合成氨工艺的发展历史
合成氨工艺的发展历史PPT课件

0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
二、氨的分离
三、变换 1、化学反应与平衡转化率
变换的目的将一氧化碳变成氢。
CO H2O CO2 H2
2、工艺条件的优化 (1)、催化剂:
铜催化剂:氧化铜、氧化锌、氧化铝烧结用氢还原 活性温度为180-250度,为低变催化剂。 铁铬催化剂:氧化铁、氧化铬,活性温度为350-450 度,为中变催化剂。 (2)、原料气组成: 使水蒸气过量,提高转化率。 200度时,CO与H2O体积比由1:1提高到1:6时转 化率由93.8%提高到99.9%。
3、甲烷化: 除去热钾减法处理后气体中的一氧化碳、二氧化碳 和氧气。 “甲烷化”为广泛使用的初步净化方法。
CO 3H2 CH4 H2O 206kJ mol 1 CO2 4H2 CH4 2H2O 165kJ mol 1
镍做催化剂,在280-380度的条件下进行。 反应为简单绝热反应器。 甲烷化处理后的气体中一氧化碳、二氧化碳、水等总 量在10毫克每立方米以下。
造气与送风的五个阶段 间歇操作: 第一阶段为送风发热, 后四个阶段为造气。 1、空气吹风: 送风发热、提高炉温
2、上吹造气: 将水蒸气和炉气 从炉底吹入生产 半水煤气经废热 锅炉、洗涤塔送 至气柜。
3、下吹造气: 上吹后炉底温度降 低,炉顶温度尚 高,改为下吹造 气。先从炉顶向下 吹几秒水蒸气,防 止直接吹空气与煤 气相遇爆炸。得半 水煤气经废热锅 炉、洗涤塔送至气 柜。
工业合成氨发展史

氨是一种制造化肥和工业用途众多的基本化工原料。
随着农业发展和军工生产的需要,20世纪初先后开发并实现了氨的工业生产。
从氰化法演变到合成氨法以后,近30年来,原料不断改变,余热逐渐利用,单系列装置迅速扩大,推动了化学工业有关部门的发展以及化学工程进一步形成,也带动了燃料化工中新的能源和资源的开发。
早期氰化法1898年,德国 A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨:Ca(CN)2+3H2O─→2NH3+CaCO31905年,德国氮肥公司建成世界上第一座生产氰氨化钙的工厂,这种制氨方法称为氰化法。
第一次世界大战期间,德国、美国主要采用该法生产氨,满足了军工生产的需要。
氰化法固定每吨氮的总能耗为153GJ,由于成本过高,到30年代被淘汰。
合成氨法利用氮气与氢气直接合成氨的工业生产曾是一个较难的课题。
合成氨从实验室研究到实现工业生产,大约经历了150年。
直至1909年,德国物理化学家F.哈伯用锇催化剂将氮气与氢气在17.5~20MPa和500~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。
但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。
为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。
这一工艺被德国巴登苯胺纯碱公司所接受和采用。
由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。
该公司在德国化学家A.米塔斯提议下,于1912年用2500种不同的催化剂进行了6500次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。
而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h以及合成氨用氮氢混合气的制造方法,都被该公司的工程师 C.博施所解决。
此时,德国国王威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9日开始运转,氨产量很快达到了设计能力。
工业合成氨

• 环保政策的实施对工业合成氨产业的结构调整和转型升
级具有积极推动作用
05
工业合成氨的技术创新与发展趋势
工业合成氨的技术创新方向
提高工业合成氨的环保性能
• 采用环保性能较好的生产工艺,降低环境污染
• 采用先进的污染治理技术,降低污染物排放
提高工业合成氨的生产效率
• 优化生产工艺,降低能源消耗,提高设备性能
需求将继续保持增长
• 机遇主要来自技术创新、市场需求等方面的推动
• 工业合成氨产业将通过技术创新、结构调整等措施,提
高产业竞争力
CREATE TOGETHER
谢谢观看
THANK YOU FOR WATCHING
DOCS
20世纪后期,工业合
成氨产业在全球范围内
得到了快速发展
• 通过高温、高压条件下的氮气与
• 工业合成氨成为当时化学工业的
• 新建的生产装置不断涌现,产能
大
• 这一发明为工业合成氨的大规模
• 随着技术的不断进步,工业合成
• 工业合成氨的生产技术不断创新,
生产奠定了基础
氨的生产成本逐渐降低
工业合成氨产业面临一定的挑战和机遇
• 挑战主要来自环境保护、能源消耗等方面的压力
• 机遇主要来自技术创新、市场需求等方面的推动
⌛️
02
工业合成氨的生产方法及原料
工业合成氨的主要生产方法
传统的工业合成氨生产方法
改进的工业合成氨生产方法
• 采用哈伯-博施工艺,通过高温、高压条件下的氮气与氢
• 采用甲醇制氨、天然气制氨等工艺,降低生产过程中的
• 反应器是工业合成氨生产的核心设备,用于氮气与氢气的反应
过程
合成氨催化技术与工艺发展探究

合成氨催化技术与工艺发展探究合成氨催化技术是一种将氮气与氢气在催化剂的作用下转化成氨的技术。
氨是一种重要的工业原料,广泛用于制造肥料、合成塑料和制药等领域。
本文将探究合成氨催化技术的发展历程和工艺特点。
合成氨催化技术最早在19世纪的德国被发现。
当时的研究者们试图通过电解氨水来制备氨,但是效率很低。
直到20世纪初,德国化学家弗里茨·哈伯和卡尔·博丁发现了铁催化剂对于氨合成具有良好的催化性能。
他们还发现高温和高压下反应速率更快。
这一发现标志着合成氨催化技术的正式诞生。
哈伯-博丁制氨方法的工艺条件非常苛刻,需要高温高压下进行反应。
这不仅增加了能源消耗,还使得设备的成本和维护费用很高。
随着工业的发展,人们开始探究新的催化剂和工艺条件。
20世纪40年代,英国科学家弗兰克-卡明斯和乔斯林-罗素发现钼催化剂在较低温度下仍能有效催化氨合成反应。
这一发现对于合成氨工艺的发展非常重要。
随后,研究人员又发现了一种由五金属(钒、镍、钼、钴、铁)组成的催化剂,可以在更低的温度下进行合成氨反应。
这种催化剂被称为五金属催化剂,成为了目前合成氨工艺中广泛使用的催化剂之一。
除了催化剂的发展,工艺条件的优化也是合成氨工艺发展的重要方向。
随着对工艺条件的不断研究和改进,人们发现调整催化剂与反应物的比例可以改善合成氨的产率和选择性。
还可以通过增加循环流化床反应器中催化剂的添加量来提高反应速率,减少反应时间,提高设备的产能。
当前,合成氨催化技术正处于新的发展阶段。
随着对催化剂的进一步研究,人们已经开发出了一系列更高效、更稳定的催化剂,如复合钼钒催化剂和钢铁废催化剂等。
这些新型催化剂不仅能够降低工艺温度和压力,还能够提高氨的产率和选择性。
随着环境保护意识的增强,人们对合成氨工艺的环境友好性要求也越来越高。
研究人员开始探索新的工艺路线,如非常规氨合成工艺、光催化合成氨工艺等,以减少或消除对环境的污染。
合成氨催化技术是一个不断发展的领域。
合成氨催化剂

为3d64s2, 钌原子的电子构型为4d75s1, 钌 原子的次外层d 电子, 不仅比铁原子上的 多, 而且离核更远, 受内层电子的屏蔽更 大, 也就是说, 钌原子上的d 电子受原子核 的束缚更小。 在CO 和金属的相互作用中, B lyhoder 设 想, 从CO 分子的5R轨道上提供部分电子 到未满的金属d 轨道, 同时, 从d 轨道上反 馈电子至CO 的2P3 (反键) 轨道, 从而导致 了CO键的削弱。N2 与CO 是等电子分子, 同样的道理, Ru 对N - N 键也有类似的作 用。
的研究,发现对氨合成有活性的一系列金 属为Os,U,Fe,Mo,Mn,W等,其中一 铁为主体的铁系催化剂,因其价廉易得、 活性良好、使用寿命长等特点,在合成氨 工艺中被广泛使用。 大多数铁系催化剂都是用经过精选 的天然磁铁矿通过熔融法制备的, 习惯称熔铁催化剂。
铁系催化剂活性组分为金属铁。
未还原前为FeO和Fe2O3,其 中FeO质量分数24%~38%,亚 铁离子与铁离子的比值约为 0.5,一般在0.47~0.57之间, 成分可视为Fe3O4,具有尖晶 石结构。
各种钌系氨合成催化剂的动力学参数
表中钌系氨合成催化剂在动力学上可分为三类:
(A ) 无载体的催化剂(Ru粉, Ru2CsOH ) ; (B)无 促进剂的负载型催化剂(Ru/Al2O3, Ru/MgO ) ;(C) 氢氧化铯促进的负载型催化剂 (Ru-CsOH/Al2O3, Ru-CsOH/MgO )。
有学者分别以氯化镍为原料,
氢氧化钠为沉淀剂和以硝酸 镍为原料,碳酸氢铵为沉淀剂, 用液相化学沉淀法制备出了 18 nm和7 nm的NiO微粒。
3.5 纳米氧化锌
ZnO是合成氨工业中烃类蒸气转 化脱硫工序和低变(防护)工序催化 剂的活性组分。
合成氨发展历程

我国的合成氨工业起步于20世纪30年代。
一个是由著名爱国实业家范旭东先生创办的南京永利化学工业公司铔厂——永利宁厂,现南京化学工业公司的前身;另一个是日本占领东北后在大连开办的满洲化学工业株式会社。
其最高年产量不过50KT。
另外,上海吴蕴初的天原还有一套电解水制氢生产合成氨、硝酸的小型车间(32年吴蕴初访问Du pont购买的一套日产4t液氨的合成氨中试装置)。
整个合成氨生产从业人员约3400人,技术人员150人。
新中国成立以后,经过数十年的努力,己形成了遍及全国的、完整的合成氨工业布局。
我国拥有多种原料、不同流程的大、中、小型合成氨厂1000多个。
1999年我国合成氨产量为34.5Mt,列世界第一。
解放后,我国化学工业的发展是从建设中型氮肥厂开始的。
经历了以下几个阶段:①恢复老厂,建设新厂(新中国成立—— 1956年) 建国之初,在恢复与扩建老厂的同时,从前苏联引进了三套以煤为原料、年产5万吨合成氨配9万吨硝铵装置,创建了吉化、兰州、太原三大化工基地。
②自力更生发展中型氮肥厂(1956年—— 1965年) 56年自行设计、制造了7.5万吨合成氨系统,以川化的创建为标志。
到65年中氮投产了15家。
20世纪60年代随着石油、天然气资源的开采,64年又从英国引进了一套以天然气为原料的10万吨合成氨装置(即泸天化)。
③小氮肥的迅猛发展(1965年——1975年) 为了适应农业发展的迫切需要,58年由著名化工专家侯德榜提出了碳化法合成氨制取碳酸氢铵的新工艺。
在经历了技术关、经济关后,从20世纪60年代开始在全国各地(除西藏外)建设了一大批小型氨厂,鼎盛的1979年时最多达1540座氨厂。
④大型氮肥厂的引进和发展(1975年——至今) 20世纪70年代是世界合成氨工业大发展时期。
由于大型合成氨的优越性,1972年我国作出了引进大型合成氨装置的决定。
73年开始,首批引进了13套年产30万吨大型合成氨成套装置(其中10套为天然气为原料,建在川化、泸天化、云南、贵州等地)。
人工合成氨发展简史

人工合成氨发展简史蔡 狄 李 冬 贺 竞 李 佳一、怎样固氮——问题浮出水面氨(Amonia) ,分子式 NH3,1754 年由英国化学家普里斯特利(J.Joseph Priestley)加热 氯化铵和石灰石时发现。
1784 年,法国化学家贝托雷(C.L.Berthollet)确定了氨是由氮和氢 组成的。
从那以后很长一段时间,氨的主要来源是氮化物,而氮化物的主要来源是自然界中 的硝石矿产。
19 世纪以来,人类步入了现代化的历程。
随着农业的发展,氮肥的需求量在不断提高; 同时随着工业的突飞猛进,炸药的需求量也在迅速增长。
1809 年,在智利发现了一个很大 的硝酸钠矿产地;但是面对人类不断膨胀的需求,自然界的生物和矿产资源毕竟有限。
然而 全世界无论何处,大气的五分之四都是氮,如果有人能学会大规模地、廉价地把单质的氮转 化为化合物的形式,那么,氮是取之不尽、用之不竭的。
因此将空气中丰富的氮固定下来并 转化为可被利用的形式,成为一项受到众多科学家注目和关切的重大课题,而合成氨,作为 固氮的一种重要形式,也变成了 19 至 20 世纪化学家们所面临的突出问题之一。
二、历经磨难,终成正果——从实验室到工业生产1.艰难的探索N2+3H2=2NH3合成氨的化学原理, 写出来, 不过这样一个方程式; 但就是这样一个简单的化学方程式, 从实验室研究到最终成功、实现工业生产,却经历了约 150 年的艰难探索。
在此期间,曾有 不少著名的化学家踏上了合成氨的研究之路,但他们的最终结局却都是无功而返。
1795 年,曾有人试图在常压下进行氨合成,后来又有人在 50 个大气压下试验,结果都 失败了。
19 世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可 逆的,增加压力将使反应推向生成氨的方向,提高温度会将反应移向相反的方向,然而温度 过低又使反应速度过小; 催化剂对反应将产生重要影响。
这实际上就为合成氨的试验提供了 理论指导。
合成氨工艺简介

02
随着科技的不断进步,合成氨 技术将不断优化和改进,提高 生产效率和降低成本。
03
合成氨技术的未来发展趋势将 更加注重环保、节能和可持续 性,以适应人类社会发展的需 要。
06
相关问题和探讨
节能减排技术在合成氨工艺中的应用
节能技术
节能技术贯穿于合成氨工艺的全过程,包括原料的预处理、反应条件的优化、 能源回收等环节。通过采用先进的节能技术,可以显著降低合成氨工艺的能耗 ,提高能源利用效率。
合成氨工艺简介
汇报人: 日期:
目录
• 合成氨的历史和发展 • 合成氨工艺流程 • 合成氨工艺的原理和特点 • 合成氨工艺的操作和维护 • 合成氨的应用和前景 • 相关问题和探讨
01
合成氨的历史和发展
合成氨的发明历程
1805年,戴维(Humphry Davy)将氢气通过金属进行反 应实验。
1909年,哈勃(Fritz Haber)发明了工业合成氨的方法。
合成氨工艺的操作和维护
工艺参数的监控和调节
温度监控
合成氨工艺的反应温度是关键参数之一,需要 实时监控并调节。
压力监控
反应压力也是关键参数,需要精确控制以获得 最佳的反应效果。
气体组成分析
分析反应气体组成,判断反应是否进行完全,同时根据分析结果调整工艺参数 。
设备的维护和保养
1 2
设备清洁
定期对设备进行清洁,以防止灰尘和杂质对设备 性能的影响。
催化剂的活性
催化剂的活性可以通过温度、压力、气体组成等因素来调节。
合成氨工艺的特点和优缺点
工艺流程
合成氨工艺通常包括天然气或煤的气化、净化、压缩、合成等环 节。
优点
合成氨工艺具有原料来源广泛、工艺成熟、产量大等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 粗原料气变换: CO H2O CO2 H2
变换气以氢气、氮气、二氧化碳为主,其中氢分子 与氮分子之比为:3:1 除杂净化得到合乎要求的氢氮混合气。
三、氨合成原则流程和各化学反应过程相互关系
氨合成这一步最困难,工艺条件要求也最严格,是主 要化学反应过程,应首先进行优化。
§13-2 氨合成的热力学基础
第十三章 合成氨工艺
• 主要内容: 1、氨合成概述 2、氨合成的热力学基础 3、氨合成动力学 4、原料气的生产与净化 5、氨生产全流程 6、合成氨生产发展趋势 7、尿素的合成
§13-1 概述
一、合成氨的重要性 生产氮肥、硝酸盐、胺、纤维、染料等。 二、原料路线 直接原料:氢和氮 以下方法获得粗原料气:氢气、氮气、一氧化碳、二氧化碳
反应控制阶段取决于反应条件(温度、催化剂颗粒的大小)
温度一定:大颗粒为内扩散控制,小颗粒为化学动力学控制。
颗粒一定:低温为化学动力学控制,高温为内扩散控制。
扩散控制时:yNH3 kp k : 扩散系数;p:总压力 化学动力学控制:
远离平衡时:r
kpN0.25
p0.5 H2
接近平衡时:r k1 pN2
p1.5 H2
pNH3
k2
pNH3 p1.5
H2
k1、k2:正逆反应速度常数;
不同粒度催化剂、压力30MPa、空速30000h-1时,不同 温度下的反应结果:
低温时: 化学动力学控 制,氨含量不受 颗粒大小影响; 高温时:内扩散 控制,小颗粒催 化剂效果较好。
§13-3 氨的合成与分离
一、工艺条件的优化 1、温度:400~510度(可逆放热反应,最快反
C H2O CO H2 CnHm nH2O nCO (0.5m n)H2 2C O2 3.76N2 2CO 3.76N2 CnHm (n 0.25m)O2 3.76(n 0.25m)N2 nCO 0.5mH2O 3.76(n 0.25m)N2
径的30%~70%。
• 径向塔的优点: 1、阻力小:通气面积大、催化剂床层薄;2、空速 高;3、催化剂活性高
四、合成与分离循环流程
一次分离流程只进行压缩和冷却液化分离。适于合成压力较低 (约10-15MPa)出塔气中氨%<12%
二次分离流程适用于压力较高(约30MPa)的场合。 处理过程中出塔气氨%≈15%,第一次分离是在水冷的条件下 使近一半的氨液化分离出去,气体中剩余的氨%=8%经压缩机 升压和氨冷在-5度的条件下进行二次分离。
§13-5 原料气的生产与净化
一、生产原料气的原料 天然气、油田气占18.6%、轻油6.3%、重油8.1%、煤 和焦65%、焦炉气1% 原料气的生产分两步:造气和变换
二、以煤焦为原料的造气过程及其优化
2C O2 3.76N2 2CO 3.76N2 248.7kJ mol1 5C 5H2O 5CO 5H2 590.5kJ mol1 二者合并: 7C 3.76N2 5H2O 7CO 3.76N2 5H2 341.8kJ mol1
§13-3 氨合成动力学
一、催化剂 铁催化剂: Fe2O354~68%、FeO29~36%、Al2O3 2~4% K2O0.5~0.8%、CaO0.7~2.5% 在加热条件下原料气将铁还原: (Fe2O3 ,FeO) +H2 = Fe+H2O
A10型催化剂:活化能约170KJ/mol,起燃温度370 度,耐热温度510度,活性最高时的温度450度左右,粒 径2.2~13mm.
一、氨合成反应与反应热
0.5N2 1.5H2 NH3
二、反应平衡常数
K f
f NH3
f f 0.5 1.5
N2
H2
p NH3
K K 0.5 1.5
p p N2
H2
NH3
0.5 1.5
N2
H2
p
f : 逸度;:逸度系数
K f:与压力无关仅与温度有关。
二、反应动力学
1 :气体向催化剂表面(内、外)扩散 2:气体在催化剂表面发生活性吸附
N2 (气) 2N (吸附) H2 (气) 2H (吸附) 3:吸附的氮、氢发生反应生成氨 N (吸附) H (吸附) NH (吸附) NH (吸附) H (吸附) NH2 (吸附) NH2 (吸附) H (吸附) NH3(吸附) 4:生成的氨从催化剂表面解吸 NH3(吸附) NH3(气) 5:解吸的氨从催化剂表面向气流主体扩散
三、影响平衡时氨浓度的因素
pK p
R1.5 (1 R)2
(1
y y
yi )2
p :总压力;
R : yH2 yN2
y、yi:NH3、惰性气体的摩尔分数
1、氢氮比R:R=3(此时y最大) 2、温度:温度越低,Kp越大。低温催化剂为发展方向。 3、压力:压力越大,平衡浓度越大。 4、惰性气体含量:有较大的影响。
二、氨的分离
方法:降低温度使氨液化通过气液分离器使液氨与
其他气体分离。
log
y
4.1856
1.9061 p0.5
1099.5 T
y : 未液化的气体中氨的含量
四 段 冷 激 轴 向 合 成 塔
• 原料气→主进气口→沿环 隙至顶部→换热器管间预 热420度,与冷激气混合 温度降为410度→第一段 催化剂床层,温度由410 上升到496度再与冷激气 混合降至430度,此时 NH3%为6.9%→二段、 三段、四段→中心管→换 热器管内→出塔 (130~200度)
实践:32MPa、450度、催化剂粒度1.2~2.5mm 空速24000(1/h)、R=2.5出口氨浓度最大
采取的方法:新鲜原料气比为3,混合后的循环气在 合
成塔入口的比约为2.8。 5、进塔气中的惰性气体含量:一般≤2% 6、催化剂颗粒:反应初期:温度440~470度粒径
0.6~3.7mm;反应后期:温度420~440度粒径 8~16mm
应速率时的反应温度随转化率的提高而降低)
2、压力:加压有利于提高转化率。 20世纪:10~15MPa; 近年:3~4MPa
3、空间速度: 气固相催化反应空间速度越大,反应时间越短,
生产强度越大。
4、氢氮比:氮的活性吸附为合成反应的控制阶段, 氮的含量对反应速率影响较大,略低于3可加快反应 速率。