12算法初步与统计

合集下载

数学一轮复习第十章算法初步统计与统计案例10.1算法与算法框图学案理

数学一轮复习第十章算法初步统计与统计案例10.1算法与算法框图学案理

第十章算法初步、统计与统计案例10。

1算法与算法框图必备知识预案自诊知识梳理1.算法的含义在解决某些问题时,需要设计出一系列可操作或可计算的,通过实施这些来解决问题,通常把这些称为解决这些问题的算法。

2。

算法框图在算法设计中,算法框图可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:、、。

3.三种基本逻辑结构(1)顺序结构:按照步骤的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为(2)选择结构:需要,判断的结果决定后面的步骤,像这样的结构通常称作选择结构。

其结构形式为(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为.其基本模式为4.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:、输出语句、、条件语句和.5。

赋值语句(1)一般形式:变量=表达式。

(2)作用:将表达式所代表的值赋给变量。

6.条件语句(1)If—Then—Else语句的一般格式为:If条件Then语句1Else语句2End If(2)If—Then语句的一般格式是:If条件Then语句End If7.循环语句(1)For语句的一般格式:For循环变量=初始值To终值循环体Next(2)Do Loop语句的一般格式:Do循环体Loop While 条件为真考点自诊1.判断下列结论是否正确,正确的画“√",错误的画“×”.(1)一个算法框图一定包含顺序结构,但不一定包含选择结构和循环结构。

()(2)算法只能解决一个问题,不能重复使用。

()(3)选择结构的出口有两个,但在执行时,只有一个出口是有效的。

()(4)循环结构中给定条件不成立时,执行循环体,反复进行,直到条件成立为止。

()(5)输入框只能紧接开始框,输出框只能紧接结束框.()2。

某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2。

宜宾市初中、小学数学教师招聘考试专业知识考试大纲

宜宾市初中、小学数学教师招聘考试专业知识考试大纲

附件5宜宾市公开招聘初中数学教师专业科目考试大纲(试行)一、考试性质宜宾市初中新任教师公开招聘考试是符合招聘条件的考生参加的全市统一的选拔性考试。

考试结果将作为宜宾市初中新任教师公开招聘面试的依据。

招聘考试应从教师应有的专业素质和教育教学能力等方面进行全面考核,择优录取。

招聘考试应具有较高的信度、效度,必要的区分度和适当的难度。

二、考试目标与要求1.着重考查考生的数学专业基础知识、中学数学课程与教学论知识掌握情况,考查运用基本理论、知识与方法分析和解决有关中学数学教学问题的能力;是否具备从事中学数学教育、教学工作所必需的基本教学技能和持续发展自身专业素养的基本能力.2.数学专业基础知识的要求分为了解、理解、掌握三个层次.⑴了解:要求对所列知识的含义及其背景有初步的、感性的认识,知道这一知识内容是什么,并能在有关的问题中识别它。

⑵理解:要求对所列知识内容有较深刻的认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。

⑶掌握:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。

3。

基本能力包括思维能力、运算能力、空间想象能力、实践能力、创新能力.⑴思维能力:能对问题或资料进行观察、比较、分析、综合、抽象与概括;能用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。

⑵运算能力:能根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.⑶空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析图形元素及其相互关系;能对图形进行分解、组合与变换;能运用图形与图表等手段形象地揭示问题的本质。

⑷实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能运用相关的数学方法解决问题并加以验证;能运用数学语言正确地表述和说明.⑸创新能力:能选择有效的教学方法和手段,对教学信息、情境进行分析;能综合运用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出中学数学教学中的新问题,找到解决问题的途径、方法和手段,创造性地解决教学问题。

高一数学必修三教材全解

高一数学必修三教材全解

高一数学必修三教材全解一:必修3的主要内容与结构框架。

(1)主要内容。

本书的玉要内容是算法、统计和概率的基础知识和苯本思想,算法思想和统计思想也是货穿高中数学课程的重要的数学思想,(2)内容与误,全l5分为二章,共36课时.具体内容是:第一章算法初步。

12课时;第二章统计,16课时:第三章松率,8课时,二:分单元解读教材第一爷,是算法的初步知识。

1.l教学内军及误时分配在《普通高中课程标准实验教科书数学3必修》A版教材中,《算法初步3一章由三小节构成,配的教师用书中姓议讲授12课时:第一节:法与程序框图算法的概念1误时:程序框图、算法的三种逻辑结构和框图表小3误。

第一节:基术算法语句赋住、输入和输出语句1课时;条件语句l课时:循环语句l课时。

第一节:算法案例算法案例4课时;小结复习1以时。

1.2絮课标对算法的驶求1.2.1识程日标算法模块中,学生的算法学习应达到以下日标;在学牛义务教育阶段初步感受算法思想的基础上,结合对其体数学实例的分析,体验得序框图在解决问题中的作用:通过模仿、操作、探案,学习设计程序框图表达解决问题约过程:学生.能体会算法的基本感想以发算法的宜要件和有效性,发展有条理的思考和表达的能力,提高逻排思维能力。

1.2.2教学日标第一:穿法与程序框图通过对解决具体问题过和与步费的分析(如二元一次方程组求解等问题),体会算法约思想,了解算法的含义。

通过模仿、操作、荣索,经历通过设计程序框图表这解决问题的过程。

在具依问题的锋认过荐中(如三元一次方释细求解等问题),理解程序准图的三种基本逻辑结构顺序结构、条件分支结沟、循环结构。

第二节:恭本算法语句经将具体问题的程序框图转化为程序语句的过程,理解儿种基本算法语句——输入语句、输出语句、赋语句、条件语句、循环语句,进一步体会算法的基木思想:第二节:算法案词通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

1.3在教学中贯彻算法思想对于算法而言,一步一步的程产化按骤,即“算则”州然重要,但这些步骤的依据,即“第理“有着更基本的作用。

高中数学课本目录(新人教版)

高中数学课本目录(新人教版)

高中数学课本目录(新人教版)必修部分:必修一第一章集合与函数概念1.1 集合阅读与思考集合中元素的个数1.2 函数及其表示阅读与思考函数概念的发展历程1.3 函数的基本性质信息技术应用用计算机绘制函数图象第二章基本初等函数(Ⅰ)2.1 指数函数信息技术应用借助信息技术探究指数函数的性质2.2 对数函数阅读与思考对数的发明探究也发现互为反函数的两个函数图象之间的关系2.3 幂函数第三章函数的应用3.1 函数与方程阅读与思考中外历史上的方程求解信息技术应用借助信息技术方程的近似解3.2 函数模型及其应用信息技术应用收集数据并建立函数模型实习作业必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图阅读与思考画法几何与蒙日1.3 空间几何体的表面积与体积探究与发现祖暅原理与柱体、椎体、球体的体积实习作业第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质阅读与思考欧几里得《原本》与公理化方法第三章直线与方程3.1 直线的倾斜角与斜率探究与发现魔术师的地毯3.2 直线的方程3.3 直线的交点坐标与距离公式阅读与思考笛卡儿与解析几何第四章圆与方程4.1 圆的方程阅读与思考坐标法与机器证明4.2 直线、圆的位置关系4.3 空间直角坐标系信息技术应用用《几何画板》探究点的轨迹:圆必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码必修四第一章三角函数1 .1 任意角和弧度制1.2 任意角的三角函数阅读与思考三角学与天文学1.3 三角函数的诱导公式1.4 三角函数的图像与性质探究与发现函数y=Asin(ωx+φ)及函数y=Acos (ωx+φ)探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质信息技术应用1.5 函数y=Asin(ωx+φ)的图像阅读与思考振幅、周期、频率、相位1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念阅读与思考向量及向量符号的由来2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例阅读与思考向量的运算(运算律)与图形性质第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式信息技术应用利用信息技术制作三角函数表3.2 简单的三角恒等变换必修五第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列的前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式选修部分:选修1—1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词阅读与思考“且”“或”“非”与“交”“并”“补”1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线探究与发现2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例选修1—2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用word2002绘制流程图选修2—1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2—3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-4第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线选修4-5第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修3-1 数学史选修3-2 信息安全与密码选修3-3 球面上的几何选修3-4 对称与群选修3-5 欧拉公式与闭曲面分类选修3-6 三等分角与数域扩充选修4-1 几何证明选讲选修4-2 矩阵与变换选修4-3 数列与差分选修4-4 坐标系与参数方程选修4-5 不等式选讲选修4-6 初等数论初步选修4-7 优选法与试验设计初步选修4-8 统筹法与图论初步选修4-9 风险与决策选修4-10 开关电路与布尔代数课程大纲。

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理
【例 5】 设计一个计算 1×3×5×7×9×11×13 的算 法.图中给出了程序的一部分,则在横线①上不能填入的数 是( )
温馨 提 示
请 做:课 时 作 业 63
(点击进入)
3.算法与不等式的交汇问题 【例 3】 执行如图所示的程序框图,若输入 x=10, 则输出 y 的值为________.
输出语句
达式
_____________来自赋值语句变量=表达式
_____________ _____________
顺序结构和条件结构
【例 1】 如图中 x1,x2,x3 为某次考试三个评阅人对 同一道题的独立评分,p 为该题的最终得分.当 x1=6,x2 =9,p=8.5 时,x3 等于( )
A.11 C.8
A.s≤34 C.s≤1112
B.s≤56 D.s≤2254
考向 3 确定循环变量 【例 4】 (2015·安徽卷)执行如图所示的程序框图(算法 流程图),输出的 n 为________.
某程序框图如图所示,若该程序运行后输出的值是95, 则( )
A.a=4 C.a=6
B.a=5 D.a=7
基本算法语句
B.10 D.7
(2015·课标全国卷Ⅱ)如图程序框图的算法思路源于我 国古代数学名著《九章算术》中的“更相减损术”.执行该 程序框图,若输入的 a,b 分别为 14,18,则输出的 a=( )
循环结构
循环结构是高考命题的一个热点问题,多以选择题、填 空题的形式呈现,试题难度不大,多为容易题或中档题,且 主要有以下几个命题方向:
考向 1 求输出的结果 【例 2】 (2015·福建卷)阅读如图所示的程序框图,运 行相应的程序,则输出的结果为 ( )
A.2 B.1 C.0 D.-1

北师大版高中数学必修3课后习题答案

北师大版高中数学必修3课后习题答案

第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;小数点后第i 位的过剩近似值,赋给b . 第三步,计算55bam =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费. 设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句练习(P24) 123练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34、4练习(P32)12习题1.2 A组(P33)1、1(0)0(0)1(0)x xy xx x-+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B组(P33)1、程序:23、 4、1.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END2、见习题1.2 B组第1题解答. 34、程序框图: 程序:5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、 INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S ENDi=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THENPRINT “Sunday ”3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2nm =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品. (2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷. 4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%. 3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81)。

届数学一轮复习第十二章推理与证明算法复数第三节算法初步学案理含解析

第三节算法初步[最新考纲][考情分析][核心素养]1.了解算法的含义,了解算法的思想。

2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3。

理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

依据程序框图直接得出结论,填写部分内容以及程序框图与其他知识交汇是2021年高考考查的热点,题型为选择题或填空题,分值为5分.1.逻辑推理2。

数学运算‖知识梳理‖1.算法(1)算法通常是指按照错误!一定规则解决某一类问题的错误!明确和错误!有限的步骤.(2)应用:算法通常可以编成计算机错误!程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用5程序框、流程线及6文字说明来表示算法的图形.3.三种基本逻辑结构名称内容顺序结构条件结构循环结构定义由若干个错误!依次执行的步骤组成,这是任何一个算法都离不开的错误!基本结构算法的流程根据9条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件错误!反复执行某些步骤的情况,反复执行的步骤称为错误!循环体程序框图‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√"或“×”).(1)算法的每一步都有确定的意义,且可以无限地运算.()(2)一个程序框图一定包含顺序结构,也包含条件结构和循环结构.()(3)一个循环结构一定包含条件结构.()(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.()答案:(1)×(2)×(3)√(4)×二、走进教材2.(必修3P25例5改编)给出如图程序框图,其功能是()A.求a-b的值B.求b-a的值C.求|a-b|的值D.以上都不对答案:C3.(必修3P33B3改编)执行如图所示的程序框图,若输出的S 为4,则输入的x应为()A.-2 B.16C.-2或8 D.-2或16答案:D三、易错自纠4.如图给出的是计算错误!+错误!+错误!+错误!+…+错误!的一个程序框图,其中判断框内应填入的条件是()A.i<50? B.i>50?C.i〈25?D.i>25?解析:选B因为该循环体需要运行50次,i的初始值是1,间隔是1,所以i=50时不满足判断框内的条件,而i=51时满足判断框内条件,所以判断框内的条件可以填入i>50?故选B.5.阅读如图所示的程序框图,运行相应的程序,输出s的值等于()A.-3 B.-10C.0 D.-2解析:选A第一次循环:k=0+1=1,满足k<4,s=2×1-1=1;第二次循环:k=1+1=2,满足k<4,s=2×1-2=0;第三次循环:k=2+1=3,满足k<4,s=2×0-3=-3;第四次循环:k =3+1=4,不满足k<4,故输出的s=-3.故选A.错误!|题组突破|1.(2019年全国卷Ⅲ)执行如图所示的程序框图,如果输入的ε为0。

北师版高考文科数学一轮总复习课后习题 第10章 算法初步、 统计与统计案例 算法初步

课时规范练49 算法初步基础巩固组1.如图,若依次输入的x 分别为5π6,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A.y 1=y 2B.y 1>y 2C.y 1<y 2D.无法确定 答案:C解析:由算法框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=√32,所以y 1<y 2.2.(河南六市一模)已知[x]表示不超过x的最大整数.执行如图所示的算法框图,若输入x的值为2.4,则输出z的值为( )A.1.2B.0.6C.0.4D.-0.4答案:D解析:执行该算法框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z的值为-0.4.3.(河北石家庄四模)如图是计算1+13+15+…+131的值的算法框图,则图中①②处可以填写的语句分别是( )A.n=n+2,i>16B.n=n+2,i≥16C.n=n+1,i>16D.n=n+1,i≥16答案:A解析:式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16”.故选A.4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的算法框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.278答案:B解析:该算法框图是计算多项式f(x)=5x5+4x4+3x3+2x2+x当x=2时的值,f(2)=258,故选B.5.某算法框图如图所示,运行该程序后输出S=( )A.53B.74C.95D.116答案:D解析:根据算法框图可知其功能为计算:S=1+11×2+12×3+…+1n(n+1)=1+1-12+12−13+…+1n−1n+1=1+1-1n+1=2n+1n+1,初始值为n=1,当n=6时,输出S,可知最终赋值S时n=5,所以S=2×5+15+1=116,故选D.6.(湖北武汉模拟)元朝时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个算法框图,若输入的a,b 分别为5,2,则输出的n=( )A.2B.3C.4D.5 答案:C解析:执行算法框图得n=1,a=152,b=4,a≤b 不成立;n=2,a=454,b=8,a≤b 不成立;n=3,a=1358,b=16,a≤b 不成立;n=4,a=40516,b=32,a≤b 成立.故输出的n=4,故选C.综合提升组7.执行如图的算法框图,如果输入的x ∈-π4,π,则输出y 的取值范围是( )A.[-1,0]B.[-1,√2]C.[1,2]D.[-1,1]答案:B解析:流程图计算的输出值为分段函数: y={2cos 2x +sin2x -1,x <π2,cos 2x +2sinx -1,x ≥π2,原问题即求解函数在区间[-π4,π]上的值域.当-π4≤x<π2时,y=2cos 2x+sin2x-1=cos2x+1+sin2x-1=√2sin (2x +π4),-π4≤x<π2,则-14π≤2x+π4<54π,此时函数的值域为[-1,√2]. 当π2≤x≤π时,y=cos 2x+2sinx-1=-sin 2x+2sinx,π2≤x≤π,则0≤sinx≤1,此时函数的值域为[0,1].综上可得,函数的值域为[-1,√2]∪[0,1],即[-1,√2]. 即输出y 的取值范围是[-1,√2].故选B.8.(河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的算法框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( )A.i<7,s=s-1i ,i=2iB.i≤7,s=s -1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1答案:D解析:由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.9.如图所示的程序,若最终输出的结果为6364,则在程序中“ ”处应填入的语句为( )A.i>=8B.i>=7C.i<7D.i<8答案:B解析:S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“ ”处应填上i>=7.故选B.10.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个算法框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则算法框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i2答案:B解析:由s2=(x1-x)2+(x2-x)2+…+(xn-x)2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n =x 12+x 22+…+x n 2-2nx 2+nx 2n =x 12+x 22+…+x n 2n −x 2,循环退出时i=11,知x 2=(Ai -1)2. 所以B=A 12+A 22+…+A 102,故算法框图①中要补充的语句是B=B+A i 2.故选B.11.执行如图所示的算法框图,若输入的m,n 分别为385,105(图中“m MOD n”表示m 除以n 的余数),则输出的m= .答案:35解析:执行算法框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m 值为35.创新应用组12.(河南郑州二模)执行如图的算法框图,如果输入的ε为0.01,则输出s 的值为( )A.2-124B.2-125C.2-126D.2-127答案:C解析:执行算法框图,s=1,x=12,不满足条件x<0.01; s=1+12,x=122,不满足条件x<0.01; s=1+12+122,x=123,不满足条件x<0.01; ……由于126>0.01,而127<0.01,可得当s=1+12+122+…+126,x=127时,满足条件x<0.01,输出s=1+12+122+…+126=2-126.故选C. 13.(河南郑州模拟)我们可以用随机数法估计π的值,如图所示的算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A.3.119B.3.126C.3.132D.3.151答案:B解析:在空间直角坐标系O-xyz 中,不等式组{0<x <1,0<y <1,0<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组{0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211000,即π≈3.126,故选B.。

新课标高中数学教材目录大全

新课标高中数学教材目录大全新课标人教A版必修一第一章集合与函数的概念1.1 集合1.2 函数及其表示1.3 函数的基本性质本章小结与复习第二章基本初等函数(I)2.1 指数函数2.2 对数函数2.3 幂函数本章小结与复习第三章函数的应用3.1 函数与方程3.2 函数模型及其应用本章小结与复习必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积本章小结与复习第二章点、直线、平面之间的位置关.2.1 空间点、直线、平面之间的位.2.2 直线、平面平行的判定及其性.2.3 直线、平面垂直的判定及其性.本章小结与复习第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式本章小结与复习第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系本章小结与复习必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例本章小结与复习第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系本章小结与复习第三章概率3.1 随机事件的概率3.2 古典概型3.3 几何概型本章小结与复习必修四第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ϕ)的图象1.6 三角函数模型的简单应用本章小结与复习第二章平面向量2.1 平面向量的实际背景及基本概.2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表.2.4 平面向量的数量积2.5 平面向量应用举例本章小结与复习第三章三角恒等变换3.1 两角和与差的正弦、余弦和正.3.2 简单的三角恒等变换本章小结与复习必修五第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业本章小结与复习第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和本章小结与复习第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的.3.4 基本不等式ab≤2ba+(a≥0,b≥0)本章小结与复习选修1——1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线本章小结与复习第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例本章小结与复习选修1——2第一章统计案例1.1回归分析的基本思想及其初步.1.2 独立性检验的基本思想及其初.本章小结与复习第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明本章小结与复习第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算本章小结与复习第四章框图4.1 流程图4.2 结构图本章小结与复习综合复习与测试选修2——1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词本章小结与复习第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线本章小结与复习第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法本章小结与复习选修2——2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用本章小结与复习第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法本章小结与复习第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算本章小结与复习选修2——3第一章计数原理1.1分类加法计数原理与分步乘法计.1.2排列与组合1.3二项式定理本章小结与复习第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布本章小结与复习第三章统计案例3.1回归分析的基本思想及其初步应.3.2独立性检验的基本思想及其初步.本章小结与复习新课标人教B版必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算本章小结与复习第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(I)2.4 函数与方程本章小结与复习第三章基本初等函数(I)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(II)本章小结与复习必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系本章小结与复习第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系本章小结与复习必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例本章小结与复习第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性本章小结与复习第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用本章小结与复习必修四第一章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质本章小结与复习第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用本章小结与复习第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化.本章小结与复习必修五第一章解斜角三角形1.1 正弦定理和余弦定理1.2 应用举例本章小结与复习第二章数列2.1 数列2.2 等差数列2.3 等比数列本章小结与复习第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线.本章小结与复习选修1——1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的.本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线本章小结与复习第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用本章小结与复习选修1——2第一章统计案例,1.1独立性检验1.2回归分析本章小结与复习第二章推理与证明,2.1合情推理与演绎推理2.2直接证明与间接证明本章小结与复习第三章数系的扩充与复数的引入,3.1数系的扩充与复数的引入3.2复数的运算第四章框图,4.1流程图4.2结构图本章小结与复习选修2——1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的.本章小结与复习第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线2.5 直线与圆锥曲线本章小结与复习第三章空间向量与立体几何3.1 空间向量及其运算3.2 空间向量在立体几何中的应用本章小结与复习选修2——2第一章导数及其应用1.1 导数1.2 导数的运算1.3 导数的应用1.4 定积分与微积分基本定理本章小结与复习第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法本章小结与复习第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.2 复数的运算本章小结与复习选修2——3第一章计数原理1.1 基本计数原理1.2 排列与组合1.3 二项式定理本章小结与复习第二章概率2.1 离散型随机变量及其分布列2.2 条件概率与事件的独立性2.3 随机变量的数学特征2.4 正态分布本章小结与复习第三章统计案例3.1 独立性检验3.2 回归分析本章小结与复习北师大版必修一第一章集合1.1 集合的含义与表示1.2 集合的基本关系1.3 集合的基本运算本章小结与复习第二章函数2.1 生活中的变量关系2.2 对函数的进一步认识2.3 函数的单调性2.4 二次函数性质的再研究2.5 简单的幂函数本章小结与复习第三章指数函数和对数函数3.1 正整数指数函数3.2 指数概念的扩充3.3 指数函数3.4 对数3.5 对数函数3.6 指数函数、幂函数、对数函数.本章小结与复习第四章函数应用4.1 函数与方程4.2 实际问题的函数建模本章小结与复习必修二第一章立体几何初步1.1 简单几何体1.2 三视图1.3 直观图1.4 空间图形的基本关系与公理1.5 平行关系1.6 垂直关系1.7 简单几何体的面积和体积1.8 面积公式和体积公式的简单应用本章小结与复习第二章解析几何初步2.1 直线与直线的方程2.2 圆的圆的方程2.3 空间直角坐标系本章小结与复习必修三第一章统计1.1 统计活动:随机选取数字1.2 从普查到抽样1.3 抽样方法1.4 统计图表1.5 数据的数字特征1.6 用样本估计总体1.7 统计活动:结婚年龄的变化1.8 相关性1.9 最小二乘估计本章小结与复习第二章算法初步2.1 算法的基本思想2.2 算法的基本结构及设计2.3 排序问题2.4 几种基本语句本章小结与复习第三章概率3.1 随机事件的概率3.2 古典概型3.3 模拟方法--概率的应用本章小结与复习必修四第一章三角函数1.1 周期现象与周期函数1.2 角的概念的推广1.3 弦度制1.4 正弦函数1.5 余弦函数1.6 正切函数1.7 函数的图像1.8 同角三角函数的基本关系本章小结与复习第二章平面向量2.1 从位移、速度、力到向量2.2 从位移的合成到向量的加法2.3 从速度的倍数到数乘向量2.4 平面向量的坐标2.5 从力做的功到向量的数量积2.6 平面向量数量积的坐标表示2.7 向量应用举例本章小结与复习第三章三角恒等变形3.1 两角和与差的三角函数3.2 二倍角的正弦、余弦和正切3.3 半角的三角函数3.4 三角函数的和差化积与积化和.3.5 三角函数的简单应用本章小结与复习必修五第一章数列1.1 数列1.2 等差数列1.3 等比数列1.4 数列在日常经济生活中的应用本章小结与复习第二章解三角形2.1 正弦定理与余弦定理2.2 三角形中的几何计算2.3 解三角形的实际应用举例本章小结与复习第三章不等式3.1 不等关系3.2 一元二次不等式3.3 基本不等式3.4 简单线性规划本章小结与复习选修1——1第一章常用逻辑用语1.1 命题1.2 充分条件必要条件1.3 全称量词与存在量词1.4 逻辑联结词“且”或“非”本章小结与复习第二章圆柱曲线与方程2.1 椭圆2.2 抛物线2.3双曲线本章小结与复习第三章变化率与导数3.1 变化的快慢与变化率3.2 导数的概念及其几何意义3.3 计数导数3.4 导数的四则运算法则本章小结与复习第四章导数应用4.1 函数的单调性与极值4.2 导数在实际问题中的应用本章小结与复习选修1——2第一章统计案例1.1 回归分析1.2 独立性检验本章小结与复习第二章框图2.1 流程图2.2 结构图本章小结与复习第三章推理与证明3.1 归纳与类比3.2 数学证明3.3 综合法与分析法3.4 反证法本章小结与复习第四章数系的扩充与复数的引入4.1 数系的扩充与复数的引入4.2 复数的四则运算本章小结与复习选修2——1第一章常用逻辑用语1.1 命题1.2 充分条件必要条件1.3 全称量词与存在量词1.4 逻辑联结词“且”或“非”.本章小结与复习第二章空间向量与立体几何2.1 从平面向量到到空间向量2.2 空间向量的运算2.3 向量的坐标表表示和空间向量.2.4 用向量讨论垂直与平行2.5 夹角的计算2.6 距离的计算本章小结与复习第三章圆锥曲线与方程3.1 椭圆3.2 抛物线3.3 双曲线3.4 曲线与方程本章小结与复习选修2——2第一章推理与证明1.1 归纳与类比1.2 综合法与分析法1.3 反证法1.4 数学归纳法本章小结与复习第二章变化率与导数2.1 变换的快慢与变化率2.2 导数的概念及其几何意义2.3 计数导数2.4 导数的四则运算法则2.5 简单复合函数的求导法则本章小结与复习第三章导数应用3.1 函数的单调性与极值3.2 导数在实际问题中的应用本章小结与复习第四章定积分4.1 定积分的概念4.2 微积分基本定理4.3 定积分的简单应用本章小结与复习第五章数系的扩充与复数的引入5.1 数系的扩充与复数的引入5.2 复数的四则运算法则本章小结与复习苏教版必修一第一章集合1.1 集合的含义及其表示1.2 子集、全集、补集1.3 交集、并集第二章函数概念与基本初等函数I2.1 函数的概念和图像2.2 指数函数2.3 对数函数2.4 幂函数2.5 函数与方程2.6 函数模型及其应用必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系1.3 空间几何体的表面积和体积第二章平面解析几何初步2.1 直线与方程2.2 圆与方程2.3 空间直角坐标系必修三第一章算法初步1.1 算法的含义1.2 流程图1.3 基本算法语句1.4 算法案例第二章统计2.1 抽样方法2.2 总体分布的估计2.3 总体特征数的估计2.4 线性回归方程第三章概率3.1 随机事件及其概率3.2 古典概型3.3 几何概型3.4 互斥事件必修四第一章三角函数1.1 任意角、弧度1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的概念与表示2.2 向量的线性运算2.3 向量的坐标表示2.4 向量的数量积2.5 向量的应用第三章三角恒等变换3.1 两角和与差的三角函数3.2 二倍角的三角函数3.3 几个三角恒等式必修五第一章解三角形1.1 正弦定理1.2 余弦定理1.3 正弦定理、余弦定理的应用第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系3.2 一元二次不等式3.3 二元一次不等式组与简单线性.3.4 基本不等式ab≤2ba(a≥0,b≥0)选修1——1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑联结词1.3全称量词与存在量词本章小结与复习第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线与方程本章小结与复习第3章导数及其应用3.1导数的概念3.2导数的运算3.3导数在研究函数中的应用3.4导数在实际生活中的应用本章小结与复习选修1——2第1章统计案例1.1假设检验1.2独立性检验1.3线性回归分析1.4聚类分析本章小结与复习第2章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3公理化思想本章小结与复习第3章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义本章小结与复习第4章框图4.1流程图4.2结构图本章小结与复习选修2——1第1章常用逻辑用语1.1命题及其关系1.2简单的逻辑连接词1.3全称量词与存在量词本章小结与复习第2章圆锥曲线与方程2.1圆锥曲线2.2椭圆2.3双曲线2.4抛物线2.5圆锥曲线的统一定义2.6曲线与方程本章小结与复习第3章空间向量与立体几何3.1空间向量及其运算3.2空间向量的应用本章小结与复习选修2——2第一章导数及其应用1.1导数的概念1.2导数的运算1.3导数在研究函数中的应用1.4导数在实际生活中的应用1.5定积分本章小结与复习第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法本章小结与复习第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义本章小结与复习选修2——3第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理本章小结与复习第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.4二项分布2.5离散型随机变量的均值与方差2.6正态分布本章小结与复习第三章统计案例3.1独立性检验3.2回归分析本章小结与复习湘教版必修一第一章集合与函数1.1 集合1.2 函数的概念和性质本章小结与复习第二章指数函数、对数函数和幂函数2.1 指数函数2.2 对数函数2.3 幂函数本章小结与复习必修二第三章三角函数3.1 弧度制与任意角3.2 任意角的三角函数3.3 三角函数的图象与性质3.4 函数y=Asin(ωx+ϕ)的图象与性质本章小结与复习第四章向量4.1 什么是向量4.2 向量的加法4.3 向量与实数相乘4.4 向量的分解与坐标表示4.5 向量的数量积4.6 向量的应用本章小结与复习第五章三角恒等变换5.1 两角和与差的三角函数5.2 二倍角的三角函数5.3 简单的三角恒等变换本章小结与复习必修三第六章立体几何初步6.1 空间的几何体6.2 空间的直线与平面本章小结与复习第七章解析几何初步7.1 解析几何初步7.2 直线的方程7.3 圆与方程7.4 几何问题的代数解法7.5 空间直角坐标系本章小结与复习必修四第八章解三角形8.1 正弦定理8.2 余弦定理8.3 解三角形的应用举例本章小结与复习第九章数列9.1 数列的概念9.2 等差数列9.3 等比数列9.4 分期付款问题中的有关计算本章小结与复习第十章不等式10.1 不等式的基本性质10.2 一元二次不等式10.3 基本不等式及其应用10.4 简单线性规划本章小结与复习必修五第十一章算法初步11.1 算法概念和例子11.2 程序框图的结构11.3 基本的算法语句本章小结与复习第十二章统计初步12.1 随机抽样12.2 数据表示和特征提取12.3 用样本估计总体12.4 变量的相关性本章小结与复习第十三章概率13.1 概率的意义13.2 互斥事件的概率加法公式13.3 古典概型13.4 随机数与几何概型本章小结与复习选修1——1第一章常用逻辑用语1.1 命题的概念和例子1.2 简单的逻辑联结词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线2.4 圆锥曲线的应用本章小结与复习第三章导数及其应用3.1 导数概念3.2 导数的运算3.3 导数在研究函数的应用3.4 生活中的优化问题举例本章小结与复习选修1——2第四章点数统计案例4.1 随机对照实验案例4.2 事件的独立性4.3 列联表独立性分析案例4.4 一员线性回归案例本章小结与复习第五章推理与证明5.1 合情推理和演绎推理5.2直接证明与间接证明本章小结与复习第六章框图6.1 知识结构图6.2 工序流程图6.3 程序框图本章小结与复习第七章数系的扩充与复数7.1 解方程与数系的扩充7.2 复数的概念7.3 复数的四则运算7.4 副数的几何表示本章小结与复习选修2——1第一章常用逻辑用语1.1 命题及其关系1.2 简单逻辑联结词本章小结与复习第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线2.4 圆锥曲线的应用2.5 曲线与方程本章小结与复习第三章空间向量与立体几何3.1 尝试用向量处理空间图形3.2 空间中向量的概念和运算3.3 空间向量的坐标3.4 直线的方向向量3.5 直线与平面的垂直关系3.6 平面的法向量3.7 直线与平面、平面与平面所成.3.8 点到平面的距离3.9 共面与平行本章小结与复习选修2——2第四章导数及其应用4.1 导数概念4.2 导数的运算4.3 导数在研究函数中的应用4.4 生活中的优化问题举例4.5 定积分与微积分基本定理本章小结与复习第五章数系的扩充与复数5.1 解方程与数系的扩充5.2 复数的概念5.3 复数的四则运算5.4 复数的几何表示本章小结与复习第六章推理与证明6.1 合情推理和演绎推理6.2 直接证明与间接证明6.3 数系归纳法本章小结与复习选修2——3第七章计数原理7.1 两个计数原理7.2 排列7.3 组合7.4 二项式定理本章小结与复习第八章统计与概率8.1 随机对照试验8.2 概率8.3 正态分布曲线8.4 列联表独立性分析案例8.5 一元线性回归案例本章小结与复习高中沪教版高一上册第一章集合和命题1.1 集合1.2 四种命题的形式1.3 充分条件和必要条件本章小结与复习第二章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其运用2.5 不等式的证明本章小结与复习第三章函数的基本性质3.1函数的概念3.2函数关系的建立3.3函数的运算3.4函数的基本性质本章小结与复习第四章幂函数、指函数和对数函数4.1 幂函数的性质和对数函数4.2 指数函数的图像与性质本章小结与复习高一下册第四章幂函数、指函数和对数函数4.1 对数4.2 反函数4.3 对数函数4.4 指数函数和对数函数本章小结与复习第五章三角比5.1 任意角的三角比5.2 三角恒等式5.3 解斜三角形本章小结与复习第六章三角函数6.1 三角函数的图像与性质6.1 反三角函数与最简三角方程本章小结与复习高二上册第七章数列与数学归纳法7.1 数列7.2 数学归纳法7.3 数列的极限本章小结与复习第八章平面向量的坐标表示8.1向量的坐标表示及其运算8.2向量的数量积8.3平面向量的分解定理8.4向量的应用本章小结与复习第九章矩阵和行列式初步9.1 矩阵9.2 行列式本章小结与复习第十章算法初步10.1算法的概念10.2程序框图本章小结与复习高二下册第十一章坐标平面上的直线11.1直线的方程11.2直线的倾斜角和斜率11.3两条直线的位置关系11.4点到直线的距离本章小结与复习第十二章圆锥曲线12.1曲线和方程12.2圆的方程12.3椭圆的标准方程12.4椭圆的性质12.5双曲线的标准方程12.6双曲线的性质12.7抛物线的标准方程12.8抛物线的方程本章小结与复习第十三章复数13.1复数的概念13.2复数的坐标表示13.3复数的加法与减法13.4复数的乘法与除法13.5复数的平方根与立方根13.6实系数一元二次方程本章小结与复习高三上册第十四章空间直线与平面14.1 平面及其基本性质14.2 空间直线与直线的位置关系14.3 空间直线与平面的位置关系14.4 空间平面与平面的位置关系本章小结与复习第十五章简单几何体15.1 多面体的概念15.2 多面体的直观图15.3 旋转体的概念15.4 几何体的表面积15.5 几何体的体积15.6 球面距离本章小结与复习第十六章排列组合和二项式定理16.1技术原理Ⅰ—乘法原理16.2排列16.3技术原理Ⅱ—加法原理16.4组合16.5二项式定理本章小结与复习高三下册第十七章概率论初步17.1古典概念17.2频率与概念本章小结与复习第十八章基本统计方法18.1总体和样本18.2抽样技术18.3统计估计18.4实例分析。

数学学科知识与教学能力(高级中学)核心考点

模块一数学学科知识1. 数列极限的性质和证明◇收敛数列的极限是唯一的◇收敛数列是有界的◇收敛数列满足保号性2. 函数极限的性质和证明◇函数极限的唯一性◇函数极限的局部有界性◇函数极限的局部保号性◇函数极限与数列极限的关系3. 连续函数的性质和证明◇连续的定义◇函数的间断点的类型◇反函数和复合函数的连续性◇闭区间上连续函数的性质(有界性、最大值最小值定理、零点定理、介值定理)4. 一元函数微积分的性质和证明◇导数的概念◇导数的运算(基本导数公式)◇中值定理(罗尔中值定理、拉格朗日中值定理)◇洛必达法则◇函数的单调性和极值◇函数的凹凸性和拐点(詹森不等式)◇不定积分公式◇不定积分的积分法(公式法、凑微分法、换元积分法、分部积分法)◇定积分的性质和计算(积分中值定理、变上限积分、牛顿——莱布尼茨公式、换元法、分部积分法、公式法)◇定积分与旋转几何体5. 向量及其运算的性质和证明◇向量加法法则◇减法法则◇向量的乘法◇向量的数量积与向量积◇向量的混合积6. 矩阵与变换的性质和证明◇拉普拉斯定理◇克莱姆法则◇矩阵的加法、数乘、乘法、转置◇矩阵的运算性质◇矩阵的基本初等变换◇可逆矩阵的基本性质◇线性相关与线性无关◇齐次线性方程组的基础解系◇矩阵的对角化7. 概率与数理统计的性质和证明◇排列组合公式◇加法和乘法原理◇古典概型基本公式◇条件概率基本公式◇独立性◇离散型随机变量分布律◇连续型随机变量的分布密度◇分布函数◇六大分布◇期望及其性质◇方差及其性质8. 必修课程——数学1◇集合的运算◇函数单调性的证明◇函数奇偶性的判定◇指数函数的性质◇对数函数的性质◇幂函数的性质◇二分法◇函数应用题9. 必修课程——数学2◇空间几何体的表面积和体积◇线面平行、垂直的相关性质和定理◇三垂线定理及其逆定理◇二面角◇直线方程的求法◇点到直线的距离公式◇圆的标准方程和一般方程◇直线和圆的位置关系◇两圆的位置关系10. 必修课程——数学3◇用样本估计总体◇古典概型◇几何概型11. 必修课程——数学4◇三角函数的诱导公式◇正弦、余弦、正切函数的图像和性质◇三角恒等变换12. 必修课程——数学5◇余弦定理、正弦定理◇等差、等比数列◇数学归纳法◇基本不等式◇一元二次不等式◇线性规划问题13. 选修课程基础◇椭圆方程及其几何性质◇双曲线及其几何性质◇抛物线及其几何性质◇复数及其几何意义◇复数的四则运算14. 选修课程大纲要求◇常用逻辑用语◇导数及其几何意义◇框图◇数学史◇几何证明◇矩阵与变换◇坐标系与参数方程模块二高中数学课程知识1. 高中数学课程性质◇高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 算法初步与统计(必修3)
一.算法 1.算法的含义:
算法是指使用一系列运算规则能在有限步骤内求解某类问题,其中的每条规则必须是明确定义的,可行的. 算法一方面具有具体化、程序化、机械化的特点,同时又具有高度抽象性、概括性和精确性.算法既重视“算则”,
更重视“算理”. 2.流程图
(1)构成程序框图的图形符号:起、止框,输入输出框,处理框,判断框. (2)程序框图表达算法,有三种基本逻辑结构:顺序结构、条件结构和循环结构. 3.基本算法语句
(1)赋值语句的一般格式:变量←表达式; 输入语句的一般格式:Read 变量
输出语句的一般格式:Print 变量
(2)条件语句的一般格式有两种:If End Else Then If ---;If End Then If --
(3)循环语句有两种:当型(while 语句)和直到型(until 语句)循环,“while 语句”也称“前测试型”循环
语句, “until 语句” 也称“后测试型”循环语句,注意两者的区别. 如果循环结构中的循环次数已知,那么还可采用“For 语句”: For I From “初值” To “终值” Step “步长” 循环体 End For 二.统计 (一)抽样方法:
1.简单随机抽样:设总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,这样的抽样方法称为简单随机抽样.最常用的方法有抽签法和随机数表法.
简单随机抽样有以下特点:(1)总体的个数一定 (2)逐个抽取 (3)不放回抽取 (4)等可能
2.系统抽样:将总体平均分成几个部分,然后按照预先定出的规则,从每个部分抽取一个,得到所需要的样本. 步骤: (1)采用随机的方式将总体中的个体编号; (2)确定分段间隔;
(3)在第一段中采用简单随机抽样确定起始的个体编号;
(4)按预先制定的规则抽取样本.
3.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几个部分,
然后按照各部分所占的比例进行抽样.
抽样步骤:(1)由总体与样本容量确定抽取比例(2)由分层情况,确定各层抽样的样本数(3)各层的抽样数之
和应等于样本容量(4)对于不能取整的数,求其近似值.
注意对不同情况采用不同的抽样方法:个体数目较少时采用简单随机抽样;个体数目较多时采用系统抽样;总体由
差异明显的几部分构成时采用分层抽样. (二)总体分布的估计
1.样本频率分布估计总体分布
(1)频率分布条形图:纵轴为频率或频数,矩形的高度表示频率. (2)频率分布直方图:纵轴为频率/组距,矩形的面积表示频率.
(3)频率分布折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来,就得到频率分布折线图,简称频率折线图.
(4)茎叶图.优点:一是所有的信息都可以从茎叶图中得到;二是便于记录和表示. 2.样本平均数估计总体期望值
总体期望值——总体算术平均数:121
()n x x x x n
=
+++
3.样本方差、标准差估计总体方差、标准差
(1)极差:一组数据的最大值和最小值的差称为极差.
(2)方差:2222121
[()()()]n s x x x x x x n
=
-+-++-
(3)标准差:
(n s x x =
++-122
)()n n x x x x n ++-
+++
注:①设一组样本数据n x x x x ,,,,321 ,其平均数为x ,方差为2
δ,标准差为δ,则数据b ax b ax ++21,
, b ax n +的平均数为b x a +,方差为22δa ,标准差为δ
a .
②方差小则均衡性好,稳定性好.
三.变量间的相关关系 (一)变量间的相关关系
1.与函数关系不同,相关关系是一种非确定性关系.
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系叫正相关;点分布在从左上角
到右下角的区域内,两个变量的这种相关关系叫负相关.
3.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量具有线性相关
关系,这条直线叫做回归直线. (二)求回归直线方程的步骤
1.作出散点图,判断散点是否在一条直线附近;
2.如果散点在一条直线附近,利用公式⎪⎪⎪⎩⎪⎪⎪


-=--=---=∑∑∑∑====x
b y a x
n x y
x n y
x x x y y x x b n
i i n
i i
i n
i i n
i i i 1
2
2
1
1
21
)())((
计算b a ,,并写出回归直线方程a bx y +=
特别强调:回归直线a bx y +=过点),(y x .
3.最小二乘法: 使离差平方和2222211)()()(a bx y a bx y a bx y Q n n --+--+--= 最小的方法,叫最小二乘法
* 4.回归分析:
线性相关系数r 具有以下性质;
1≤r ,并且r 越接近1,线性相关程度越强;1≤r ,并且r
越接近0,线性相
关程度越弱.。

相关文档
最新文档