材料科学基础 绪论和第一章
材料科学基础绪论

现代工业的三大材料体系
材料科学与工程 学科划分的依据
(一)金属材料
• 金属材料是最重要的工程材料,包括金属和以 金属为基的合金,最简单的金属材料是纯金属。
由电子壳层完全填满或完全空着的元素 结合键为金属键
元素 周期 表中 的金 属元 素
简单金属
过渡族金属
• 内电子壳层未完全填满的元素属 • 结合键为金属键和共价键的混合键,但 以金属键为主
夏朝以前就开始了青铜的冶炼
18世纪后,由于工业的迅速发展,对材料特别是钢铁的需求急剧增长, 在物理学、化学、材料力学等学科的基础上,金属学应运而生。 近一百多年来,由于显微镜、X射线技术、电子显微镜等新仪器和新技 术的相继出现和发展,金属学得到了长足的进步。
高分子材料的早期发展较为缓慢。人类最初使用的高分子材料是天然 的木材,皮革和纤维。后来发明了造纸、养蚕、制胶技术。19世纪开 始生产橡胶,直到20世纪后才有了快速发展。
材料科学基础
绪论
第一章 材料结构的基本知识 第二章 材料中的晶体结构 第三章 高分子材料的结构 第四章 晶体缺陷
第五章 材料的相结构及相图
第六章 扩散与固态相变 第七章 材料的变形与断裂 第八章 固体材料的电子结构与物理性能
绪论
材料
现代文明的三大支柱
能源
信息
新材料被视为新技术 革命的基础和先导。
材料的重要性正在得到全社会 的承认和重视。
一、人类生活中的材料
• 我们的周围到处都是材料。事实上,材料是我们衣食住行的必备条件, 是人类一切生活和生产活动的物质基础 • 人类文明史中的石器时代、铜器时代、铁器时代就是按当时生产活动 中所使用的代表性材料作为依据划分的 • 材料与食物、居住空间、能源和信息共同组成人类生活的基本资源, 不仅在我们的日常生活中,而且对国家的繁荣和安全也起着举足轻重 的作用 材料是用来制造各种产品的物质,这些物质能用来生产和构成功 能更多、更强大的产品。 ۩从广泛的意义上说,人类使用的材料可以看作是一个流动着的巨大循环 体系,一个全球性的、时空无限的循环系统。
武汉理工大学材料科学基础(第2版)课后习题和答案

武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z 轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
材料科学基础 第一章

第一章晶体学基础材料中的原子(离子、分子)在三维空间呈规则,周期性排列。
原子无规则堆积。
非晶体:蜂蜡、玻璃金刚石、NaCl、冰等。
YX§1-1 空间点阵一、空间点阵的概念为了便于分析研究晶体的结构,进行如下处理:组成晶体的原子(或分子、原子集团)抽象几何点(点阵的结点自然形成三维阵列(空间点阵平行线连接空间格子(原子(离子)的刚球模型原子中心位置X Y Z a bcX Zab c §1-2晶面指数、晶向指数——Miller 指数晶面——穿过晶体中原子的平面。
晶向——晶体中任意原子列的直线方向。
§1-3常见晶体结构常见的晶体结构主要有:体心立方一、体心立方(BCC)体心立方结构可以缩写为BCC 钢球模型质点模型(face-centered cubic)a从晶体结构的钢球模型可以看出,原子与原子之间存在许多间隙。
分析这些间隙的数量、位置、形状和大小,对于了解晶体的性能、合金的相结构以及相变、扩散等问题都是十分重要的。
一、FCC 晶体FCC 中的间隙有2种:八面体间隙,四面体间隙1、正八面体间隙边长为:2a §1-4常见晶体结构的间隙八面体间隙四面体间隙§1-5 晶体的堆垛方式任何晶体都可以看作是由任意晶面的。
一般是以最密排晶面的堆垛方式作为晶体的堆垛方式。
一、BCC晶体视频最密排晶面:(110)堆垛次序:ABAB……§1-6 晶带所有相交于某一直线的或平行于此直线的晶面构成一个此直线称为晶带轴。
晶带轴[uvw]与该晶带的晶面存在如下关系——晶带方程hu+kv+lw例如:在正交(立方、正方、四方)点阵中,(101(100)、(010)、(110)、向平行,构成以[001]为晶带轴的晶带。
材料科学基础(第1章)

三、教材及参考书
教材: 崔忠圻.金属学与热处理(第2版).机械工业出版社
参考书及实验指导书: (1)石得珂.材料科学基础.机械工业出版社 (2)李超.金属学原理.哈尔滨工业大学出版社 (3)张廷楷.金属学及热处理实验指导书.重庆大学出
版社 (4)林昭淑.金属学及热处理实验.湖南大学出版社
3. 不透明并呈现特有的量,因而具有不透明性。而
吸收了能量被激发的电子随后会辐射出具有一定波长的光能,从而具
有一定光泽。
4. 良好的塑性变形能力,金属材料的强韧性好。
金属键没有方向性,原子间也没有选择性,所以在受外力作用而
发生原子位置的相对移动时,结合键不会遭到破坏。
第一节 原子结构
一、 物质的组成 一切物质都是由无数微粒按一定的方式聚集
而成的。这些微粒可能是分子、原子或离子。 原 子结构直接影响原子间的结合方式。 二、 原子的结构
近代科学实验证明:原子是由质子和中子组 成的原子核,以及核外的电子所构成的。原子的 体积很小,直径约为10-10m数量级,而其原子核 直径更小,仅为10-15m数量级。然而,原子的质 量恰主要集中在原子核内。因为每个质子和中子 的质量大致为1.67x10-24g,而电子的质量约为 9.11x10-28g,仅为质子的1/1836。
1.4 范德华力 属物理键,系一种次价键,没有方向性和饱
和性。比化学键的键能少1~2个数量级。不同 的高分子聚合物有不同的性能,分子间的范德 华力不同是一个重要因素。
1.5 氢键 是一种特殊的分子间作用力。它是由氢原子
同时与两个电负性很大而原子半径较小的原子 (o,f,n等)相结合而产生的具有比一般 次价键大的键力,具有饱和性和方向性。氢键 在高分子材料中特别重要。
第01章 绪论

第一章:绪论一、本课程的性质和任务《材料科学基础》是材料科学与工程专业的主要理论基础课程。
该课程从微观领域出发,揭示材料组织结构与性能之间的内在联系以及在各种条件下的变化规律,为有效地使用材料和研制具有特定性能的材料提供理论依据和线索。
本课程的任务如下:1.使学生系统掌握材料科学的基本理论与基本知识,初步学会用所学的理论来分析问题,从而为学生学习其他专业课程以及今后从事材料研究工作打好基础,为今后在工作中分析和解决实际问题培养能力;2.培养学生阅读材料基础理论方面的一般文献及进一步自修能力;3.使学生初步掌握材料科学的实验方法;二、材料科学的发展“材料科学”是20世纪60年代初提出的。
“材料科学”的形成实际是科学技术发展的结果。
首先,固体物理、无机化学、有机化学、物理化学等学科的发展,对物质结构和物性的深入研究,推动了对材料本质的了解;同时,冶金学,金属学、陶瓷学、高分子科学等的发屉也使对材料本身的研究大大加强,从而对材料的制备、结构与性能,以及它们之间的相互关系的研究也愈来愈深入。
为材料科学的形成打下了比较坚实的基础。
其次,在材料科学这个名词出现以前,金属材料、高分子材料与陶瓷材料都已自成体系,目前复合材科也获得广泛应用,其研究也逐步深入。
但它们之间存在着颇多相似之处,对不同类型材料的研究可以相互借鉴,从而促进学科的发展。
虽然不同类型的材料各有其专用测试设备与生产装置,但各类材料的研究检测设备与生产手段有颇多共同之处。
在材料生产中,许多加工装置的原理也有颇多相通之处.可以相互借鉴,从而加速材料的发展。
第三,许多不同类型的材料可以相互替代和补充,能更充分发挥各种材料的优越性,达到物尽其用的目的。
但长期以来,金属、高分子及无机非金属材料自成体系,缺乏沟通。
由于互不了解,不利于发展创新,对复合材料的发展也极不利。
材料科学有三个重要属性:一是多学科交叉,它是物理学、化学、冶金学、金属学、陶瓷、高分子化学及计算科学相互融合与交叉的结果,如生物医用材料要涉及医学、生物学及现代分子生物学等学科;二是一种与实际使用结合非常密切的科学,发展材料科学的目的在于开发新材料,提高材料的性能和质量,合理使用材料,同时降低材料成本和减少污染等;三是材料科学是一个正在发展巾的科学,不像物理学、化学已经有一个很成熟的体系,材料科学将随各有关学科的发展而得到充实和完善。
材料科学基础_01绪论_12材料的分类_

材料的分类
分类依据
1.按材料的凝聚状态分类
2.按材料的维度分类
3.按材料的尺寸分类
4.按材料的结晶状态分类
5.按材料的使用领域分类
6.按材料的性能分类
7.按材料的化学组成(或基本组成)分类
1.按材料的凝聚状态分类
气态液态固态
2.按材料的维度分类
一维材料(纤维及晶须)零维材料
(量子点或纳米团簇)二维材料
(薄膜)三维材料(块体)
3.按材料的尺寸分类
宏观(Macro-):>10-5m,肉眼可见上至无限介观(Meso-):10-10~10-6m,
出现量子相干现象,包括团
簇、纳米和亚微米体系。
纳米(Nano-):
10-9~10-7m
(1~100nm)
微观(Micro-):
<10-10m,原子分
子下至无限
4.按材料的结晶状态分类
单晶材料多晶材料准晶材料非晶态材料
液晶态材料
5.按材料的使用领域分类
建筑电子机械生物能源包装医学
航空航天。
材料科学基础.第一章

3.标准投影图
以晶体的某个晶面平行于投影 面,作出全部主要晶面的极射投影 图称为标准投影图(图1.16)。立方 系中,相同指数的晶面和晶向互相 垂直,所以立方系标准投影图的极 点既代表了晶面又代表了晶向。
4.吴/乌氏网(Wulff net)
吴氏网是球网坐标的 极射平面投影,具有保 角度的特性,如右下图。
立方系 六方系
对复杂点阵(体心立方,面心立方等),要考虑晶面层数的增加。 体心立方(001)面之间还有一同类的晶面(002),因此间距减半。
1.2.4 晶体的极射赤面投影
通过投影图可将立体图表现于平面上。晶体投影方法很多, 包括球面投影和极射赤面投影。 1.参考球与球面投影 将立方晶胞置于一个大圆球的中 心,由于晶体很小,可认为各晶面均 过球心。由球心作晶面的法线, 晶面法线与球面的交点称为极点,每 个极点代表一个晶面;大圆球称为 参考球,如图1.14所示。用球面上的 极点表示相应的晶面,这种方法称为 球面投影;两晶面的夹角可在参考球 上量出。
6.晶面间距
晶面族不同,其晶面间距也不同。通常低指数晶面的面间距 较大,高指数晶面的面间距较小;原子密集程度越大,面间距 越大。可用数学方法求出晶面间距:
d hkl ( d hkl d hkl 1 h 2 k l ) ( )2 ( )2 a b c a 正交系
h2 k 2 l 2 1 4 h 2 hk k 2 l ( ) ( )2 3 c a2
图1.12 六方系中的一些晶面与晶向
(2)用四轴坐标确定晶向指数的方法如下: 当晶向OP通过原点时,把OP沿四个轴分解成四个分量(由 晶向上任意一点向各轴做垂线,求出坐标值),可表示为 OP=u a1+v a2+l a3+w C 晶向指数用[u v l w]表示,其中t=-(u + v)。 原子排列相同的晶向属于同一晶向族。在图1.12中
材料科学基础顾宜版第一章绪论

6、泡沫金属
突破性: 重量轻、密度低、孔隙率高、比表面积大。 发展趋势: 具有导电性,可替代无机非金属材料不能导电的应用领域;在
隔音降噪领域具有巨大潜力。
7、离子液体
突破性:具有高热稳定性,宽液态温度范围,可调的酸碱性、极性、配位 能力(“可设性”),易于与其他物质分离(循环利用率高),良好的导 电性等。
材料是全球新技术革命的四大标志之一(新 材料技术、新能源技术、信息技术、生物技 术)。
未来最具潜力的新材料 1、石墨烯
突破性:非同寻常的导电性能、极低的电阻率极低和极快的电子迁移 的速度、超出钢铁数十倍的强度和极好的透光性。
发展趋势:2010年诺贝尔物理学奖造就近年技术和资本市场石墨烯炙 手可热,未来5年将在光电显示、半导体、触摸屏、电子器件、储能 电池、显示器、传感器、半导体、航天、军工、复合材料、生物医药 等领域将爆发式增长。
发展趋势:在绿色化工领域,以及生物和催化领域具有广阔的应用前景。
8、超材料
突破性:具有常规材料不具有的物理特性,如负磁导率、负介电常数 等。
发展趋势: 改变传统根据材料的性质进行加工的理念,未来可根据需 要来设计材料的特性,潜力无限、革命性。
9、超导材料
突破性:超导状态下,材料零电阻,电流不损耗,材料在磁场中表现 抗磁性等。
材料科学基础
XX学院XX班 主讲教师:XXX
Tel: XXX E-mail: XXX Nhomakorabea绪论
0.1 什么是材料?
材料与人类文明—材料的重要性 什么是材料科学与工程?
0.2 材料的分类 0.3 组成-结构-工艺过程-性质之间的关系
教学目标
了解材料的定义、分类与发展简史(现状 与趋势)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11924B
一、材料科学的重要地位
表0-1 人类使用材料的
11924B
二、各种材料概况
1.金属材料 2.陶瓷材料 3.电子材料、光电子材料和超导材料
11924B
1.金属材料
图0-1 汽车中各种材料的大致比例
11924B
1.金属材料
图0-2 波音767飞机所用的各种材料比例
11924B
2.陶瓷材料
第二节 原子结合键
三、混合键 解:(1) MgO 据表1-2得电负性数据XMg=1.31;XO= 3.44,代入式(1-1)得: (2) GaAs 1)得 据表1-2得XGa=1.81;XAs=2.18,代入式(1表1-3 某些陶瓷化合物的混合键特征
11924B
第二节 原子结合键
图1-8 原子间结合力 a)原子间吸引力、排斥力、合力 b)原子间 作用位能与原子间距的关系
115.tif
图1-15 利用显微镜观察材料的 组织
11924B
第四节 晶体材料的组织
图1-16 单相组织的两种晶粒形状 a)等轴晶 b)柱状晶
11924B
第四节 晶体材料的组织
二、单相组织 三、多相组织
图1-17 两相组织的一些基本组织形态
11924B
第五节
材料的稳态结构与亚稳态结构
图1-18 激活能的物理意义
11924B
第三节 原子排列方式
二、原子排列的研究方法
图1-13 X射线在原子面AA′和BB′上的衍射
11924B
第三节 原子排列方式
图1-14 X射线衍射分析示意及衍射分布图 a) X射线衍射分析示意图 b) SiO2晶体及非晶体的衍射分布图
11924B
第四节 晶体材料的组织
一、组织的显示与观察
第一节 原子结构
一、原子的电子排列
表1-1 各电子壳层及亚壳层的电子状态
(1)泡利不相容原理 一个原子中不可能存在有四个量 子数完全相同的两个电子。
11924B
第一节 原子结构
(2)最低能量原理 电子总是优先占据能量低的轨道, 使系统处于最低的能量状态。
图1-1 电子能量水平随主量子数 和次量子数的变化情况 11924B
图0-3 航天飞机上的先进结构陶瓷 1—增强的碳-碳(RCC) 2—高温再用的表面绝缘材料(HRSI) 3—Nomex涂层(No mex) 4—低温再用的表面绝缘材料 5—金属或玻璃 11924B
3.电子材料、光电子材料和超导材料
(1)电子材料 是指在电子学和微电子学中使用的材料, 主要包括半导体材料、介电功能材料和磁性材料等。 (2)光电子材料 有人估计,今天光电子技术给世界带 来的影响不亚于30多年前将晶体管用于计算机的影响。 (3)超导材料 大多数科学家相信,在今后10年或更长 一些时间内,高温超导的研究和应用开发会有巨大进 展,其中,大电流应用和电子学应用将有实质性的突 破,这必将对国民经济和国防建设等带来巨大的效益。
材料科学基础
主编:石德珂
绪论1 第一章 材料结构的基本知识 第二章 材料中的晶体结构 第三章 高分子材料的结构 第四章 晶体缺陷 第五章 材料的相结构及相图 第六章 扩散与固态相变 第七章 材料的变形与断裂 第八章 固体材料的电子结构与物理性能
11924A
绪论 一、材料科学的重要地位 二、各种材料概况 三、材料的制备与加工工艺对性能的影响 四、什么是材料科学
11924B
第五节
材料的稳态结构与亚稳态结构
3.稀土元素电子排列的特点是什么?为什么它们处于周 期表的同一空格内? 4.简述一次键与二次键的差异。 5.描述氢键的本质,什么情况下容易形成氢键? 6.为什么金属键结合的固体材料的密度比离子键或共价 键固体为高? 7.应用式(1-2)~式(1-5)计算Mg2+O2-离子对的结合键能, 以及每摩尔MgO晶体的结合键能。 8.计算下列晶体的离子键与共价键的相对比例 (1) NaF (2) CaO
11924B
第五节
材料的稳态结构与亚稳态结构
9.什么是单相组织?什么是两相组织?以它们为例说明显 微组织的含义以及显微组织对性能的影响。 10.说明结构转变的热力学条件与动力学条件的意义,说 明稳态结构与亚稳态结构之间的关系。 11.归纳并比较原子结构、原子结合键、原子排列方式以 及晶体的显微组织等四个结构层次对材料性能的影响。
11924B
三、材料的制备与加工工艺对性能的影响
图0-5 航空发动机的构造
11924B
四、什么是材料科学
图0-6 材料科学与工程四要素
11924B
第一章
第一节 第二节 第三节 第四节 第五节
材料结构的基本知识
原子结构 原子结合键 原子排列方式 晶体材料的组织 材料的稳态结构与亚稳态结构
11924B
11924B
2.共价键
图1-5 金属键结合示意图
11924B
第二节 原子结合键
二、二次键 1.范德瓦耳斯键
图1-6 范德瓦耳斯键力示意图 a)理论的电子云分布 b)原子偶极矩的产生 c)原子(或分子) 间的范德瓦耳斯键结合
11924B
第二节 原子结合键
2.氢键
图1-7 冰中水分子的排列及氢键的作用
11924B
11924B
第二节 原子结合键
图1-9 原子间结合 力性质的模拟
11924B
第三节 原子排列方式
一、晶体与非晶体
图1-10 二氧化硅结构示意图 a)晶态 b)非晶态
11924B
第三节 原子排列方式
图1-11 从液态转变为晶体及非晶体 的比体积变化
11924B
第三节 原子排列方式
图1-12 结晶过程示意图及相应的多晶体组织
第一节 原子结构
二、元素周期表及性能的周期性变化
11924B
第一节 原子结构
表1-2 元素的电负性(鲍林)
11924B
第二节 原子结合键
一、一次键 1.离子键
图1-3 NaCl的离子结合键示意图
11924B
第二节 原子结合键
图1-4 金刚石的共价结合及其方向性
11924B
第二节 原子结合键
11924B
第二节 原子结合键
体不是直接分解成其组成的单原子气体,所
以数据并不是准确的蒸发热。 1)计算公式
11924B
第二节 原子结合键
2)在式(1-3)中b为未知量,先解得b值。
3)计算Na+Cl-离子对的结合能E0,在平衡间距时E合=E0
五、结合键与性能 1.物理性能 2.力学性能
11924B
第五节
材料的稳态结构与亚稳态结构
图1-19 反应速度随激活能 减小呈指数关系上升
11924B
第五节
材料的稳态结构与亚稳态结构
图1-20 稳态与亚稳态转变的 热力学和动力学条件
11924B
第五节
材料的稳态结构与亚稳态结构
1.原子中的电子按照什么规律排列?什么是泡利不相容 原理? 2.下述电子排列方式中,哪一个是惰性元素、卤族元素、 碱族、碱土族元素及过渡金属? (1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2 (2) 1s2 2s2 2p6 3s2 3p6 (3) 1s2 2s2 2p5 (4) 1s2 2s2 2p6 3s2 (5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2 (6) 1s2 2s2 2p6 3s2 3p6 4s1