2.细胞反应动力学

合集下载

第四章第二节细胞反应动力学

第四章第二节细胞反应动力学
b. 仅适用于细胞浓度较低的条件
μ μm μm μ S KS
b) 对于快速生长密度较高的微生物培养过程:
Where S0 ─ 底物的初始浓度 KS0 ─ 无纲量系数 c) 其它方程:

μmS μ KS0S0 S
or
μmS μ KS1 KS0S0 S
Blackman equation
S
限制性底物 的浓度
12
Monod方程与Michaelis-Menten方程的比较
Michaelis-Menten方程
1. 酶催化反应 2. 一种酶参与 3. 单底物的反应 4. 反应速率
kca t E 0 S dP Vm S vP dt Km S Km S
kca t S vP dP E 0 E 0 dt Km S
dS dt dP dt
a) Monod 方程的提出
假设条件: 1.只有一种限制性底物 2. 均衡生长 3. 细胞得率系数为常数
典型的非结构非分离动力学模型是Monod 方程, 表达形式类似于酶的Michaelis-Menten 方程:
μm S μ KS S
半经验公式
Where μ ─ 比生长速率 ( h-1 )
rP
μ
dP dt
dX Xdt
qS
dS Xd t
底物比消耗速率 (h-1)
产物比合成速率 (h-1)
5
dP qP Xdt
4.2.2 细胞反应动力学
细胞生长动力学 (X) 细胞反应动力学 产物合成动力学 (P) 底物消耗动力学 (S)
6
细胞生长与限制
什么是限制性底物? During the microorganisms growth the environment will change but if the conditions remain favorable growth will continue until one of the essential substrates is depleted. If all other nutrients are available in excess this substrate is called the growth-limiting substrate. 培养基中某一底物S的浓度增加会影响细胞生长速率, 而其它营养物浓度的变化对生长速率无明显影响,则 底物S即为限制性底物。

细胞化学反应动力学例题和知识点总结

细胞化学反应动力学例题和知识点总结

细胞化学反应动力学例题和知识点总结细胞化学反应动力学是研究细胞内化学反应速率和机制的重要领域,它对于理解细胞的生理功能、代谢过程以及疾病的发生发展都具有关键意义。

接下来,让我们通过一些例题来深入理解细胞化学反应动力学的相关知识点。

一、知识点回顾在探讨例题之前,先来回顾一下细胞化学反应动力学的几个重要知识点。

1、反应速率反应速率通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

对于一般的化学反应 aA +bB → cC + dD,其反应速率可以表示为:v =-1/a(dA/dt) =-1/b(dB/dt) = 1/c(dC/dt) = 1/d(dD/dt) 。

2、浓度对反应速率的影响根据质量作用定律,反应速率与反应物浓度的乘积成正比。

对于简单的一级反应,反应速率只与一种反应物的浓度成正比;对于二级反应,反应速率与两种反应物浓度的乘积成正比。

3、酶促反应动力学酶能够显著加快反应速率,但不改变反应的平衡常数。

酶促反应的速率受到酶浓度、底物浓度、温度、pH 值等多种因素的影响。

米氏方程(v = VmaxS /(Km + S))常用于描述酶促反应的速率与底物浓度之间的关系,其中 Vmax 表示最大反应速率,Km 表示米氏常数。

4、反应级数通过实验确定反应速率与反应物浓度之间的关系,可以确定反应的级数。

一级反应的速率与反应物浓度的一次方成正比,二级反应的速率与反应物浓度的二次方成正比,零级反应的速率与反应物浓度无关。

二、例题解析例题 1:在一个细胞内的化学反应A → B 中,反应物 A 的初始浓度为 10 mol/L,经过 20 秒后,A 的浓度降低到 05 mol/L。

计算该反应在这段时间内的平均反应速率。

解:反应速率 v =(dA/dt) ,由于浓度的变化量为 10 05 = 05mol/L ,时间为 20 秒,所以平均反应速率 v =(05 / 20) = 0025mol/(L·s) 。

第二章-生物反应动力学-2-细胞反应PPT课件

第二章-生物反应动力学-2-细胞反应PPT课件
分裂时间为90~120 min。
.
18
霉菌的生长特性是菌丝伸长和分枝。从
菌丝体(顶端生长)的顶端细胞间形成
隔膜进行生长,一旦形成一个细胞,它
就保持其完整性。霉菌的倍增时间可短
至60~90 min,但典型的霉菌倍增时间
为4~8 h。
.
19
病毒能在活细胞内繁
殖,但不能在一般培
养基中繁殖。病毒是
通过复制方式进行繁
1 细胞反应过程计量学
反应计量学是对反应物的组成和反应
转化程度的数量化研究。通过计量学,可
知道反应过程中有关组分的组成变化规律
以及各反应之间的数量关系。知道了这些
数量关系,就可以由一个物质的消耗或生
成速率来推知其他物质的消耗或生成速率。
.
40
由于细胞反应过程由众多组分参与,
且代谢途径错综复杂,在细胞生长和繁殖
的。
CH
O
m
n aO
2bNH
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
.
45
CH
O
bNH
m
n aO
2
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
• 式中CHmOn为碳源的元素组成,CHxOyNz
是细胞的元素组成,CHuOvNw为产物的元
素组成。下标m、n、u、v、w、x、y、z
最伟大的发现。
.
3
第三代现代生物技术产品
从1953年美国的Watson及Crick发现了
DNA分子的双螺旋结构,由此而来21世

2.细胞生长动力学作业参考资料

2.细胞生长动力学作业参考资料

非相关模型
二次代谢产 物
与细胞生长 是否同步
同步
细胞生长期 基本无产物
细胞生长期 无产物积累
2-2 酵母在需氧条件下,以乙醇为基质进行生长可表 示下列总反应式:
C2H5OH aO2 bNH3 cCH1.704O0.149 N0.408 dCO2 eH2O
试求当RQ=0.66时(1)求计量关系中的系数a,b,c,d和e的值; (2)确定YX/S 和YX/O值
C:2=c+d H: 6+3b=1.704c+2e O:1+2a=0.149c+2d+e N:b=0.408c d/a=0.66

解方程得 a=2.917, b=0.011, c=0.075, d=1.925, e=2.953
YX / S YX / o cM X 0.075(12 1.704 0.149 14 16 0.408) 0.075 22.32 0.036 MS 46 46
2、写出描述无抑制的细胞生长动力学模型的monod方程,并 简单的讨论 rX 随CS的变化.
max
cS K S cS
max
cS K S cS
cS KS
(1)cS << KS时:
max
rX max
cS cX KS
(2)cS >> KS时:
max
rX max cS 0 1 YX / S
c X c X 0
1
K S cS 0
YX / S
c X c X 0
cX
cX
rX max
cS 0
1 YX / S

细胞生物学中的生物化学反应动力学

细胞生物学中的生物化学反应动力学

细胞生物学中的生物化学反应动力学近年来,随着科技的不断进步,细胞生物学中的生物化学反应动力学研究也得到了极大的发展。

生物化学反应动力学是研究化学反应速率及其影响因素的学科,细胞生物学中研究生物化学反应动力学可以揭示生物现象的本质,为疾病的治疗和预防提供更有效的方法。

一、生物化学反应动力学的概念生物化学反应动力学是一门研究化学反应速率及其影响因素的学科。

在细胞生物学中,生物化学反应动力学研究细胞内各种生化反应的速率和对速率的影响。

细胞内的化学反应通常由酶催化,而酶催化的反应速率受到很多因素的制约。

二、反应速率常数的计算方法反应速率常数是生物化学反应动力学中最基本的参数,它是化学反应速率与反应物浓度的函数。

计算反应速率常数需要用到一些公式,其中最基本的公式为:k = (1/t) ln([A]₀/[A])其中k表示反应速率常数,t为反应时间,[A]₀表示反应初始时刻A的浓度,[A]表示t时刻A的浓度,ln表示自然对数。

该公式表明,反应速率常数与反应时间和反应物浓度有关,可以通过实验测定得到。

三、影响反应速率的因素生物化学反应速率受到很多因素的影响,其中包括温度、pH 值、浓度、催化剂和反应物分子间的碰撞概率。

其中,温度和pH 值是影响反应速率最主要的因素。

温度影响反应速率的原因在于温度升高会使反应物分子的平均动能增加,达到一定温度后,反应物分子的碰撞能够克服反应物分子间的相互作用能,从而使反应发生。

不过,温度过高时,酶的空间构型被破坏,反应速率会急剧下降。

pH值对反应速率的影响是因为酶对pH值非常敏感。

当pH值偏离其最适pH值时,酶的活性减退,反应速率明显降低。

四、酶催化反应的动力学酶是生物体内催化化学反应的生物催化剂。

酶催化反应动力学研究的重要性体现在酶反应速率与底物浓度之间的函数关系深入研究中。

基本的Michaelis-Menten方程可以描述酶催化反应速率(v)与底物浓度([S])的关系,该方程表达为:V = Vmax * [S] / (Km + [S])其中,Vmax表示酶的最大催化速率,在酶浓度饱和时达到。

生化反应器 第三章 细胞反应动力学1

生化反应器 第三章 细胞反应动力学1
1.2c + d + 2e − 6 b= 2 1.2 × 0.909 + 3.855 + 2 × 2 − 6 = 2 = 1.473
所以: a= 0.782,b=1.473,c=0.909,d=3.855,e=2
即: C6H12O6+0.782NH3+1.473O2=0.909C4.4H7.3O1.2N0.86 +3.855H2O+2CO2 (2)底物对细胞的得率YX / S的计算
YX / S
max
= 1 / 0.0167 = 59.8802(g/mol)
m = 0.0012(mol/g ⋅ h )
由而可看出两种作法的计算结果时接近的
0.04 0.035 0.03 YX/S (g/mol) 0.025 0.02 0.015 0.01 0.005 0 0 5 10 1/ µ (h ) 15 20
0.008 0.007 q S (mol/g·h) 0.006 0.005 0.004 0.003 0.002 0.001 0 0 0.1 0.2 0.3 0.4
µ (1/h )
qS及µ的实验数据计算YX/S ,以1/YX/S对1/µ进 行回归得到 则
1 / Y X / S = 0.0167 + 0.0012 / µ
对N元素平衡,有:
a = 0.86c = 0.782
对H元素平衡,有:
12 + 3a = 7.3c + 2d , 12 + 3a − 7.3c d= 2 12 + 3 × 0.782 − 7.3 × 0.909 = 2 = 3.855
对O元素平衡,有:
6 + 2 × b = 1 .2 c + d + 2 e ,

第三章 细胞反应动力学

第三章 细胞反应动力学

四、胞内代谢反应

根据功能分为: 供能反应 生物合成反应 多聚反应 组装反应 根据过程分为: 初级代谢 次级代谢

五、胞内代谢调控
实质 把细胞内所有酶组织起来,通过活化某些酶、抑 制另一些酶,甚至出现一些新酶,去掉某些原有的酶, 以使整个代谢过程适应细胞生理活动的需要

两个重要机制 酶活性调控 酶合成调控
cS cS max exp( ) K S cS K SI cS cS ) exp( )] Teissier等: max [exp( K SI KS
三、有抑制的细胞反应动力学
产物抑制 对产物竞争性抑制:


max cS
cP cS K S (1 ) K PI
三、有抑制的细胞反应动力学
底物抑制 对底物非竞争性抑制:

d max, 0 dcS
* cS KSI KS

*
max
1 2 K S / K SI
三、有抑制的细胞反应动力学
底物抑制 对底物竞争性抑制:


经验方程 Aiba等:
max cS
cS cS K S (1 ) K SI
cS 为限制性底物的质量浓度,g/L K S 为饱和常数,g/L
二、无抑制的细胞反应动力学

Monod模型方程
cS
二、无抑制的细胞反应动力学

Monod模型方程
不同K S值的Monod曲线
二、无抑制的细胞反应动力学

Monod模型方程 max 和 c S 为一级动力学关系 cS , K S时, 当 cS KS 提高限制性底物浓度可以提高比生长速率
13401370436生物反应工程第三章细胞反应动力学概述研究对象以细胞微生物催化剂的反应过程动力学研究内容在细胞水平上通过对细胞的生长速率代谢产物的生成速率和底物的消耗速率等动力学特性的描述反映出细胞反应过程的本征动力学特性研究目的细胞反应过程动力学是进行细胞反应过程优化和生物反应器设计的重要理论依据主要内容第四节底物消耗和产物生成动力学第一节细胞反应概论一基本概念细胞细胞是一切生物体进行生长遗传和进化等生命活动的基本单位也是决定生物体形态结构和功能的基本单位代谢产物排泄进入胞外非生物相二细胞的基本特征组成chon四种元素约占细胞质量的90spnacakclmgfe含量其次以上12种元素约占细胞质量的99细胞的化学组成二细胞的基本特征组成活细胞的主要成分是水占总量8095干物质中90是由蛋白质核酸糖类和脂类等四类大分子物质所组成细胞的元素和化学组成将直接影响细胞大规模培养时的培养基设计二细胞的基本特征组成蛋白质

细胞化学反应的动力学原理例题和知识点总结

细胞化学反应的动力学原理例题和知识点总结

细胞化学反应的动力学原理例题和知识点总结细胞化学反应的动力学原理是细胞生物学中的重要内容,它对于理解细胞内各种生化过程的速率和机制具有关键意义。

接下来,让我们通过一些具体的例题来深入探讨这一原理,并对相关知识点进行总结。

一、细胞化学反应动力学的基本概念细胞化学反应动力学主要研究化学反应的速率以及影响反应速率的各种因素。

在细胞中,化学反应通常在温和的条件下进行,受到酶的催化和多种调节机制的控制。

反应速率可以用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

例如,对于反应A → B,如果在时间 t 内 A 的浓度从 A₀变为 A₁,那么反应速率 v =( A₁ A₀)/ t 。

影响细胞化学反应速率的因素主要包括反应物浓度、酶的浓度和活性、温度、pH 值、离子强度等。

二、例题分析例题 1:在一个细胞内的酶促反应中,底物浓度为 10 mM 时,反应速率为5 μmol/min。

当底物浓度增加到 20 mM 时,反应速率变为 10μmol/min。

计算该反应的米氏常数(Km)和最大反应速率(Vmax)。

首先,根据米氏方程 v = Vmax S /( Km + S ),我们可以列出两个方程:5 = Vmax × 10 /( Km + 10 )(1)10 = Vmax × 20 /( Km + 20 )(2)通过解方程(1)和(2),可以得到 Km = 10 mM,Vmax = 15μmol/min 。

例题 2:某细胞化学反应在 37℃时的反应速率是20 μmol/min,当温度升高到 42℃时,反应速率增加到30 μmol/min。

计算该反应的活化能(Ea)。

根据阿伦尼乌斯方程 k = A × e^(Ea/RT) ,其中 k 是反应速率常数,A 是指前因子,R 是气体常数,T 是绝对温度。

设 37℃(310 K)时的速率常数为 k₁,42℃(315 K)时的速率常数为 k₂,则:k₁= 20 /反应物浓度,k₂= 30 /反应物浓度ln(k₂/ k₁) = Ea / R ×( 1 / T₁ 1 / T₂)代入数据计算可得Ea ≈ 50 kJ/mol 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 细胞反应动力学
2.1 细胞反应概论 2.2 细胞反应计量学 2.3 细胞反应动力学的非结构模型
2.4 底物消耗与产物生成动力学 2.5 细胞反应动力学的结构模型
2.6 描述细胞群体反应动力学的分离模型
总结
2.1 细胞反应概论
解决的两个基本问题:各种物料和能量的数量
比例关系(反应计量学)及反应过程速率(反应过 程动力学)的问题。
和实验数据的处理方法
速率-浓度关系:浓度随时间的变化速率与浓
度的关系
浓度与时间的关系
(1)、积分法求动力学参数
幂函数型动力学:
酶催化反应的M-M方程:
对细胞反应,描述整个反应体系至少要有两个微分 方程,一是细胞的生长,另一个是基质的消耗。需 要联立求解该微分方程组才能得到变量cX或cS的解, 其解将是很复杂的。
cs 2 K s cs Kcs
(2)产物抑制动力学
通常在细胞生长动力学表达式上乘以一个抑制 因子,该抑制因子与产物的浓度有关。
max
max
max
cS 1 K S cS 1 K IP cP cS exp K IP cP K S cS
(2)比速率
细胞生长比速率:
1 dcX 1 h c X dt


底物和氧的消耗比速率:
1 dcS 1 dcO2 1 qS 和qO2 h c X dt c X dt
产物和反应热的生成比速率:
qP 1 dcP 1 1 dHV kj h 和qHV c X dt c X dt g h
十六烷烃:
1mol底物中含有碳量为16×12=192g 转化为细胞的碳量为192×2/3=128g 根据反应计量方程式,则有:128=4.4×12c c=2.42 转化成CO2的碳量=192-128=64g=12e e=5.33 对N平衡:14b=0.86×14c=0.86×14×2.42 b=2.085 对H平衡:34×1+3b=7.3c+2d d=12.43 对O平衡:2a×16=1.2c×16+2e×16+16d a=12.427
max
cS K S cS
初始底物浓度过高而造成细胞生长过快的 动力学方程:
max
cS K S K S 0 cS 0 cS
其他的经验模型:
J Monod:
1 K Ks

m=0
n=2
max
max
C Teissier: K H
1 m=0 n=1 Ks
4、稳定期动力学
dcX kd c X 0 dt
dcX 1 c X max dt c X ,max c X
5 细胞反应动力学参数的估算 动力学实验的目的:确定反应速率、确定动
力学参数、确定动力学参数与反应条件
方程合适、参数正确:实验设备,实验方法
c 1 exp( s ) KS
n max s n s
cs cs K s
Moser:K n n
Ks
m=1-1/n n=1+1/n
c /( K s c )
max cs /( K s cX cs )
K D E Contois: 1 K c ) ( S X
10YATP / S
Ykj
mX
Q
(5)得率系数与计量系数
YX / S MX c MS
MX c MO a MP d MS
YX / O
YP / SYX Fra bibliotek S MX v M X S
1 1 r1
r2
[例2-1] 假设通过实验测定,反应底物十六烷烃和 葡萄糖中有2/3的碳转化为细胞中的碳, (1)计算下述反应的计量系数 十六烷烃:
葡萄糖: 1mol底物中含有碳量为72g 转化为细胞的碳量为72×2/3=48g 根据反应计量方程式,则有:48=4.4×12c c=0.909 转化成CO2的碳量=72-48=24g=12e e=2 对N平衡:14b=0.86×14c b=0.782 对H平衡:12+3b=7.3c+2d d=3.854 对O平衡:6×16+2×16a=1.2c×16+2e×16+16d a=1.473
1 c b d p 4a
s

s

s
b p
C: 1=c + d + f N: b=cδ + dz
例:葡萄糖为基质进行面包酵母(S.cerevisiae)培养, 培养的反应式可用下式表达,求计量关系中的系数 a,b,c,d.
2.2.2 细胞反应过程的得率系数 (1)对底物的细胞得率YX/S
CS0<<KS时:
CX= CX0=常数时: CS0>>KS时:
(2)、微分法求动力学参数
幂函数型动力学:
rs k r cs
n
ln rs ln kr n ln cs
细胞反应:
max
cS K S cS

2、无抑制的细 胞生长动力学
(1)Monod方程:(指数期和减数期)
max
cS K S cS
注意:
(1)Monod是基于以下假设
细胞的生长为均衡生长:细胞的浓度
培养基中只有一种生长限制性底物
细胞的生长为简单的单一反应,细胞 得率为常数
(2)仅适用于细胞生长较慢和细胞密度较 低的环境下
YX / S 生成细胞的质量 m X 消耗底物的质量 mS
微分细胞得率YX/S = rX/rS c c Xo 总细胞得率YX / S Xt cSo cSt
YX / O YP / S 生成细胞的质量 m X 消耗氧的质量 mO 生成代谢产物的质量 mP 消耗底物的质量 mS
m=0 n=2
d(
Konak提出的普遍形式:
max )
dcs
K(
m n ) (1 ) max max
(2) 多底物Monod方程(双底物)
cS 1 cS 2 累加动力学 max, max, 1 2 K1 cS1 K 2 cS 2
cS1 cS 2 相互影响动力学 max ( )( ) K1 cS 1 K 2 cS 2
总细胞得率YX / S
rX
c Xt c Xo cSo cSt
cS dcX c X max cX dt K S cS
rX max cS 0 1 YX / S
c X c X 0
1
K S cS 0
YX / S
c X c X 0
cX 1 cX cX
max
讨论:
max
cS K S cS
rX max cS cX KS
(1)cS << KS时:
cS KS
(2)cS >> KS时:
max
rX max c X
(3)cS 处于上述两者之间:
max
cS K S cS
cS dcX rX c X max cX dt K S cS
cS 1 c P K S cS cP ,max
2.3.4 细胞不同生长阶段的动力学特性
1、延迟期动力学
max
cS K S cS
t 1 e tL
2、无抑制的细 胞生长动力学(指数期和减数 期)
(1)Monod方程:
(2)对碳的细胞得率YC
YC 生成细胞量 细胞含碳量 m X X X YX / S 消耗底物量 底物含碳量 mS S S
(3)宏观得率和理论得率
YX / S m X mX mST mSG mSR
Y
*
X /S
mX mSG
CO2产生速率 RQ O2消耗速率
还原度(γ):在一化合物中,任何元素的还 原度等于该元素的化合价。细胞的还原度近 似为一常数。
有单一胞外产物:
CH m O n aO 2 bNH 3 cCH α Oβ N δ dCH x O y N z eH 2O fCO 2
细胞: γb=4 + α - 2β - 3δ 底物: γs=4 + m - 2n 产物: γp=4 + x - 2y - 3z 有效电子平衡方程: γs - 4a=cγb + dγp
YX / O M X c 91.34 0.909 1.76 MO a 32 1.473
2.3 细胞反应动力学的非结构模型
2.3.1 细胞生长动力学的描述方法 细胞体系的特点:多相、多组分和非线性 1、模型的简化
(1)细胞反应动力学是对细胞群体的动力学行为的 描述,而不是对单一细胞进行描述。 (2)确定论模型(不考虑细胞之间的差别,而是取 其性质上酌平均值)和概率论模型(考虑每个细胞 之间的差别)
(4)对能量的细胞得率YC
YATP YX / S M S m X g / mol n ATP YATP / S
YX / S
YX / S
10YATP / S
Ms
Yave

X M s 10YATP / S S YX / S 细胞质量 g / mol 底物的有效电子数 Yave / S
2.1.2 物质的跨膜输送
简单扩散:扩散速率与膜两侧的浓度差成正比 促进扩散:扩散速率与膜两侧的浓度差不成正比;要求细 胞提供载体蛋白来促进跨膜输送
主动输送:逆着浓度差的方向进行,除了要借助于载体蛋 白外,还要消耗细胞的代谢能。
相关文档
最新文档