的解集为{x|2m+1<x<m }.20(10分)某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,那么{x +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,而z=0.28x+0.9y ,作出不等式组所表示的平面区域,即可行域如图中阴影部分所示.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A 时,z 最小,又直线x+y=35000和直线y =15x 的交点A (875003,175003),故当x =875003,y =175003时,饲料费用最低. 答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.。

高中数学必修五第三章测试题有详细答案

高中数学必修五第三章测试题有详细答案

第三章能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设M=2a(a-2)+7,N=(a-2)(a-3),则有()A.M>N B.M≥NN≤M.DC.M<NA【答案】13??2222+a=+6)=a1+>N. 【解析】M-N=(2a7)-4a+-(aa-5a+M+>0,∴??24) (2.下列结论成立的是,则a>b ac A.若>bc22b>,则ab B.若a>+d,则C.若a>b,c<da+c>b>b-cb D.若a>,c>d,则a-d【答案】D,,不成立;对于C b【解析】对于A,当c<0时,不成立;对于B,取a=-1,=-2,,又>-ca>b,∴a-d>b-c,∵==取a2,b=1,c0,d=3,不成立;对于D c>d,∴-d因此成立.故选D.26xx--)的解集为(.3不等式>01x-3} 1<<x或<-|3} x A.{|x<-2或x>{B.xx23} <x<1或1<x<2或<x C.{|-2x<1x>3} -|x{.D【答案】C xx2{,>1)(x+【解析】原不等式可化为(x2)(-x-3)0则该不等式的解集为x|-<<1或.3}>22) B0}xxx=设集合年四川自贡模拟.4(2017)A{|-3<,=(=B∩A4}|x{x>,则2,3) -( 2,0)(.A-B.(2,3) (0,2).C.D D【答案】.22B2},则A∩x|x>2或x<x<3},B={x|x<->4}={【解析】A={x|x=-3x<0}{x|0D.x<3}.故选={x|2<1??2,0∈对于一切xx≥+ax+10成立,则a的取值范围是() 5.若不等式??25??-∞,-.B 2]A.(-∞,-??25??,+∞-)[2,+∞D.C.??2【答案】C21x--11????2,0,0∈≥对于一切x∈成立?【解析】x+ax+1≥0对于一切x成立?a ????22x111111????,0,0∈-x-对于一切-上是增函数,∴-x-≤-∵成立.y=-x在区间2a≥????222xxx55 .≥-.故选C=-.∴a22p),+∞x)在(1(p 为常数且p>0),若f()6.(2017年上海校级联考)已知函数f(x=x+1-x)的值为(上的最小值为4,则实数p99B.A.424.DC.2B【答案】p2=p即x,当且仅当(x-1)=1,【解析】由题意得x-1>0f(x)=x-++1≥+2p11x-9.p=1p+=4)fp+1时取等号.∵(x)在(1,+∞上的最小值为4,∴,解得242) (则实数0x -8x-4-a≥在1≤x≤4内有解,a的取值范围是的不等式7.若关于x2) -4.A(-∞,-4],+∞[.B 12]-∞,-(.D,+∞.C[-12)【答案】A22x时,a44=时,取最大值-,∴当≤-428x-x4)x4(1xx=∵【解析】y2-8-≤≤在[1,4]a4-≥在内有解.吨;3A.8某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用原料吨,原料2B乙两种产品的总量不B3原料吨.该工厂每天生产甲、吨,1原料生产每吨乙种产品要用A 吨.如果设每天甲种产品9原料不能超过B吨,10原料不能超过A吨且每天消耗的2少于的产量为x吨,乙种产品的产量为y吨,则在坐标系xOy中,满足上述条件的x,y的可行域用阴影部分表示正确的是()A B C D【答案】A,≥2x+y??,≤103x+y?故选A【解析】由题可知.,≤9+2x3y?,0≥x?0.≥y9.(2016年广东佛山模拟)若a>b>0,c<d<0,则一定有()abba B.< .A>dccdabab DC..< >cddc B【答案】1111abab【解析】∵c<d<0,∴<<0,∴->->0.而a>b>0,∴->->0,∴<.故选dcdcdcdc.B.10.下列函数中,最小值是4的函数是()4A.y=x+x4(0<x<x+π) B.y=sin x sinxx-=e4e+C.y D.y=log x+log81 x3【答案】C44【解析】当x<0时,y=x+≤-4,排除A;∵0<x<π,∴0<sin x≤1,y=sin x+xx sin4xxxxx-=2时成立;若0<x e<1,则y=elog+4e≥4,等号在e x=>4,排除B;e即>0,x3e <0,log81<0,排除D.故选C.x2+qx+r>0的解集是{x|α<x<β}(β>α>0),那么另一个关于x11.关于x的不等式px2-qx+p>0的解集应该是(的不等式rx)1111??????<<x<<x A.x B.x??????αββα????1111??????<--<-x<-<xx.x C.D??????αβαβ????【答案】D2+qx+r>0的解集是{x|α<x<【解析】因为关于x的不等式pxβ},所以α和β可看作qr2+qx+r=0的两个根且p<0,则α+β=-,α·β=.因为0<α方程px<β,p<0,所以r pprq11222+(α+β)x+1<0,解得-<x<-.故所以rxp-qx+>0,即x+-x1<0,即α·βx <0.αβpp选D.,≥0-2?x-y??x+y???)的取值范围为(则x+2y满足12.已知实数x,y?,4x≤1≤??A.[12,+∞)B.[0,3] D.[3,12][0,12]C.【答案】C【解析】作出不等式组表示的平面区域如图,作直线l:x+2y=0,平移l可见当经过00可行域内的点A,B时,z=x+2y分别取得最大值与最小值,∴z=12,z.C,故选0=minmax) 分.将正确答案填在题中横线上5分,共20二、填空题(本大题共4个小题,每小题22________. =,则m的解集是(1,axm-6x+a)<0x13.若关于的不等式【答案】2222x∴不等式为2的一个根,∴a=-6x+a2.=0是方程【解析】由题意知a>0且1ax22.m=x<2.∴+3x2<0.∴1-6x+4<0,即x<-,0x≥???,4+3y≥xy.若直线所表示的平面区域为D14.(2016年湖南郴州二模)记不等式组??4y≤3x+__________.有公共点,则a的?,≥0x??,y≥4x+3-(1)过定点=a(x 取值范围是(x+1)与D=a1??4,【答案】??2+的平面区域如图所示.因为y【解析】满足约束条件??4≤3x+y1.a=,1)时,得到a(x+1)过点A(1ax所以当y=a(+1)过点B(0,4)时,得到=4;当y=1,0),214.≤有公共点,所以≤a1)a(x+与平面区域D又因为直线y=222b+1a???2≠-x的最小值为则x+2+b>0的解集为x已知二次不等式b且a>,15.ax???aba-??.________22【答案】1???2-x≠x0的解集为>+2∵二次不等式且对应方程有两个>,∴a0【解析】ax+xb???a??2222+?a-ba?+b1b11??--a.由根与系数的关系得-·==(=,即ab=1,故相等的实根-??aaaabbaa--22222,当且b??a-b)+≥a2-=,∴b)+.∵a>ba-b>0.由基本不等式可得(aa--ba-bb22b+a2.时取等号,故的最小值为2-仅当ab=2ba-,5≥2a-b???,a-b≤2满足不等式组,ba16.某校今年计划招聘女教师名,男教师b名,若a??<7.a______.设这所学校今年计划招聘教师最多x名,则=x【答案】13+b:+b,如图所示,画出约束条件所表示的可行域,作直线l由题意得【解析】x=a13.+b=x=7时,取最大值,∴x=a=,再由a=0,平移直线la,b∈N,可知当a6,b三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)22=0k的两个实2kx+1-分)设x,x是关于x的一元二次方程x-(17.本小题满分102122+x的最小值.根,求x212. -kx,x=1【解析】由题意,得x+x=2k22111222kΔ=4≥k.≥0-4(1-k,∴)2222+x=(x+x)-2x∴xx22121122) k2(1=4k--12-2≥6×-2=6k=1.222+xx的最小值为1.∴212两个代数式值的大小,并说明理由;6) x++5)(x7)与(+x比较分本小题满分.18(12)(1)(220. <a-ax+x56的不等式x解关于(2).222+12x+36)=-(x1<0x+6),=(x+12x+35)-(1)【解析】∵(x+5)(x+7)-(2.+6)<(xx+5)(x+7)∴(aa??????22--xx-<0,即a)(8x-a+ax-a)<0,∴(7x+<0. (2)∵56x ??????87aa2<0,解得x∈=,不等式化为x?.①当a=0时,-78aa②当a>0时,-<,不等式的解集为78aa???<x-<. x???78??aa③当a<0时,->,不等式的解集为78aa???<x<-.x???87??2+(lg a+2)x+lg b满足f(-1)x19.(本小题满分12分)已知函数f(x)==-2且对于任意x∈R,恒有f(x)≥2x成立.(1)求实数a,b的值;(2)解不等式f(x)<x+5.【解析】(1)由f(-1)=-2知lg b-lg a+1=0,a所以=10.b又f(x)≥2x恒成立,即f(x)-2x≥0恒成立,2+x·lg a+lg b则有x≥0恒成立,2-4lg b≤0,Δ故=(lg a)22≤1)0. (lg b--4lg b≤0,即+所以(lg b1)故lg b=1,即b=10,a=100.2+4x+1,f(x=x)<x+5,)知(2)由(1)f(x2+4x+1<即xx+5,2+3x-4<0,解得-4<所以xx<1,因此不等式的解集为{x|-4<x<1}.辆,/万元1上年度生产摩托车的投入成本为某摩托车生产企业,)分12本小题满分(.20.出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y(万元)与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x应在什么范围内?【解析】(1)依题意得y=[1.2×(1+0.75x)-1×(1+x)]×1 000×(1+0.6x)(0<x<1),2+20x+200(0<x<1).整理,得y=-60x∴本年度年利润与投入成本增加的比例的关系式为2+20x+200(0<x<1)y=-60x.(2)要保证本年度的年利润比上年度有所增加,?,1 000>0?×?1.2-1y-??当且仅当?,<10<x?2?,x>060x+20-?1?,0<x即<解得3?,<10<x?1∴为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0<x<.32+bx-a+2.已知函数f(x)=ax(21.本小题满分12分)(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.【解析】(1)∵不等式f(x)>0的解集是(-1,3),2+bx-a+2=0的两根且∴-1,3是方程axa<0.??,10,a=-aa-b-+2=????解得∴??2.b0,=3b-a+2=9a+????2a-2??0.1)>a,∵>0,∴(x+a+2ax(=b2时,fx)=x+2-a+=(x1)(ax-+2)当(2)-x??a2a--1}.x,解集为,即=a=1{x|≠1①若-a2a-<<,即1②若->0a1,解集为a ???2a-???. x??1<x>-或x?a????a-2③若-1<,即a>1,解集为a???a-2???. x??>1或xx<-?a????22.(本小题满分12分)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司该如何合理计划当天派用两类卡车的车辆数,可得最大利润,最大利润是多少元?【解析】设派用甲型卡车x辆,乙型卡车y辆,获得的利润为z元,z=450x+350y.,8x≤0≤??,0≤y≤7?,x≤12+y?满足关系式由题意,x,y,≥6y7210x??,N∈x,y作出相应的平面区域如图阴影部分所+?,y≤192x+示.z=450x+350y=50(9x+7y),?,12+y=x??4 900. 有最大值350x+y时,,,∴当得交点(7,5)x=7y=5450由?19y=+2x?元.4 900最大利润为获得的利润最大,辆,5乙型卡车辆,7该公司派用甲型卡车答:。

最新人教版高中数学必修5第三章模块综合测评(附答案)

最新人教版高中数学必修5第三章模块综合测评(附答案)

数学人教B必修5 模块综合测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={y|y=2x,x∈R},B={-1,0,1},则下列结论正确的是().A.A∪B=(0,+∞)B.(R A)∪B=(-∞,0]C.(R A)∩B={-1,0} D.(R A)∩B={1}2.在等差数列{a n}中,若a2+a8=12,S n是数列{a n}的前n项和,则S9等于().A.48B.54C.60D.663.在△ABC中,∠B=135°,∠C=15°,a=5,则此三角形的最大边长为().A.B.C.D.4.已知在△ABC中,sin A∶sin B∶sin C=3∶2∶4,那么cos C的值为().A.14B.23-C.23D.14-5.已知c<d,a>b>0,则下列不等式中必成立的一个是().A.a+c>b+d B.a-c>b-dC.ad>bc D.a b c d >6.在△ABC中,∠B=60°,b2=ac,则这个三角形是().A.等腰三角形B.不等边三角形C.等边三角形D.直角三角形7.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k=().A.8 B.7 C.6 D.58.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点是(b,c),则ad等于().A.3 B.2 C.1 D.-29.函数y=log2(x+11x-+5)(x>1)的最小值为().A.-3 B.3 C.4 D.-410.已知变量x,y满足约束条件20,1,70,x yxx y-+≤⎧⎪≥⎨⎪+-≤⎩则yx的取值范围是().A.(3,6) B.(95,3)C.[95,6] D.(3,+∞)11.已知x,y为正实数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则2 1212a ab b (+)的取值范围是().A .RB .(0,4]C .[4,+∞)D .(-∞,0]∪[4,+∞)12.(2011·广东高考)已知平面直角坐标系xOy 上的区域D由不等式组02,,x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M (x ,y )为D 上的动点,点A 的坐标为1),则z OM OA =⋅的最大值为( ).A. B. C .4 D .3二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =π3C ∠=,则∠A =________.14.若方程x 2+(m +2)x +m +5=0只有正根,则m 的取值范围是__________.15.设{a n }为公比q >1的等比数列,若a 2 009和a 2 010是方程4x 2-8x +3=0的两根,则a 2 011+a 2 012=________.16.已知a ,b ,c 分别为△ABC 的三边,且3a 2+3b 2-3c 2+2ab =0,则tan C =________. 三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知在等差数列{a n }中,a 3+a 4=15,a 2a 5=54,公差d <0. (1)求数列{a n }的通项公式a n ;(2)求数列的前n 项和S n 的最大值及相应的n 的值.18.(本小题满分12分)已知关于x 的不等式2251x x m m+->+. (1)当m >0时,解这个不等式;(2)若此不等式的解集为{x |x >5},试求实数m 的值.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长.已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值. 20.(本小题满分12分)某工厂修建一个长方体形无盖蓄水池,其容积为4 800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米.(1)求底面积并用含x 的表达式表示池壁面积S ;(2)怎样设计水池能使总造价最低?最低造价是多少? 21.(本小题满分12分)如图所示,有相交成60°角的两条直线ZZ ′,YY ′,交点是O .甲、乙分别在OZ ,OY 上,起初甲在离O 点3 km 的A 点,乙在离O 点1 km 的B 点,后来两人同时用4 km/h 的速度,甲沿ZZ ′方向,乙沿Y ′Y 方向步行.(1)起初两人的距离是多少?(2)用包含t 的式子表示t h 后两人的距离;(3)多长时间后,两人之间的距离最短,最短距离是多少?22.(本小题满分14分)设数列{a n }的前n 项和为S n ,若对于任意的n ∈N +,都有S n =2a n-3n ,(1)求数列{a n }的首项与递推关系式a n +1=f (a n ). (2)先阅读定理:若数列{a n }有递推关系a n +1=Aa n +B ,其中A ,B 为常数,且A ≠1,B ≠0,则数列{1n Ba A-}-是以A 为公比的等比数列.请你在(1)的基础上应用本定理,求数列{a n }的通项公式.(3)求数列{a n }的前n 项和S n .参考答案1. 答案:C ∵A ={y |y >0},∴R A ={y |y ≤0},∴(R A )∩B ={-1,0}.2. 答案:B 192899()9()5422a a a a S ++===. 3. 答案:A 依题意,知三角形的最大边为b .由于∠A =30°,根据正弦定理,得sin sin b a B A =,所以sin 5sin135sin sin30a B b A ︒===︒4. 答案:D ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶4, ∴令a =3k ,b =2k ,c =4k (k ≠0),∴22222294161cos 22324a b c k k k C ab k k +-+-===-⋅⋅. 5. 答案:B 由不等式的性质可知,c <d ,∴-c >-d .又∵a >b >0,∴a +(-c )>b +(-d ),即a -c >b -d .6. 答案:C cos B =cos 60°=222221222a cb ac ac ac ac +-+-==, ∴(a -c )2=0.∴a =c .又∵∠B =60°,∴△ABC 为等边三角形.7. 答案:D ∵S k +2-S k =24,∴a k +1+a k +2=24. ∴a 1+kd +a 1+(k +1)d =24. ∴2a 1+(2k +1)d =24. 又a 1=1,d =2,∴k =5.8. 答案:B ∵y =x 2-2x +3的顶点为(1,2),∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴12a =,d =4.∴ad =2. 9. 答案:B ∵x >1,∴x -1>0, ∴y =log 2(x +11x -+5)=log 2(x -1+11x -+6)≥log 2(2+6)=log 28=3.当且仅当x -1=11x -,即x =2时等号成立. 10. 答案:C 作出可行域,如图阴影部分所示.目标函数00y y z x x -==-的几何意义是可行域内的点(x ,y )与原点(0,0)间连线的斜率.由图可知k OC ≤z ≤k OB .易求得B (1,6),C (52,92),因为95OC k =,661OB k ==,所以95≤z ≤6.11. 答案:C 原式=222()22x y x x y y x yx y x y y x+++==++,又∵x ,y ∈R +,∴2224x y y x ++≥=,当且仅当x y y x =,即x =y 时等号成立.12. 答案:C z OM OA =⋅=(x ,y1)+y .由02,x y x ⎧≤≤⎪≤⎨⎪≤⎩ 画出可行域,如图阴影部分所示.作直线l 0:y =,平移直线l 0至l 1位置时,z 取得最大值,此时l1过点2),故max 24z =.13. 答案:π6 由正弦定理,得sinsin a cA C=sin 1sin 2a C A c ===,所以∠A =π6. 14. 答案:(-5,-4] 设方程的正根为x 1,x 2,由题意,得21212(2)4(5)0,(2)0,50,m m x x m x x m ⎧∆=+-+≥⎪+=-+>⎨⎪=+>⎩解得-5<m ≤-4.15. 答案:18 ∵a 2 009和a 2 010是方程4x 2-8x +3=0的两根,而方程的两个根是12x =,32x =,又∵{a n }的公比q >1,∴ 2 00912a =, 2 01032a =,∴q =3.∴a 2 011+a 2 012=a 2 009q 2+a 2 010q 2=(a 2 009+a 2 010)q 2=(1322+)×32=18.16. 答案:- 2221cos 23a b c C ab +-==-,所以∠C >90°,sin 3C =.所以sin tan cos CC C==-17. 答案:分析:首先由等差数列的性质得a 2+a 5=a 3+a 4=15,再与a 2·a 5=54联立求出a 2,a 5,进而求出通项a n ,S n ;再由S n 得出S n 的最大值及相应的n 值.解:(1)∵{a n }为等差数列,∴a 2+a 5=a 3+a 4.∴252515,54,0,a a a a d +=⎧⎪=⎨⎪<⎩ 解得259,6,a a =⎧⎨=⎩∴11,10,d a =-⎧⎨=⎩∴a n =11-n .(2)∵a 1=10,a n =11-n ,∴21()121222n n n a a S n n +==-+. 又102-<,对称轴为212,故当n =10或11时,S n 取得最大值,其最大值为55.18. 答案:分析:(1)解含参不等式要就参数的取值范围进行讨论,本题在系数化为1时,要注意m -1的符号.(2)不等式的解集是不等式所有解的集合,必须注意元素的确定性,和恒成立问题不同,从函数、方程、不等式的统一角度来认识,5应是方程2251x x m m+-=+的根.或者根据(1)对m 进行讨论.解:(1)原不等式可化为m (x +2)>m 2+x -5, (m -1)x >m 2-2m -5,若0<m <1,不等式的解集为225{|1m m x x m --<}-;若m =1,则不等式的解集为R ; 若m >1,则不等式的解集为225{|1m m x x m -->}-.(2)由题意和(1)知,m >1且满足225{|{|5}1m m x x x x m -->}=>-,于是22551m m m --=-,解得m =7. 19. 答案:分析:由题意可知b 2=ac ,将此式代入a 2-c 2=ac -bc ,然后利用余弦定理求出∠A ;再由正弦定理或三角形面积公式求出sin b Bc的值. 解:(1)∵a ,b ,c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc , ∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理,得2221cos 22b c a A bc +-==,∴∠A =60°.(2)解法一:在△ABC 中,由正弦定理得sin sin b AB a=. ∵b 2=ac ,∠A =60°,∴2sin sin60sin 60b B b c ac ︒==︒=解法二:在△ABC 中,由三角形面积公式得11sin sin 22bc A ac B =, ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B ,∴sin sin 2b B Ac ==. 20. 答案:解:(1)设水池的底面积为S 1,池壁的面积为S ,则有1480016003S ==(平方米), 则池底长方形宽为1600x 米,所以S =6x +6×1600x =6(x +1600x)(x >0).(2)设总造价为y ,则y =150×1 600+120×6(x +1600x)≥240 000+57 600=297 600, 当且仅当1600x x=,即x =40时,等号成立, 即x =40时,总造价最低为297 600元.21. 答案:分析:第(1)问可用余弦定理直接求解,第(2)问分类讨论的依据要把握好,当甲驶过O 点时,甲、乙两人行驶的路线的夹角发生了变化,因此,讨论的依据是t 与34的大小关系.这是本题应注意的一个方面.解:(1)设甲、乙两人起初的位置分别是A 与B ,则AB 2=OA 2+OB 2-2OA ·OB ·cos 60°=32+12-2×3×1×12=7.(2)设甲、乙两人t h 后的位置分别是P ,Q ,则AP =4t ,BQ =4t ,当0≤t ≤34时,PQ 2=(3-4t )2+(1+4t )2-2(3-4t )(1+4t )cos 60°,当34t >时,PQ 2=(4t -3)2+(1+4t )2-2(4t -3)·(1+4t )cos 120°,注意到,上面的两式实际上是统一的.所以PQ 2=48t 2-24t +7,t ∈[0,+∞),即PQ =t ∈[0,+∞).(3)因为PQ 2=48(t -14)2+4,所以当14t =h 时,即在第15 min 末,两人的距离最短,最短距离是2 km.22. 答案:分析:(1)要建立a n 与a n +1之间的关系,可由a n +1=S n +1-S n 得出. (2)给出定理,需认真阅读,考查了观察问题、研究问题的能力. (3)可用拆项法求和.解:(1)令n =1,则S 1=2a 1-3,所以a 1=3.又S n +1=2a n +1-3(n +1),S n =2a n -3n .两式相减得a n +1=2a n +3.(2)按照定理,得A =2,B =3,则31BA=--.所以{a n +3}是公比为2的等比数列,其首项为a 1+3=6,所以a n +3=(a 1+3)·2n -1=6·2n -1,所以a n =6·2n -1-3.(3)S n =a 1+a 2+…+a n =(6·20-3)+(6·2-3)+(6·22-3)+…+(6·2n -1-3)=(6·20+6·21+6·22+…+6·2n -1)-(3+3+…+3)=6(20+21+22+…+2n -1)-3n =6×1212n---3n =6·2n-3n -6.。

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

高中数学必修5第三章单元测评(详解版)

高中数学必修5第三章单元测评(详解版)

第三章单元测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式-3x2+7x-2<0的解集为()A.B.C.D.{x|x>2}2.已知a,b为非零实数,且a<b,则下列不等式成立的是()A.a2<b2B.a2b<a3C.<D.>3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是()A.(-3,4)B.(-3,-4)C.(0,-3)D.(-3,1)4.设x,y满足约束条件则z=3x+y的最大值为()A.5B.3C.7D.-85.不等式<的解集是 ()A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,0)∪(2,+∞)6.若x>0,y>0,且+=1,则x+y的最小值是()A.3B.6C.9D.127.当k>0时,直线kx-y=0,2x+ky-2=0与x轴围成的三角形的面积的最大值为 ()A.B.C.D.8.已知关于x的方程x2+(a2-1)x+a-2=0的一根比1大且另一根比1小,则实数a的取值范围为()A.-1<a<1B.a<-1或a>1C.-2<a<1D.a<-2或a>19.若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是()A.a<-2B.a>-2C.a>-6D.a<-610.已知x,y满足约束条件若目标函数z=ax+by(a>0,b>0)在该约束条件下取到的最小值为2,则a2+b2的最小值为()A.5B.4C.D.211.在△ABC中,C=90°,BC=2,AC=4,AB边上的点P到边AC,BC的距离的乘积的取值范围是()A.[0,2]B.[0,3]C.[0,4]D.0,12.已知实数x,y满足xy-3=x+y,且x>1,则y(x+8)的最小值为()A.33B.26C.25D.21第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.若f(x)=ax2+ax-1在R上满足f(x)<0恒成立,则实数a的取值范围是.14.若变量x,y满足约束条件则z=3x+y的最小值为.15.函数y=log a(x+4)-2(a>0,且a≠1)的图像恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则+的最小值为.16.若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知不等式ax2-3x+2>0.(1)若a=-2,求不等式的解集;(2)若不等式的解集为{x|x<1或x>b},求a,b的值.18.(12分)解关于x的不等式:x2-(m+m2)x+m3<0.19.(12分)如图D3-1,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD,公园由矩形的休闲区(阴影部分)A1B1C1D1和环公园人行道组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米,设休闲区的长为x米.(1)求矩形ABCD所占面积S(单位:平方米)关于x的函数解析式.(2)要使公园所占面积最小,问休闲区A1B1C1D1的长和宽应分别为多少米?图D3-120.(12分)某企业生产甲、乙两种产品,已知生产1吨甲产品要用A原料3吨,B原料2吨;生产1吨乙产品要用A原料1吨,B原料3吨.销售1吨甲产品可获得利润5万元,销售1吨乙产品可获得利润3万元.如果该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得的最大利润是多少?21.(12分)设函数f(x)=x2+2ax+3.(1)解关于x的不等式f(x)<1;(2)若函数f(x)在区间[-1,]上有零点,求实数a的取值范围.22.(12分)第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x(x>0)台,需另投入成本C(x)万元.若年产量不足80台,则C(x)=x2+40x;若年产量不小于80台,则C(x)=101x+-2180.每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式.(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?单元测评答案1.B[解析] 不等式-3x2+7x-2<0可化为3x2-7x+2>0,方程3x2-7x+2=0的两根为x1=,x2=2,则不等式3x2-7x+2>0的解集是,故选B.2.D[解析] 取a=-2,b=1,可排除选项A,B,C;由a<b,得a-b<0,不等式a<b两边都乘,得>,故D正确.故选D.3.A[解析] 当x=y=0时,3x+2y+5=5>0,则原点一侧对应的不等式是3x+2y+5>0,可以验证仅有点(-3,4)满足3x+2y+5>0,故选A.4.C[解析] 如图,画出约束条件表示的可行域,由得即C(3,-2),由图可知,当直线3x+y-z=0过点C(3,-2)时,z取得最大值,z max=3×3-2=7.5.D[解析] 不等式<可化为>0,即2x(x-2)>0,方程2x(x-2)=0的两根为x1=0,x2=2,则不等式2x(x-2)>0的解集是{x|x<0或x>2},故选D.6.C[解析] 因为x>0,y>0,所以x+y=(x+y)+=5++≥5+2=9,当且仅当=,即x=3,y=6时,等号成立,故选C.7.B[解析] 由直线kx-y=0,2x+ky-2=0与x轴围成的三角形区域如图,易知A的坐标为(1,0).联立解得B,,则S△OAB=×1×==≤=,当且仅当k=,即k=时上式取等号,故选B.8.C[解析] 构造函数f(x)=x2+(a2-1)x+a-2,因为方程x2+(a2-1)x+a-2=0的一根比1大且另一根比1小,所以f(1)<0,即a2+a-2<0,解得-2<a<1,故选C.9.A[解析] 不等式x2-4x-2-a>0在区间(1,4)内有解等价于当x∈(1,4)时a<(x2-4x-2)max, 令g(x)=x2-4x-2,x∈(1,4),则g(x)<g(4)=-2,所以a<-2.10.B[解析] 画出约束条件表示的可行域(如图所示).显然,当直线z=ax+by过点A(2,1)时,z 取得最小值,即2=2a+b,所以2-2a=b,所以a2+b2=a2+(2-2a)2=5a2-8a+20.构造函数m(a)=5a2-8a+20(>a>0),利用二次函数求最值,显然函数m(a)=5a2-8a+20的最小值是=4,即a2+b2的最小值为4.故选B.11.A[解析] 以C为坐标原点建立直角坐标系(如图),则直线AB的方程为+=1,设点P的坐标为(m,n),则0≤m≤4,0≤n≤2,+=1,由+≥2=,得mn≤2,故AB边上的点P 到边AC,BC的距离的乘积的取值范围是[0,2],故选A.12.C[解析] 由实数x,y满足xy-3=x+y,且x>1,可得y=,则y(x+8)=,令t=x-1(t>0),则有x=t+1,则y(x+8)==t++13≥2+13=12+13=25,当且仅当t=6,即x=7时取等号,此时y(x+8)取得最小值25.13.(-4,0][解析] 当a=0时,f(x)=-1<0恒成立,故a=0符合题意;当a≠0时,由题意得⇒⇒-4<a<0.综上所述,a的取值范围是-4<a≤0.14.1[解析] 作出不等式组表示的平面区域(如图所示),把z=3x+y变形为y=-3x+z,则当直线y=-3x+z经过点(0,1)时,z最小,将(0,1)代入z=3x+y,得z min=1,即z=3x+y的最小值为1.15.5+2[解析] ∵y=log a x的图像恒过定点(1,0),∴函数y=log a(x+4)-2的图像恒过定点A(-3,-2),把点A的坐标代入直线方程得m×(-3)+n×(-2)+1=0,即3m+2n=1,又mn>0,∴m>0,n>0,∴+=(3m+2n)+=5++≥5+2=5+2,当且仅当=时,等号成立,故+的最小值为5+2.16.[-4,3][解析] 原不等式可化为(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即1<a≤3.综上可得,-4≤a≤3.17.解:(1)当a=-2时,不等式为-2x2-3x+2>0,即2x2+3x-2<0,方程2x2+3x-2=0的两根为x1=-2,x2=,∴不等式2x2+3x-2<0的解集为.(2)由题意知1,b是方程ax2-3x+2=0的两根,∴a-3+2=0,即a=1,又1×b=,∴b=2.18.解:方程x2-(m+m2)x+m3=0的解为x1=m和x2=m2.二次函数y=x2-(m+m2)x+m3的图像开口向上,所以①当m=0或1时,原不等式的解集为⌀;②当0<m<1时,原不等式的解集为{x|m2<x<m};③当m<0或m>1时,原不等式的解集为{x|m<x<m2}.19.解:(1)S=(x+20)×=8x++4160,x>0.(2)∵x>0,∴S≥2+4160=1600+4160=5760,当且仅当8x=,即x=100时取等号.故要使公园所占面积最小,则休闲区A1B1C1D1的长应为100米,宽为40米.20.解:设生产甲产品x吨,生产乙产品y吨,在一个生产周期内该企业获得的利润为z万元,则有下列关系:则有目标函数z=5x+3y ,作出可行域如图所示,由图可知,当直线y=-x+经过点(3,4)时,z 取得最大值,故当x=3,y=4时,该企业获得最大利润27万元.21.解:(1)由f (x )<1,得x 2+2ax+3<1, 即x 2+2ax+2<0,其中Δ=4a 2-8. 当Δ=4a 2-8≤0,即-≤a ≤时,不等式无解;当Δ=4a 2-8>0,即a<-或a>时,解方程x 2+2ax+2=0,可得x 1==-a-,x 2==-a+,则不等式的解集为(-a-,-a+).综上所述,当-≤a ≤时,不等式无解;当a<-或a>时,不等式的解集为(-a-,-a+).(2)要使函数f (x )=x 2+2ax+3在区间[-1,]上有零点,则有或f ()·f (-1)≤0,即或(4-2a)(5+2a)≤0,解得a≤-或a≥2.所以实数a的取值范围为a≤-或a≥2.22.解:(1)当0<x<80时,y=100x--500=-x2+60x-500;当x≥80时,y=100x-101x+-2180-500=1680-.所以y=(2)当0<x<80时,y=-(x-60)2+1300,x=60时,y取得最大值,最大值为1300.当x≥80时,y=1680-≤1680-2=1500,当且仅当x=,即x=90时,y取得最大值,最大值为1500.所以,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修5第三章测试题
一、 选择题
1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) A .a >b ⇒a -c >b -c B.a >b ⇒ac >bc C.a >b ⇒a 2>b 2 D. a >b ⇒ac 2>bc 2 2.不等式02<-+y x 表示的平面区域在直线20x y +-=的( ) A.右上方 B.左上方 C.右下方 D .左下方 3.不等式5x +4>-x 2的解集是( ) A .{x |x >-1,或x <-4} B.{x |-4<x <-1} C.{x |x >4,或x <1}
D. {x |1<x <4}
4.设集合{}20<≤=x x M ,集合{
}
0322
<--=x x x N ,则集合N M ⋂等于( )。

A.{}10≤≤x x B .{}20<≤x x C.{}10<≤x x D. {}
20≤≤x x 5.函数2
41x
y -=
的定义域是( )
A .{x |-2<x <2}
B.{x |-2≤x ≤2}
C.{x |x >2,或x <-2}
D. {x |x ≥2,或x ≤-2}
6.二次不等式2
0ax bx c ++> 的解集是全体实数的条件是( ).
A .00a >⎧⎨∆>⎩
B .00a >⎧⎨∆<⎩
C .00a <⎧⎨∆>⎩
D .00a <⎧⎨∆<⎩
7.已知x 、y 满足约束条件55
03x y x y x -+≥⎧⎪
+≥⎨⎪≤⎩
,则y x z 42+=的最小值为( )。

A.6
B.6-
C.10
D.10- 8.不等式()()023>--x x 的解集是( )
A.{}32><x x x 或 B .{}32<<x x C.{}32≠≠x x x 且 D.{}
32≠≠x x x 或 9.已知x >0,若x +
81
x
的值最小,则x 为( ). A . 81 B . 9 C . 3 D .18
10.已知2
2
π
π
αβ-
≤<≤
,则
2
αβ
-的范围是( ).
A .(,0)2π-
B .[,0]2π-
C .(,0]2π-
D .[,0)2
π
- 11.在直角坐标系中,满足不等式x 2-y 2≥0的点(x,y )的集合(用阴影部分来表示)是( )B
12.对于10<<a ,给出下列四个不等式( ) ①)11(log )1(log a
a a a +
<+ ②)11(log )1(log a
a a a +>+ ③a
a
a a 111++<
④a
a
a
a
1
11+
+>
其中成立的是 ( ) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二、 填空题
13.已知1<a <3,2<b <4,那么2a -b 的取值范围是________,b
a
的取值范围是________. 14.已知x ,y ∈R +
,且x +4y =1,则xy 的最大值为________.
116
15.若不等式x 2-ax -b <0的解集为{x |2<x <3},则a +b =________.-1
16.若x ,y 满足约束条件⎪⎩

⎨⎧≤≤≥+-≥+,3003,0x y x y x ,则z =2x -y 的最大值为_ ___.9
三、 解答题
17.若a >b >0,m >0,判断
a b 与m
a m
b ++的大小关系并加以证明.
18.画出下列不等式(组)表示的平面区域:
(1)3x +2y +6>0 (2)⎪⎩

⎨⎧≥+--≥≤.01,2,1y x y x
19.解不等式:
(1)255
1
22x x -+>
(2)21122
log (4)log 3x x -≤
20.若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围.
21
已知每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业生产A 、B 两种产品各多少吨,才能获得最大利润?
解:设生产A 、B 两种产品各为x ,y 吨,利润为z 万元,则:
⎪⎪⎩⎪
⎪⎨
⎧≥≥≤+≤+≤+.
0,0,20054,36049,300103y x y x y x y x 目标函数z =7x +12y . 作出可行域如图,作直线l 0:7x +2y =0,平行移动直线l 0至直线l ,从图形中可以发现,当直线l 经过点M 时,z 取最大值,点M 是直线4x +5y =200与直线3x +10y =300的交点,解得M (20,24).
∴该企业生产A 、B 两种产品分别为20吨和24吨时,才能获得最大利润.
22某工厂有甲、乙两种产品,计划每天各产品生产量不少于15 t .已知生产甲产品1 t 需煤9 t ,电力4 kW·h ,劳力3个;生产乙产品1 t 需煤4 t ,电力5 kW·h ,劳力10个;甲产品每吨利润7万元,乙产品每吨利润12万元;但每天用煤不超过300 t ,电力不超过200 kW·h ,劳力只有300个.问每天各生产甲、乙两种产品多少,能使利润总额达到最大?
[解] 设每天生产甲、乙两种产品分别为x t ,y t ,利润总额为z 万元,
那么⎩⎪⎨⎪

9x +4y ≤300,
4x +5y ≤200,3x +10y ≤300,
x ≥15,y ≥15.
作出以上不等式组的可行域,如下图所示.
目标函数为z =7x +12y ,整理得y =-712x +z
12,
得到斜率为-712,在y 轴上截距为z
12,且随z 变化的一组平行直线. 由图可以得到,当直线经过可行域上点A 时,截距z
12最大,即z 最大,
解方程组⎩
⎪⎨⎪⎧
4x +5y =200,3x +10y =300,
得点A 的坐标为(20,24),
所以z max =7×20+12×24=428(万元).。

相关文档
最新文档