《普通混凝土配合比设计规程》(JGJ55-)简介

合集下载

jgj55-2016普通混凝土配合比设计规程

jgj55-2016普通混凝土配合比设计规程

jgj55-2016普通混凝土配合比设计规程一、背景介绍1.1 普通混凝土配合比设计规程的重要性在建筑工程中,混凝土是一种常见的建筑材料,而配合比则是混凝土施工中至关重要的一环。

制定科学合理的混凝土配合比设计规程对于确保建筑工程质量、提高混凝土使用效率具有非常重要的意义。

1.2 jgj55-2016普通混凝土配合比设计规程的制定背景jgj55-2016普通混凝土配合比设计规程是由中华人民共和国住房和城乡建设部制定的混凝土配合比设计规程,旨在规范混凝土设计和使用,提高混凝土的质量和施工效率。

二、jgj55-2016普通混凝土配合比设计规程的主要内容2.1 适用范围该规程适用于建筑工程中所使用的普通混凝土,但不包括特殊混凝土和特殊性能混凝土。

2.2 混凝土配合比设计的基本原则- 混凝土强度等级的确定- 矿物掺合料的使用- 骨料的选用- 掺合料的选用- 水灰比的确定- 混凝土配合比的设计2.3 混凝土配合比的计算方法- 混凝土各组分的计算方法- 混凝土配合比的设计方法2.4 配合比实施前的试配- 配合比实施前的试验对象- 试验过程和结果的记录三、jgj55-2016普通混凝土配合比设计规程的应用3.1 在建筑工程中的应用根据该规程的要求,建筑单位应当在混凝土配合比设计工作中严格执行规程要求,确保混凝土配合比的科学性和合理性,从而提高混凝土的强度和耐久性。

3.2 在相关领域的推广该规程的制定不仅对建筑工程有着重要的指导意义,也对混凝土生产企业、建筑材料研究机构、相关行业管理部门等都具有一定的参考价值。

四、结语jgj55-2016普通混凝土配合比设计规程的出台,对于规范混凝土配合比设计和使用,提高混凝土的质量和施工效率具有积极的意义。

各建筑单位和相关行业应当认真学习和贯彻执行该规程,确保建筑工程的质量和安全。

也希望在今后的实践中,可以通过不断的完善和更新,进一步提升这一规程的适用性和指导性,促进我国建筑行业的健康发展。

普通混凝土配合比设计规程(JGJ55-2011)

普通混凝土配合比设计规程(JGJ55-2011)

表3.0.6
环境条件
干燥环境 潮湿但不含氯离子 的环境 潮湿且含有氯离子 的环境、盐渍土环 境
水溶性氯离子最大含量(%,水泥用 量的质量百分比) 钢砼 预应力砼 素砼 0.30 0.06 1.00 0.20 0.10
除冰盐等侵蚀性物 质的腐蚀环境
0.06
3 基本规定(最小含气量)
3.0.7 长期处于潮湿或水位变动的寒冷和严寒环境、 以及盐冻环境的混凝土应掺用引气剂。引气剂掺 量应根据混凝土含气量要求经试验确定;掺用引 气剂的混凝土最小含气量应符合表3.0.7的规定, 最大不宜超过7.0%。 掺加适量引气剂有利于混凝土的耐久性,尤其对 于有较高抗冻要求的混凝土,掺加引气剂可以明 显提高混凝土的抗冻性能。引气剂掺量要适当, 引气量太少作用不够,引气量太多混凝土强度损 失较大。
2 术语、符号
2.1.11 胶凝材料:混凝土中水泥和矿物掺合料的总 称。 2.1.12 胶凝材料用量:混凝土中水泥用量和矿物掺 合料用量之和。 (胶凝材料和胶凝材料用量的术语和定义在混凝土 工程技术领域已被广泛接受) 2.1.13 水胶比:混凝土中用水量与胶凝材料用量的 质量比。(代替水灰比) 2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材 料用量的质量百分比。 2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用 量的质量百分比。 (11~15是新组建的术语和定义)
强度
满足混凝土工程结构设计或工程进度的强度要求。 影响混凝土强度的因素: (1)水泥的强度和水灰比 : 水泥强度越高,则混凝土强度越高。 当混凝土水灰比值在0.40~0.80之间时越大,则混 凝土的强度越低; 水灰比定律:在材料相同的条件下,砼强度值随水 灰比的增大而减小,其变化规律呈近似双曲线形状。

普通混凝土配合比设计规程(JGJ55-2011)

普通混凝土配合比设计规程(JGJ55-2011)

2 术语、符号
坍落度等级划分为5个等级。
等级 S1 S2 S3 S4 S5 坍落度(mm) 10~40 50~90 100~150 160~210 ≥220
混凝土拌合物稠度允许偏差
2 术语、符号
2.1.6 抗渗混凝土:抗渗等级不低于P6的混凝 土。 2.1.7 抗冻混凝土:抗冻等级不低于F50的混 凝土。 (均指设计提出要求的抗渗或抗冻混凝土) 2.1.9 泵送混凝土:可在施工现场通过压力泵 及输送管道进行浇筑的混凝土。 (包括流动性混凝土和大流动性混凝土,泵
和易性
混凝土拌合物便于施工操作,能够达到结构 均匀、 成型密实的能力。 和易性主要包括流动性、粘聚性和保水性。 影响和易性因素: (1)组成材料及其用量之间的关系: 水泥品种及其水泥浆数量和单位用水量;骨 料的品种、级配和粗细程度;水灰比;砂 率 ;外加剂 。 (2)施工环境的温度、搅拌制度等。
合理砂率与坍落度及水泥用量的关系
3 基本规定(新增加)
3.0.1 混凝土配合比设计应满足混凝土配制强 度、拌合物性能、力学性能、长期性能和耐 久性能的设计要求。混凝土拌合物性能、力 学性能、长期性能和耐久性能的试验方法应 分别符合现行国家标准《普通混凝土拌合物 性能试验方法标准》GB/T50080、《普通混 凝土力学性能试验方法标准》GB/T50081和 《普通混凝土长期性能和耐久性能试验方法 标准》GB/T50082的规定。
送时坍落度不小于100mm。)
2 术语、符号
2.1.10大体积混凝土:体积较大的、可能由胶 凝材料水化热引起的温度应力导致有害裂 缝的结构混凝土。

(大体积混凝土也可以定义为,混凝土结 构物实体最小几何尺寸不小于1m的大体量 混凝土,或预计会因混凝土中胶凝材料水 化引起的温度变化和收缩而导致有害裂缝 产生的混凝土。)

【2019年整理】jgj55-普通混凝土配合比设计规程1

【2019年整理】jgj55-普通混凝土配合比设计规程1

的使用条件。
5 混凝土配合比计算
5.1 水胶比 5.1.1 混凝土强度等级不大于C60等级时,混 凝土水胶比宜按下式计算: a fb W /B fcu,0 a b f b fb—胶凝材料(水泥与矿物掺合料按使用比 例混合)28d胶砂抗压强度(MPa),
5 混凝土配合比计算
1.当胶凝材料28d胶砂抗压强度无实测值时,可按 下式计算:
2 术语、符号
坍落度等级划分为5个等级。
等级 S1 S2 S3 S4 S5 坍落度(mm) 10~40 50~90 100~150 160~210 ≥220
2 术语、符号
2.1.6 抗渗混凝土:抗渗等级不低于P6的混 凝土。 2.1.7 抗冻混凝土:抗冻等级不低于F50的混 凝土。 (均指设计提出要求的抗渗或抗冻混凝土) 2.1.9 泵送混凝土:可在施工现场通过压力泵 及输送管道进行浇筑的混凝土。 (包括流动性混凝土和大流动性混凝土,泵 送时坍落度不小于100mm。)
2 术语、符号
2.1 术语 2.1.1普通混凝土:干表观密度为 2000kg/m3~2800kg/m3的混凝土。 (在建工行业,普通混凝土简称混凝土,是 指水泥混凝土) 2.1.2干硬性混凝土:拌合物坍落度小于 10mm且须用维勃稠度(s)表示其稠度的 混凝土。 (维勃稠度可以合理表示坍落度很小甚至为
4 混凝土配制强度的确定
4.0.1 混凝土配制强度应按下列规定确定: 1.当混凝土的设计强度等级小于C60时,配 制强度应按下式计算:
fcu,0 fcu,k 1.645
2.当设计强度等级不小于C60时,配制强度 应按下式计算(新增)
fcu,0 1.15 fcu,k
4 混凝土配制强度的确定
• 当用活性掺合料取代部分水泥时,表中的最大水灰比及最 小水泥用量即为替代前的水灰比和水泥用量。

JGJ55-2011普通混凝土配合比设计规程1

JGJ55-2011普通混凝土配合比设计规程1
2.1.5大流动性混凝土:拌合物坍落度不低于 160mm的混凝土。
2 术语、符号
坍落度等级划分为5个等级。
等级
坍落度(mm)
S1
10~40
S2
50~90
S3
100~150
S4
160~210
S5
≥220
2 术语、符号
2.1.6 抗渗混凝土:抗渗等级不低于P6的混 凝土。
2.1.7 抗冻混凝土:抗冻等级不低于F50的混 凝土。
3 基本规定(最大水胶比)
3.0.3 混凝土的最大水胶比应符合《混凝土结 构设计规范》GB50010的规定。
(控制水胶比是保证耐久性的重要手段,水胶 比是配比设计的首要参数)
《混凝土结构设计规范》对不同环境条件的 混凝土最大水胶比作了规定。
环境类别 一 二(a) (b) 三 最大水灰比 0.65 0.60 0.55 0.50
(均指设计提出要求的抗渗或抗冻混凝土)
2.1.9 泵送混凝土:可在施工现场通过压力泵 及输送管道进行浇筑的混凝土。
(包括流动性混凝土和大流动性混凝土,泵 送时坍落度不小于100mm。)
2 术语、符号
2.1.10大体积混凝土:体积较大的、可能由胶 凝材料水化热引起的温度应力导致有害裂 缝的结构混凝土。
③ 当超出表中的掺量时,粉煤灰和粒化高炉矿渣粉 影响系数应经试验确定。
5 混凝土配合比计算
2.当水泥28d胶砂抗压强度无实测值时,公 式(5.1.1-2)中的fce值可按下式计算:
fce c fce,g
c——水泥强度等级值的富余系数,可按实际
统计资料确定;当缺乏实际统计资料时,
也可按表5.1.1-2选用(增加);
fce,g——水泥强度等级值(MPa)。

混凝土配合比设计规程JGJ55_

混凝土配合比设计规程JGJ55_

完美WORD 格式提高胶凝材料用量,降低水胶比,增加砼的密实度即可。

××××商混站试验室:××××××有限公司试验室作业指导书 文件编号: LH/W ·B 008-2011第A 版 第1次修订普通混凝土配合比设计规程第64页 共 页颁布日期 : 2011年10月20日普通混凝土配合比设计规程(JGJ55-2011)总则1.0.1 为规范普通混凝土配合比设计方法,满足设计和施工要求,保证混凝土工程质量并且达到经济合理,制定本规程。

1.0.2 本规程适用于工业与民用建筑及一般构筑物所采用的普通混凝土配合比设计。

• 除一些专业工程以及特殊构筑物的混凝土1.0.3 普通混凝土配合比设计除应符合本规程的规定外,尚应符合国家现行有关标准的规定。

术语、符号2.1 术语2.1.1普通混凝土:干表观密度为 2000kg/m3~2800kg/m3的混凝土。

(在建工行业,普通混凝土简称混凝土,是指水泥混凝土)2.1.2干硬性混凝土:拌合物坍落度小于10mm 且须用维勃稠度(s )表示其稠度的混凝土。

(维勃稠度可以合理表示坍落度很小甚至为零的混凝土拌合物稠度,维勃稠度等级划分为5个。

)等级 维勃稠度(s )V0 ≥31V1 30~21V2 20~11V3 10~6V4 5~32.1.3塑性混凝土:拌合物坍落度为10mm ~90mm 的混凝土。

2.1.4流动性混凝土:拌合物坍落度为100mm ~150mm 的混凝土。

2.1.5大流动性混凝土:拌合物坍落度不低于160mm 的混凝土。

坍落度等级划分为5个等级。

等级 坍落度(mm )S1 10~40S2 50~90S3 100~150S4 160~210S5 ≥2202.1.6 抗渗混凝土:抗渗等级不低于P6的混凝土。

2.1.7 抗冻混凝土:抗冻等级不低于F50的混凝土。

普通混凝土配合比设计规程JGJ_55-2011_J64-2011

普通混凝土配合比设计规程JGJ_55-2011_J64-2011

3 基本规定(修订前的规定)
环境条件 最大水灰比 素砼 钢砼 预砼 最小水泥用量 素砼 钢砼 预砼
一 二a
二b 三
—— 0.70
0.55 0.50
0.65 0.60 0.60 0.60
0.55 0.55 Leabharlann .50 0.50200 225
250 300
260 280
280 300
300 300
300 300
2.1.11 胶凝材料:混凝土中水泥和矿物掺合料的总 称。 2.1.12 胶凝材料用量:混凝土中水泥用量和矿物掺 合料用量之和。 (胶凝材料和胶凝材料用量的术语和定义在混凝土 工程技术领域已被广泛接受) 2.1.13 水胶比:混凝土中用水量与胶凝材料用量的 质量比。(代替水灰比) 2.1.14 矿物掺合料掺量:矿物掺合料用量占胶凝材 料用量的质量百分比。 2.1.15 外加剂掺量:外加剂用量相对于胶凝材料用 量的质量百分比。 (11~15是新组建的术语和定义)
2 术语、符号
2.1.10大体积混凝土:体积较大的、可能由胶 凝材料水化热引起的温度应力导致有害裂 缝的结构混凝土。 • (大体积混凝土也可以定义为,混凝土结 构物实体最小几何尺寸不小于1m的大体量
混凝土,或预计会因混凝土中胶凝材料水 化引起的温度变化和收缩而导致有害裂缝 产生的混凝土。)
2 术语、符号
3 基本规定(水溶性氯离子最大含量)
3.0.6 混凝土拌合物中水溶性氯离子最大含量应符 合表3.0.6的要求。混凝土拌合物中水溶性氯离子 含量应按照现行行业标准《水运工程混凝土试验 规程》JTJ 270中混凝土拌合物中氯离子含量的快 速测定方法进行测定。 • 按环境条件影响氯离子引起钢锈的程度简明地分 为四类,并规定了各类环境条件下的混凝土中氯 离子最大含量。 • 采用测定混凝土拌合物中氯离子的方法,与测试 硬化后混凝土中氯离子的方法相比,时间大大缩 短,有利于配合比设计和控制。 • 表3.0.6中的氯离子含量系相对混凝土中水泥用量 的百分比,与控制氯离子相对混凝土中胶凝材料 用量的百分比相比,偏于安全。

《普通混凝土配合比设计规程》JGJ55-2011

《普通混凝土配合比设计规程》JGJ55-2011
(胶凝材料、胶凝材料用量的术语和定义在混凝土工程 技术领域已被普遍接受。 )
2.1.13 水胶比 water-binder ratio 混凝土中用水量与胶凝材料用量的质量比。
(国内外已经普遍采用水胶比取代水灰比。 ) 2.1.14 矿物掺合料掺量 percentage of mineral admixture
目次
1 总则 2 术语、符号
2.1 术语 2.2 符号 3 基本规定 4 混凝土配制强度的确定 5 混凝土配合比计算 5.1水胶比 5.2用水量和外加剂用量 5.3胶凝材料、矿物掺合料和水泥用量 5.4砂率 5.5粗、细骨料用量 6混凝土配合比的试配、调整和确定 6.1试配 6.2配合比的调整与确定 7有特殊要求的混凝土配合比设计 7.1抗渗混凝土 7.2抗冻混凝土 7.3高强混凝土 7.4泵送混凝土 7.5大体积混凝土
本规程由我部标准定额研究所组织中国建筑工业出版 社出版发行。
中华人民共和国住房和城乡建设部 2011年4月22日
标准修订背景
混凝土作为一种用量最大范围最广的建 筑结构材料,已经获得广泛的应用和发 展,各种混凝土技术也得到了空前的发展。 混凝土技术正在向着提高强度、耐久性、 工作性和节省资源、能源的绿色高性能混 凝土方向发展,混凝土标准规范是对这种 技术进步和发展的集中体现。
(用维勃时间(s)可以合理表示坍落度很小甚至为零的混凝 土规 定,维勃时间等级划分应符合表2.1.2的规定。 )
2 术语、符号
2.1.3 塑性混凝土 plastic concrete 拌合物坍落度为10mm~90mm的混凝土。
2.1.4 流动性混凝土 pasty concrete 拌合物坍落度为100mm~150mm的混凝土。
(强调混凝土配合比设计应满足耐久性能要求这是本次标准修订的重点之一。 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《普通混凝土配合比设计规程》(JGJ 55-2011)简介配合比设计是混凝土设计、生产和应用中的最重要环节之一,配合比设计成功与否,决定了混凝土的技术先进性、成本可控性和发展可持续性等问题。

早在上世纪70年代末、针对原建设部下达的“使用新标准水泥配制混凝土”研究课题,中国建筑科学研究院组织有关单位进行了混凝土配制技术研究,该研究成果经建设部组织全国性验证,对科学合理地在全国范围内解决水泥新标准使用起到重要作用。

为统一我国混凝土配制的方法和步骤,并为混凝土配合比设计者提供基础技术参数,在上述研究成果基础上,中国建筑科学研究院主编了《普通混凝土配合比设计规程》(JGJ55)(以下简称《规程》)。

为配合比设计者提供了易于操作、程序简单的快捷配制技术。

自《规程》颁布实施以来,被广泛用于基础建设、轨道交通、市政环卫、工业与民用建筑、海港工程、铁路工程等领域。

对我国混凝土的推广、应用和发展起到基础性作用。

随着现代混凝土技术的快速发展,配合比设计面临新的挑战,例如:以耐久性能为设计指标、矿物掺合料的种类和掺量不断增多、普遍应用外加剂、特殊性能要求增多等。

因此,《普通混凝土配合比设计规程》(JGJ55)需修订完善。

经中国建筑科学研究院申请,《规程》被列入原建设部《2005年度工程建设标准规范制订、修订计划(第一批)》,并于2010年11月完成编制和通过审查。

住房和城乡建设部于2011年4月22日发布公告,批准本《规程》为行业标准,编号为JGJ55-2011,自2011年12月1日起实施。

其中,第6.2.5条为强制性条文。

原《普通混凝土配合比设计规程》(JGJ55-2000)同时废止。

2 主要修订内容《规程》共分7章,主要内容如下:(1)总则提出《规程》的编制目的和适用范围。

《规程》适用于工业与民用建筑及一般构筑物所采用的普通混凝土配合比设计。

(2)术语、符号增加了胶凝材料、胶凝材料用量、水胶比、矿物掺合料掺量和外加剂掺量等5个术语,上述术语在混凝土工程技术领域已被普遍接受。

修订了相关符号,使计算过程更加清晰。

(3)基本规定依据我国混凝土实际应用情况与技术条件,本《规程》新增“基本规定”一章,详细规定了混凝土配合比设计原则、原材料要求、最大水胶比、矿物掺合料限值、氯离子最大含量、最小含气量和最大碱含量等技术指标。

本章重点强调混凝土配合比设计应满足耐久性能要求,即混凝土配合比设计不仅应满足配制强度要求,还应满足施工性能、其他力学性能、长期性能和耐久性能的要求,并规定配合比设计所用原材料应采用工程实际使用的原材料。

宜采用干燥状态骨料进行配合比设计,也可选用饱和面干状态骨料,两者均为过程控制的一种手段。

混凝土的最大水胶比应符合现行国家标准《混凝土结构设计规范》(GB 50010)的规定。

水胶比和最小胶凝材料用量应符合表1的规定。

表1 混凝土的最小胶凝材料用量因现行国家标准《混凝土结构设计规范》(GB 50010)规定了环境类别,故本表不再体现。

本次修订系统解决了矿物掺合料应用技术中的掺量问题。

矿物掺合料在混凝土中的掺量应通过试验确定。

钢筋混凝土和预应力钢筋混凝土中矿物掺合料最大掺量宜分别符合表2和表3的规定。

表2 钢筋混凝土中矿物掺合料最大掺表3 预应力钢筋混凝土中矿物掺合料最大掺量使用表2和表3时应当注意以下几点:1)必须结合混凝土耐久性能、拌合物性能和力学性能要求来确定矿物掺合料掺量;2)采用其他通用硅酸盐水泥时,宜将水泥混合材掺量20%以上的混合材量计入矿物掺合料;3)复合掺合料各组分的掺量不宜超过单掺时的最大掺量,因此大掺量时宜复合使用;4)在混合使用两种或两种以上矿物掺合料时,矿物掺合料总掺量应符合表中复合掺合料的规定。

5)当矿物掺合料掺量突破表中最大掺量,经全面试验验证混凝土性能满足结构安全性和耐久性要求,也是可行的。

(4)混凝土配制强度的确定混凝土配制强度应具有充分的保证率。

对于强度等级小于C60的混凝土,实践证明传统的计算公式是合理的,仍然沿用传统的计算公式;对于高强混凝土,传统的计算公式已经不能满足要求,本次修订增加了高强混凝土试配强度计算公式:fcu,0 ≥ 1.15 fcu,k (1)公式1早已出现于现行行业标准《公路桥涵施工技术规范》(JTJ 041)中,并在公路桥涵和建筑工程等实际工程中得到检验。

同时,根据调研结果并结合混凝土实际生产水平,本《规程》对普通混凝土试配强度计算中的强度标准差进行了适当调高。

当生产企业具有规定数量的强度统计资料时,计算的混凝土强度标准差应符合下述规定:当混凝土强度等级不大于C30且混凝土强度标准差计算值不小于3.0MPa时,应按公式计算结果取值;当混凝土强度标准差计算值小于3.0MPa时,混凝土强度标准差应取3.0MPa;当混凝土强度等级大于C30且不大于C60、混凝土强度标准差计算值不小于4.0MPa时,应按式公式计算结果取值;当混凝土强度标准差计算值小于4.0MPa时,混凝土强度标准差应取4.0MPa;当生产企业没有规定要求的强度资料时,其强度标准差可按表4取值。

表4 标准差σ值(MPa)(5)混凝土配合比参数和计算本章规定了水胶比、用水量、外加剂用量、胶凝材料用量、矿物掺合料用量、水泥用量、砂率、粗骨料和细骨料用量等计算方法。

在水胶比计算公式中,采用胶凝材料28d胶砂抗压强度来计算水胶比,解决了掺矿物掺合料的混凝土水胶比计算问题,符合目前混凝土配制和生产的实际情况。

水胶比计算公式如下:上公式中的系数aa和ab宜通过试验建立的水胶比与混凝土强度关系式来确定,当不具备试验统计资料时,可按表5选用。

表5 系数aa、ab 选用表表5中系数aa和ab值经大量试验数据回归分析得出。

本次验证试验覆盖全国代表性的主要地区和城市,十多家单位参与试验,试验结果规律性良好。

此外,经过全国性大量试验验证,给出了粉煤灰影响系数cf和粒化高炉矿渣粉影响系数cs,如表6所示,可用于推算胶凝材料28d胶砂抗压强度值。

由于矿物掺合料影响系数易通过胶砂强度试验测定,故建议有条件的单位可自己测定矿物掺合料影响系数的实测值。

表6 粉煤灰影响系数cf 和粒化高炉矿渣粉影响系数cs选用表6时应当注意以下几点:1)采用Ⅰ级、II级粉煤灰宜取上限值。

2)采用S75级粒化高炉矿渣粉宜取下限值,采用S95级粒化高炉矿渣粉宜取上限值,采用S105级粒化高炉矿渣粉可取上限值加0.05。

3)当超出表中的掺量时,粉煤灰和粒化高炉矿渣粉影响系数应经试验确定。

当计算水胶比缺乏水泥28d胶砂抗压强度实测值时,可根据表7给出的水泥强度等级值的富余系数,推算水泥28d胶砂抗压强度值。

表7 水泥强度等级值的富余系数cc应当指出,尽管目前我国水泥多数采用新型干法窑生产,质量控制水平较高,整体控制的强度富余系数也高,但是实际混凝土生产时应注意对中小水泥企业的产品质量检测。

(6)混凝土配合比的试配、调整与确定试配是配合比设计的重要环节之一,也是极易忽略的环节。

应通过试配工作调整拌合物性能并尽量节约胶凝材料,以满足混凝土施工要求和经济性要求。

试配工作还包括检验计算水胶比是否合适,并根据抗压强度等试验数据对试拌配合比进行调整和校正;经耐久性试验确定并满足设计要求时,方可确定为设计配合比。

应当重视本《规程》增加的强制性条文“对耐久性有设计要求的混凝土应进行相关耐久性试验验证”。

(7)有特殊要求的混凝土配合比设计本章规定了抗渗混凝土、抗冻混凝土、高强混凝土、泵送混凝土和大体积混凝土配合比设计的原材料要求、配合比参数及其他技术规定。

针对抗冻混凝土配合比设计,本《规程》规定其最大水胶比和最小胶凝材料用量应符合表8的规定;复合矿物掺合料掺量宜符合表9的规定;其他矿物掺合料掺量宜符合表2的规定。

表8 最大水胶比和最小胶凝材料用量表9 复合矿物掺合料最大掺量从表8中可知,本次修订增加了最小胶凝材料用量的规定,这是因为研究结果表明胶凝材料用量同样是影响混凝土抗冻性能的重要因素。

从表9中可知,由于抗冻混凝土需要更高的早期强度,所以其复合矿物掺合料最大掺量宜适当降低。

当采用其他水泥时,混合材的计算规则与普通混凝土相同。

本《规程》重点修订了高强混凝土配合比设计。

近年来,国内高强混凝土研究成果丰富,工程实例较多。

依据系统研究成果和工程应用经验,本《规程》指导性地给出了配制高强混凝土所需水胶比、胶凝材料用量和砂率等参数取值范围,如表10所示。

表10 水胶比、胶凝材料用量和砂率此外,本《规程》还规定:外加剂和矿物掺合料的品种、掺量,应通过试配确定;矿物掺合料掺量宜为25%~40%;硅灰掺量不宜大于10%;水泥用量不宜大于500kg/m3;抗压强度测定宜采用标准尺寸试件;配合比确定后尚应进行不少于三盘的重复试验等。

针对大体积混凝土配合比设计,本《规程》专门规定了胶凝材料的3d和7d 水化热要求,并规定在配合比试配和调整时,控制混凝土绝热温升不宜大于50℃。

3 主要特点本《规程》主要特点可概括为以下几点:(1)《规程》是一部规定配合比设计方法的应用技术规程,适用于常规普通混凝土、高强混凝土、抗渗混凝土、抗冻混凝土、大体积混凝土和泵送混凝土等。

(2)《规程》完善了配合比设计的耐久性能要求,并列有强制性条文。

(3)《规程》规定了以胶凝材料胶砂强度计算水胶比的计算公式,并解决了掺加矿物掺合料情况下的配合比设计等实际应用问题。

看似短暂的一生,其间的色彩,波折,却是纷呈的,深不可测的,所以才有人拼尽一切阻隔,在路漫漫中,上下而求索。

不管平庸也好,风生水起也罢,其实谁的人生不是顶着风雨在前行,都在用平凡的身体支撑着一个看不见的灵魂?有时候行到风不推身体也飘摇,雨不流泪水也湿过衣衫,而让我们始终坚持的除了一份信念:风雨总会过去,晴朗总会伴着彩虹挂在天边。

一定还有比信念还牢固的东西支撑着我们,那就是流动在心底的爱,一份拳拳之爱,或许卑微,却是我们执著存在这个世界上,可以跨越任何险阻的勇气、力量和最美丽的理由。

人生的途程积累了一定的距离,每个人都成了哲学家。

因为生活会让我们慢慢懂得:低头是为了抬头,行走是为了更好地休憩,不阅尽沧桑怎会大度,没惯见成败怎会宠辱不惊,不历经纠结怎会活得舒展?看清才会原谅,有时的无动于衷,不是不屑,不是麻木,而是不值得。

有时痛苦,不是怕失去,不是没得到,而是因为自私,不肯放手,不是自己的,也不想给。

人生到最后,有的人把自己活成了富翁,有的人却一无所有。

梭罗说:一个人富裕程度如何,要看他能放下多少东西。

大千世界,我们总是想要的太多,以为自己得到的太少。

是啊,一个贫穷的人怎么会轻易舍得抛下自己的所有呢?到了一定年龄,才会明白一个人对物质生活的过多贪求,反而让自己的心灵变得愈加贫穷。

人生到了最后,其实活出的只是一个灵魂的高度,清风明月,花香草色,便是一袖山水,满目清澈。

相关文档
最新文档