材料科学基础第一章

合集下载

(完整版)1《材料科学基础》第一章晶体学基础

(完整版)1《材料科学基础》第一章晶体学基础
一、晶向指数 二、晶面指数 三、六方晶系的晶向指数和晶面指数 四、晶带 五、晶面间距
晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵


•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。

材料科学基础(第1章)

材料科学基础(第1章)

2.原子间的结合力与结合能
原子能够结合为晶体的原因是原子结合起来后
体系的能量可以降低,在原子结合成晶体的过 程中,会有一定的能量E释放出来,这个能量 叫做结合能。
假设 fa 代表引力(attraction),fb代表斥力
(repulsion), d代表原子间距离(distance),则有:
原子间净作用力
1.2共价键
两个或多个电负性相差不大的原子间通过共用 电子对而形成的化学键。共价键键合的基本特 点是核外电子云达到最大的重叠,形成“共用 电子对”,有确定的方位,且配位数较小。
共价键的结合极为牢固,故共价晶体具有结构 稳定、熔点高、质硬脆等特点。共价形成的材 料一般是绝缘体,其导电性能差。
式中 a、b、m、n均为常数,且m<n,m、n均为大 于2的常数。
当d较大时,fr很小,|fa|较大,故f < 0,即 相互吸引。当d小到一定程度后,fr很大,而
|fa|很小,故f > 0, 即相互排斥。
在d=d0处, |fa|= fr,f = 0,即晶体内原子间 距保持恒定。
上述双原子结合模型虽然很粗糙,但用于 描述大量原子组成的聚集状态,还是较为简明 的。
二、金属原子间的结合
1、原子间的结合键 1.1离子键 大多数盐类、碱类和金属氧化物主要以离子键
的方式结合。离子键键合的基本特点是以离子 而不是以原子为结合单元。
↓(外层电子重新分布) 金属+非金属 → 离子键
↑(离子间静电作用)
一般离子晶体中正负离子静电引力较强,结合 牢固。因此。其熔点和硬度均较高。这类化合 物通常变形能力差,具有硬而脆的性质。另外, 在离子晶体中很难产生自由运动的电子,因此, 它们都是良好的电绝缘体。但当处在高温熔融 状态时,正负离子在外电场作用下可以自由运 动,即呈现离子导电性。

材料科学基础第一章晶体结构(三单质晶体结构)

材料科学基础第一章晶体结构(三单质晶体结构)
a=4/3r/3; a=2r。
Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
配位数 12;8(8+6);12 致密度 0.74;0.68; 0.74
配位数(CN):晶体结构中 任一原子周围最近且等距离 的原子数。 致密度(K):晶体结构中 原子体积占总体积的百分数。 K=nv/V。
linear density
<100>
a
2 1 2

1
aa
a
2 1 2

1
aa
<110>
2a
2
1 2

0.7
2a a
2a
2
1 2

1

1.4
2a a
<111>
3a
2

1 2
1

1.16
3a a
3a
2
1 2

0.58
3a a
案例讨论:工程上大量使用低碳钢渗碳件,试分析材 料的渗碳行为与哪些因素有关? 晶格常数? 结构类型? 致密度?....?
1.4单质晶体结构
同种元素组成的晶体称为单质晶体。 一、金属晶体的结构 二、非金属元素单质的晶体结构
一、金属晶体的结构
香港国际机场 案例讨论:工程上大量使用钢铁材料,钢和铁在 性能上差别较大,各有优势,设想这种差别的来 源。
一、金属晶体的结构
1.常见金属晶体结构
典型金属的晶体结构是最简单的晶体结构。由于金属键的性质, 使典型金属的晶体具有高对称性,高密度的特点。常见的典型金属晶 体是面心立方、体心立方和密排六方三种晶体,其晶胞结构如图1-10 所示。另外,有些金属由于其键的性质发生变化,常含有一定成分的 共价键,会呈现一些不常见的结构。锡是A4型结构(与金刚石相似), 锑是A7型结构等。

材料科学基础 第一章

材料科学基础  第一章

第一章晶体学基础材料中的原子(离子、分子)在三维空间呈规则,周期性排列。

原子无规则堆积。

非晶体:蜂蜡、玻璃金刚石、NaCl、冰等。

YX§1-1 空间点阵一、空间点阵的概念为了便于分析研究晶体的结构,进行如下处理:组成晶体的原子(或分子、原子集团)抽象几何点(点阵的结点自然形成三维阵列(空间点阵平行线连接空间格子(原子(离子)的刚球模型原子中心位置X Y Z a bcX Zab c §1-2晶面指数、晶向指数——Miller 指数晶面——穿过晶体中原子的平面。

晶向——晶体中任意原子列的直线方向。

§1-3常见晶体结构常见的晶体结构主要有:体心立方一、体心立方(BCC)体心立方结构可以缩写为BCC 钢球模型质点模型(face-centered cubic)a从晶体结构的钢球模型可以看出,原子与原子之间存在许多间隙。

分析这些间隙的数量、位置、形状和大小,对于了解晶体的性能、合金的相结构以及相变、扩散等问题都是十分重要的。

一、FCC 晶体FCC 中的间隙有2种:八面体间隙,四面体间隙1、正八面体间隙边长为:2a §1-4常见晶体结构的间隙八面体间隙四面体间隙§1-5 晶体的堆垛方式任何晶体都可以看作是由任意晶面的。

一般是以最密排晶面的堆垛方式作为晶体的堆垛方式。

一、BCC晶体视频最密排晶面:(110)堆垛次序:ABAB……§1-6 晶带所有相交于某一直线的或平行于此直线的晶面构成一个此直线称为晶带轴。

晶带轴[uvw]与该晶带的晶面存在如下关系——晶带方程hu+kv+lw例如:在正交(立方、正方、四方)点阵中,(101(100)、(010)、(110)、向平行,构成以[001]为晶带轴的晶带。

材料科学基础.第一章

材料科学基础.第一章

3.标准投影图
以晶体的某个晶面平行于投影 面,作出全部主要晶面的极射投影 图称为标准投影图(图1.16)。立方 系中,相同指数的晶面和晶向互相 垂直,所以立方系标准投影图的极 点既代表了晶面又代表了晶向。
4.吴/乌氏网(Wulff net)
吴氏网是球网坐标的 极射平面投影,具有保 角度的特性,如右下图。
立方系 六方系
对复杂点阵(体心立方,面心立方等),要考虑晶面层数的增加。 体心立方(001)面之间还有一同类的晶面(002),因此间距减半。
1.2.4 晶体的极射赤面投影
通过投影图可将立体图表现于平面上。晶体投影方法很多, 包括球面投影和极射赤面投影。 1.参考球与球面投影 将立方晶胞置于一个大圆球的中 心,由于晶体很小,可认为各晶面均 过球心。由球心作晶面的法线, 晶面法线与球面的交点称为极点,每 个极点代表一个晶面;大圆球称为 参考球,如图1.14所示。用球面上的 极点表示相应的晶面,这种方法称为 球面投影;两晶面的夹角可在参考球 上量出。
6.晶面间距
晶面族不同,其晶面间距也不同。通常低指数晶面的面间距 较大,高指数晶面的面间距较小;原子密集程度越大,面间距 越大。可用数学方法求出晶面间距:
d hkl ( d hkl d hkl 1 h 2 k l ) ( )2 ( )2 a b c a 正交系
h2 k 2 l 2 1 4 h 2 hk k 2 l ( ) ( )2 3 c a2
图1.12 六方系中的一些晶面与晶向
(2)用四轴坐标确定晶向指数的方法如下: 当晶向OP通过原点时,把OP沿四个轴分解成四个分量(由 晶向上任意一点向各轴做垂线,求出坐标值),可表示为 OP=u a1+v a2+l a3+w C 晶向指数用[u v l w]表示,其中t=-(u + v)。 原子排列相同的晶向属于同一晶向族。在图1.12中

材料科学基础第1章原子结构和键合

材料科学基础第1章原子结构和键合

原子能量与原子间距的关系
1.2.5 结合键与性能 1.物理性能 熔点的高低代表了材料稳定性程度。共、离子键化合物的Tm较高。 密度与结合键有关。多数金属有高的密度,原因为金属有较高的相对原子质量,金属键结合没有方向性,原子趋于密集排列 导热、导电性 2.力学性能 弹性模量与结合能有较好的对应关系。 强度 塑性
原子结构
原子结构(atomic structure) 原子是由原子核(由带正电荷的质子和呈电中性的中子组成)和核外电子(带负电荷)构成。 原子结构的特点:体积很小,质量大部分集中于原子核内,原子核的密度很大。
核外电子排布遵循的规律:能量最低原理、Pauli不相容原理(Pauli principle)、Hund规则(Hund ’s rule)。
03
04
金属中主要是金属键,还有其他键如:共价键、离子键
陶瓷化合物中出现离子键和金属键的混合
一些气体分子以共价键结合,而分子凝聚时依靠范德华力
05
聚合物的长链分子内部以共价键结合,链与链之间则为范德华力或氢键
1.2.3 混合键 (补充)
1.2.4 结合键的本质及原子间距(补充) 原子间距:两原子在某距离下吸引力和排斥力相等,两原子便稳定在此相对位置上,这一距离r0相当于原子间的平衡距。 把两个原子平衡距离下的作用能称为原子的结合能(E)。结合能的大小相当于把两原子分开所需做的功,E越大,原子结合越稳定。离子键、共价键的E最大;金属键的次之;范德华力的最小。
1.2.1 化学键(主价键、一次键) 1. 金属键(metallic bond) 1)自由电子—弥漫于金属正离子间 金属原子的外层电子数比较少,且各个原子的价电子极易挣脱原子核的束缚而成为自由电子。 2)定义:由金属正离子和自由电子之间互相作用所构成的键合称为金属键。 3)特点: 电子共有化,无饱和性,无方向性。 4)可以解释金属的一些特征:

材料科学基础 第1章 晶体学基础

材料科学基础 第1章 晶体学基础

晶体内部质点排列规律性以及晶体结构的不
完整性 应用广泛: 化学 物理学 冶金学 材料科学 分子生物学 固体电子学等 晶体学发展:
经典晶体学 现代晶体学
1.1.2 晶体结构与空间点阵(crystal structure and space lattice) 一、晶体结构 结构基元(分子、原子、离子、原子团)+结合键结合在三维空间 作有规律的周期性的重复排列方式。 晶体结构种类繁多,可以借助x射线衍射等方法测定。
¯ ¯ [010] 、[001] 等六个晶向,它们的性质是完全相同的, ¯
用符号<100>表示。
注意: 如果不是立方晶系,改变晶向指数的顺序,所
表示的晶向可能不是等同的。
例如,对于正交晶系 [100]、[010]、[001]这三个 晶向并不是等同晶向,因为以上三个方向上的原子间 距分别为a、b、c,沿着这三个方向,晶体的性质并
二、晶体学 晶体学是一门研究晶体的自然科学。包括:
晶体几何学 晶体外表面几何形状及它们之间的规律性 晶体生长学 天然及人工晶体的发生、成长和变化过程及机制 晶体物理学 晶体的光学、电学、力学等物理性质及相关结构对称性 晶体化学 晶体的化学组成和晶体结构与晶体物理化学性质间关系 晶体结构学
第一章 晶体学基础
为什么要学习晶体结构?
什么是晶体? 晶体有何特点?
什么是晶体学? 什么是晶体结构与空间点阵? 什么是布拉菲点阵? 描述晶体点阵结构的晶面指数和晶向指数是如何建立的? 什么是晶带定理?
1.1.1 晶体与晶体学(Crystal and Crystallography) 人类使用的材料中大多为晶态(Crystalline),包括单晶、多晶、 微晶和液晶等。那么什么是晶体? 晶体有何特点? 晶体是由结构基原(原子、分子、离子、原子团 等)在三维空间按长程有有序排列的物质。

材料科学基础第一章

材料科学基础第一章
38
5)晶体中原子的堆垛方式
39
40
6)晶体结构的多晶型性
多晶型性:有些金属(如Fe, Mn,Ti,Co,Sn,Zr等) 固 态下在 不同温 度或不 同 范 围内具 有不同 的晶体 结 构的性质。 同素异构转变:多晶型的金属在温度或压力变 化时,由一种结构转变为另一种结构的过程称 为多晶型性转变,也称为同素异构转变。
晶胞-空间点阵中反映晶格特征的最小的几何 单元。
10
通常是在晶格中取一个最小的平行六面体作为 晶胞。 晶胞参数: 点阵常数晶胞大小 晶轴夹角晶胞形状
11
晶胞选取原则:
a 能够充分反映空间点阵的对称性;
b 相等的棱和角的数目最多;
c 具有尽可能多的直角;
d 体积最小。
12
结构晶胞:构成了晶体结构中有代表性的部分 的晶胞。 特点:空间重复堆垛,就得到晶体结构。
44
SiC型:类似于金刚石型 SiO2型:面心立方 点阵,1个硅原子 被4个氧原子所包 围,每个氧原子则 介于两个硅原子之 间,起着连接两个 四面体的作用。单 胞共有24个原子。
45
第三节 原子的不规则排列
原子的不规则排列产生晶体缺陷(在晶体中所 占比例低)。 晶体缺陷:晶体中原子偏离其平衡位置而出现 不完整性的区域。 晶体缺陷是以一定的形态存在,按一定的规律 产生、发展、运动和交互作用,对晶体的性能 和物理化学变化有重要的影响。
53
2)螺型位错 screw dislocation
模型:滑移面//位错线。(位错线//晶体滑移方 向,位错线┻位错运动方向,晶体滑移方向┻位 错运动方向。) 分类:左螺型位错,右螺型位错。 左螺型位错和右螺型位错有着本质的区别。 无论位置如何摆放也不会改变其类型。 螺型位错特征:滑移方向//位错线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学基础大作业——第1、2章晶体结构
2015年9月9日
班级:姓名:学号:分数:
一、名词解释:
固溶体、中间相、空间点阵、结合力、晶体、晶胞、固溶强化、相、正常价化合物、电子化合物、合金,各向异性、多晶型性、晶界、亚结构
二、填空
1. 金属键没有性和性。

2. 由于原子间结合力和结合能的存在,金属原子趋于规则紧密的排列。

原子间最大结合力对应着金属的。

键能决定了金属的和。

3. 自然界中的晶体结构各不相同,根据晶胞的和可将晶体结构分为14中空间点阵,归属于个晶系。

其中最典型的三中晶体结构分别为bcc 、fcc 和hcp 。

4.能够反映晶胞中原子排列紧密程度的两个参数为和。

其中fcc和hcp的两个参数均相同,分别为和。

bcc的两个参数非别为和。

5. fcc和hcp的堆垛方式分别为ABCABC……和ABAB……,当某些晶面堆垛顺序发生局部差错即产生晶体缺陷时,可能在fcc晶体结构中出现hcp 的特征。

6. bcc、fcc和hcp三种晶体结构中均存在四面体和八面体两种晶格间隙,间隙原子通常溶解于体间隙。

7. [221]与(221)的位置关系为。

[110]和(001)的位置关系为。

8. 塑性变形时,滑移通常沿着密排面和密排方向进行。

bcc的密排面为,密排方向为。

fcc的密排面为,密排方向为。

9. 铁的三种同素异构体分别为、和。

10.点缺陷主要包括三种类型,分别为、和。

无论哪类点缺陷都会造成其周围出现一个涉及几个原子间距范围的弹性畸变区,称为。

11.小角度晶界指的是相邻两晶粒的位向差小于。

其中对称倾侧晶界是由一系列相隔一定距离的型位错所组成,扭转晶界由相互交叉的位错所组成。

12.具有不同的两相之间的分界面称为相界。

其中界面能最高的是界面,应变能最高的界面是界面。

三、判断
1. 晶体区别于非晶体的一个重要特征就是晶体有固定的熔点,二者之间在任何情况下都不能进行转变,即晶体不可能转变为非晶体,非晶体也不可能转变为晶体。

()
2. bcc和fcc均属于立方晶系,hcp属于六方晶系。

(错)
3. bcc、fcc和hcp晶胞内分别包含有2、4、6个原子,因其原子数不同,所以其间隙的数量亦不相同。

(错)
4. [][][]100,010,001和100,010,001---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
属于一个晶向族100;()()()100,010,001和100,010,001---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
属于一个晶面族{}100。

( ) 5. 单晶体具有各向异性是由于金属原子在各晶向上排列的紧密程度不同所致。

多晶体在性能上不显示,其原因是多晶体在各个晶向上原子排列的紧密程度相同。

( )
6.刃型位错线与晶体的滑移方向相垂直,螺型位错线与晶体的滑移方向平行;两种位错线运动的方向均垂直于位错线。

( )
7. 一条位错线的柏氏矢量与柏氏回路的大小及回路在位错线上的位置有关,因此沿位错线任意移动或者扩大回路,都将影响柏氏矢量。

( )
8. 晶体易于使其密排面裸露在表面,这是由于晶体的密排面表面能小。

( )
9. 晶粒越细小,金属材料的强度、硬度越高,塑性、韧性越好。

( )
10.晶界处缺陷多,因此原子扩散速度快,且其熔点低,易于腐蚀和氧化。

( )
四、简答题
1、归纳总结三种典型的晶体结构的晶体学特征。

2、固溶体与金属化合物有何异同点?
3、影响置换固溶体溶解度的因素有哪些?
4、晶界具有哪些特性?
5、位错反应的条件是什么?
6、金属中缺陷有哪些?其特征分别有哪些?
7、请简述间隙固溶体、间隙相、间隙化合物的异同点?
8、空间点阵与晶体结构有哪些区别?
10、在立方晶系中,一晶面在x 轴的截距是1,在y 轴的截距是0.5,且平行于z 轴,一晶向上某点坐标为x=0.5,y=0,z=1,求出其晶面指数和晶向指数。

五、计算及作图
1、Mn 的同素异构体有一为立方结构,其晶格常数为0.632nm ,ρ为7.26g/cm 3,r 为0.112nm ,问M n 晶胞中有几个原子,其致密度为多少?
2、a)按晶体的钢球模型,若球的直径不变,当Fe 从fcc 转变为bcc 时,计算其体积膨胀多少?b)经x 射线衍射测定在912℃时,α-Fe 的a=0.2892nm ,γ-Fe 的a=0.3633nm, 计算从γ-Fe 转变为α-Fe 时,其体积膨胀为多少?与a)相比,说明其差别原因。

3.作图表示立方晶系()123,012--⎛⎫ ⎪⎝⎭晶面和[]102,346-⎡⎤⎢⎥⎣⎦
晶向。

(16分) 4、写出立方晶系的晶面间距公式,并将下述(100、(123)、(110)、(210)、(111)(200)按晶面间距从大到小的顺序排列。

相关文档
最新文档