影像匹配的基本算法
测绘技术中影像配准与配准精度评价方法

测绘技术中影像配准与配准精度评价方法引言:随着科技的不断发展,测绘技术在不同领域中的应用也变得越来越广泛。
其中,影像配准是一项至关重要的技术,它能够将不同源的影像进行精确定位和叠加,实现空间信息的整合与分析。
本文将探讨测绘技术中影像配准的方法以及如何评价配准精度。
一、影像配准方法:1. 特征匹配法:特征匹配法是最常用的影像配准方法之一。
此方法依靠提取影像的特征点,并通过比较两幅影像的特征点位置来进行匹配。
其中,SIFT(尺度不变特征转换)和SURF(加速稳健特征)是常用的特征提取算法。
这些算法能够提取关键点并计算特征描述子,通过计算特征之间的距离来实现匹配。
2. 控制点法:控制点法是一种基于已知参考点坐标进行配准的方法。
在控制点的帮助下,通过对图像坐标系与地理坐标系的转换,找到两幅影像之间的空间变换关系。
这项方法适用于需要高精度配准的任务,如航空影像和高分辨率遥感影像。
3. 区域匹配法:区域匹配法是一种通过比较影像中相同区域或特征的亮度、颜色等特征来进行配准的方法。
该方法适用于影像中存在较强纹理信息的情况,如城市建筑物和自然地物等。
二、配准精度评价方法:1. 重叠区域比较法:重叠区域比较法是一种简单而直观的配准精度评价方法。
该方法通过选择两幅影像的重叠区域,计算重叠区域中特征点的重合度来评价配准结果的准确性。
重合度越高,说明配准效果越好。
2. 控制点残差法:控制点残差是评价影像配准精度的常见指标之一。
该方法首先利用已知的控制点进行配准,然后计算配准后的影像与控制点之间的残差值。
残差值越小,说明配准结果越精确。
3. 影像差异度法:影像差异度是一种基于图像像素值差异的评价方法。
它通过计算配准前后两幅影像的像素值差异来评估配准的精度。
常见的影像差异度指标包括互信息和相对误差等。
结论:影像配准是测绘技术中至关重要的一项工作。
本文介绍了特征匹配法、控制点法和区域匹配法这三种常见的影像配准方法,并探讨了重叠区域比较法、控制点残差法和影像差异度法这三种评价配准精度的方法。
第六章最小二乘影像匹配

二.单点最小二乘影像匹配
采用最小二乘影像匹配,解求变形参数 的改正值dh0,dh1, da0,…。
计算变形参数 a0i xa0i 21 daa0 0iaa10ix1daa1i2y b0i 1da2i
g2 g1 g 22
1
h0
1 n
(
g1
g2 ( g2 )h1 )
h0 0
h1
g2 g1 g 22
1
一.最小二乘影像匹配原理
消除了两个灰度分布的系统的辐射畸变后,其残余的灰度差 的平方和为
v h0 h1g2 ( g1 g2 )
vv
(g2
1
da0i
db0i
0 1 da1i
db1i
b b a db b db i 0 i 11
0i 1 0 i 1 i 1 i
1
ida2i
1 i
a01i 1
1
a1i i 11
1
a2i 1i
x
1 i
1
2 i
b b a db b db 12 db2i 2b0i1 b1i21 b2i11 y 2
g1g2
g2 2
h1
g1
g2 n
(
g2 )2 n
g2 g1 g 22
1
h0
1( n
g1
g2 (
g2 )h1 )
一.最小二乘影像匹配原理
对g1,g2中心化处理 g1 0; g2 0;
影像匹配基础理论与算法

四像元平均
九像元平均
金字塔影像层的确定方法
原始影像称第零层,第一层影像每一像素相当于零层( 原始影像称第零层,第一层影像每一像素相当于零层(l×l)l 个像素, 层影像每一像素相当于零层的( 个像素,第k层影像每一像素相当于零层的(l×l)k个像素
由影像匹配窗口大小确定金字塔影像层数
w<INT(n/lk+0.5)<l·w < 影像 长度
1 T
(τ ) =
lim
T →∞
∫
T
0
x ( t ) y ( t + τ ) dt
估计值
ˆ xy ( τ ) = 1 R T
∫
T
0
x ( t ) y ( t + τ ) dt
当x(t)=y(t)时 时 R xx ( τ ) =
自相关函数
∫
+∞ −∞
x ( t ) x ( t + τ ) dt
均值
R xx ( τ ) =
一.常见的五种基本匹配算法
同名点的确定是以匹配测度为基础 同名点的确定是以匹配测度为基础 匹配测度
G ( g ij )
医学影像处理中的图像配准算法实现技巧

医学影像处理中的图像配准算法实现技巧医学影像处理在现代医学诊断中起着至关重要的作用。
而图像配准作为其中重要的一环,是将不同影像之间进行准确的位置、尺度和方向的对齐,以实现医学影像的比较、融合和分析。
本文将介绍医学影像处理中的图像配准算法实现技巧。
一、图像配准概述图像配准是指将一组图像中的目标物体进行精确定位和对齐。
医学影像处理中的图像配准旨在准确地比较不同时间点或不同影像模态的医学图像,以便更好地追踪疾病的进展和评估治疗效果。
二、图像配准的算法医学影像图像配准的算法可以分为以下几类:1. 特征点匹配算法特征点匹配算法是一种常用的图像配准方法。
该方法通过检测图像中的特征点,并找到这些特征点之间的对应关系,从而实现图像的对齐。
常用的特征点匹配算法包括SIFT、SURF和ORB等。
首先,算法会在图像中提取特征点,并计算每个特征点的描述子。
然后,通过计算特征点描述子之间的相似度,找到最佳匹配。
最后,通过对特征点的位置进行配准,实现图像的对齐。
2. 基于互信息的配准算法互信息是一种常用的图像配准衡量指标,用于评估两幅图像的相似性。
基于互信息的配准算法主要包括归一化互信息(NMI)和互信息标准差(MIS)等。
该方法通过计算图像中的灰度直方图,并结合互信息来衡量两幅图像的相似度。
然后,通过优化配准变换参数,使得互信息最大化,实现图像的配准。
3. 基于变形场的配准算法基于变形场的配准算法利用变形场来描述图像的形变情况,并通过优化变形场来实现图像的对齐。
典型的基于变形场的配准算法有Thin-Plate Spline(TPS)和B-spline等。
该方法首先计算图像的像素点之间的位移,然后通过插值方法生成变形场。
最后,通过优化变形场的参数,实现图像的对齐。
三、图像配准的应用图像配准在医学影像处理中广泛应用于以下领域:1. 临床诊断医学影像图像配准可以提供医生在不同时间点或不同影像模态下进行疾病比较和评估的依据。
例如,在肿瘤的持续监测中,医学影像配准可以实现不同时间点下肿瘤的精确测量和比较。
最小二乘影响匹配

最小二乘影像匹配前言最小二乘影像匹配(Least Squares Image Matching)是由德国Ackermann教授提出的一种高精度影像匹配算法,该方法的影像匹配可以达到1/10甚至1/100像素的高精度,也即可以达到子像素级。
为此,最小二乘影像匹配也被称为“高精度影像匹配”。
它不仅可以应用于一般的数字地面模型,生产正射影像图,而且可以用于控制点的加密以及工业上的高精度量测。
由于在最小二乘影像匹配中可以灵活地引入各种已知参数条件(如共线方程等几何条件、已知的控制点坐标等),从而进行整体平差。
它不仅可以解决“单点”的影像匹配问题影像匹配问题,以求其“视差”;也可以直接求解空间坐标;而且可以同时解求待定点的坐标与影像的方位元素;还可以同时解决“多点影像匹配或“多片”影像匹配。
另外,在最小二乘影像匹配系统中,可以很方便的引入“粗差检测”,从而大大提高影像匹配的可靠性。
由于最小二乘影像匹配方法具有灵活、可靠和高精度的特点,因此,它受到了广泛的应用,得到了很快的发展。
当然,这个系统也有缺点,如当初始值不太精确时,系统的收敛性等问题有待解决。
1、最小二乘法影像匹配的基础理论与算法影像匹配实际上就是两幅或多幅影像之蜘识别同名点.它是数字摄影测量的核心问题。
我们知道要匹配的点的同名像点肯定在其同名核线上。
在进行最小二乘影像匹配之前。
需要先进行粗匹配。
然后在粗匹配的基础上用最小二乘法进行精匹配。
1.1基于数字影像几何纠正法提取核线,利用共面方程确定同名核线核线在航空摄影测量上是相互不平行的,它们相交于一点——核点。
但是如果将影像上的核线投影(或者称为纠正)到一对“相对水平”——平行于摄影基线的影像对上后,则核线相互平行。
正是由于“水平”的像片具有这么一特性,我们就有可能在“水平”像片上建立规则的格网,它的行就是核线。
核线上像元素(坐标为xt、yt)的灰度可由它对应的实际像片的像元素的坐标为x,y的灰度求的,即g(xt,yt)--g(x,y)。
摄影测量复习题及答案

摄影测量复习题及答案1、试述摄影测量经历了哪几个发展阶段?各阶段的特点是什么?答:①模拟摄影测量:用像片做为原始资料,用物理投影的方式,采用模拟测图仪,作业员手工的操作方式来生成的模拟产品。
②:解析摄影测量:用像片做为原始资料,用数字投影的方式,采用解析测图仪,机助作业员操作方式,制成模拟产品和数字产品。
③:数字摄影测量:是用像片(数字),数字化影像,数字影像做为原始资料,用数字投影的方式,采用计算机,自动化操作加作业员的干预,制成数字产品,模拟产品。
2、什么叫数字摄影测量?(两种描述)答:①认为数字摄影测量是基于数字影像与摄影测量基本原理,应用计算机技术,数字影像处理,影像匹配,模式识别等多学科的理论与方法,提取所摄对象用数字方式表达的几何与物理信息的摄影测量学的分支学科。
②其是基于摄影测量的基本原理,应用计算机技术,从影像(包括硬拷贝与数字影像或数字化影像)提取所摄对象用数字方式表达的几何与物理信息的摄影测量分支学科。
3 数字摄影测量包括哪些部分?各部分的特点是什么?答:包括:计算机辅助测图,影像数字化测图(混合数字摄影测量,全数字摄影测量)①计算机辅助测图:是利用解析测图仪或模拟光电机型测图仪与计算机相联的机助系统,进行数据采集,数据处理,形成DEM与数字地图,最后输入相应的数据库。
其是摄影测量从解析化向数字化的过渡阶段。
其所处理的依然是传统的像片,且对影像的处理仍然需要人眼的立体量测,计算机则起进行数据的记录与辅助处理的作用,是一种半自动化方式。
②影像数字化测图:是利用计算机对数字影像或数字化影像进行处理,由计算机视觉(其核心是影像匹配和影像识别)代替人眼的立体量测与识别,完成影像几何与物理信息的自动提取。
这时不需用传统光电仪器与传统人工操作方式,而是自动化的方式。
若处理的原始资料是光学影像(像片),则需要利用影像数字化器对其数字化。
4、机助测图数据采集有哪些主要过程?答:数据采集①像片的定向②输入基本参数③给不同的目标(地物)以不同的属性代码(特征码)④逐点量测地物的每一个应记录的点,或对地物或地貌(等高线等)进行跟踪,由系统决定点的记录与否⑤进行联机编辑。
影像匹配方法

影像匹配⽅法⼀、图像匹配⽅法图像匹配的⽅法很多,⼀般分为两⼤类,⼀类是基于灰度匹配的⽅法,另⼀类是基于特征匹配的⽅法。
(1)基于灰度匹配的⽅法。
也称作相关匹配算法,⽤空间⼆维滑动模板进⾏图像匹配,不同算法的区别主要体现在模板及相关准则的选择⽅⾯。
已有的基于灰度的匹配⽅法很多,如:Leese于1971年提出的MAD算法;为使模板匹配⾼速化,Barnea于1972年提出了序贯相似性检测法—SSDA法,这种算法速度有了较⼤提⾼,但是其精度低,匹配效果不好,⽽且易受噪声影响。
随后陈宁江等提出的归⼀化灰度组合相关法(NIC),⼭海涛等提出基于灰度区域相关的归⼀化灰度(Nprod)匹配法等。
其中,归⼀化积相关匹配法较其他⽅法更具有优势。
设参考图S是⼤⼩为M*M的图像,实时图T是⼤⼩为N*N的图像,并且M>N。
图像匹配是将实时图T叠放在参考图S上平移,模板覆盖下的那块⼤⼩为N*N的搜索图叫做⼦图Suv。
(u,v)为这块⼦图的左上⾓像点在图中的坐标,称为参考点,(u,v)的取值范围为:基于灰度相关匹配能获得较⾼的定位精度,但是它的运算量⼤,难以达到实时性要求。
(2)基于特征匹配的⽅法。
⾸先在原始图像中提取特征,然后再建⽴两幅图像之间特征的匹配对应关系。
常⽤的特征匹配基元包括点、线、区域等显著特征。
图像特征相⽐像素点数量杀过少很多,特征间的匹配度量随位置变化尖锐,容易找出准确的匹配位置,特征提取能⼤⼤减少噪声影响,对灰度变化、形变和遮挡有较强的适应⼒。
基于特征的图像匹配⽅法在实际中的应⽤越来越⼴泛,也取得了很⼤的成果,基于图像特征的匹配⽅法主要有以下四种:图像点匹配技术。
图像点匹配技术可以分为两类:⼀类是建⽴模板和待匹配图像的特征点集之间的点点对应关系,然后计算对应点之间的相似性度量来确定图像匹配与否;另⼀类是⽆须建⽴显⽰的点点对应关系,主要有最⼩均⽅差匹配、快速点匹配、Haussdorff点距离匹配等。
相关系数和最小二乘法的影像匹配

相关系数和最小二乘法的影像匹配作者:周天来源:《中国科技博览》2015年第07期[摘要]影像匹配是利用函数算法在两幅影像间识别同名点。
影像匹配有很多基本算法,其中相关系数算法是通过相关系数作为相似性测度的灰度匹配,速度较快也比较成熟。
相关系数得到的匹配是像素级。
为了使匹配更加精确采用最小二乘法影像来提高匹配的精度和可靠性,达到子像素级。
文章介绍了相关系数影像匹配和最小二乘法影像匹配的原理、算法的设计与实现,并采用核线影像对作为数据源,先用点特征提取算法提取特征点,然后用相关系数法进行初匹配,最后用最小二乘法提高精度,得到了最后结果。
[关键词]影像匹配点特征提取相关系数最小二乘法中图分类号:S125 文献标识码:A 文章编号:1009-914X(2015)07-0396-01引言随着科学技术的迅猛发展,影像匹配已成为现代信息处理,特别是图像信息处理领域中的一项非常重要的技术,并在计算机视觉、数字摄影测量、遥感图像处理、资源分析、医学图像配准、肖像和指纹识别、光学和雷达跟踪、飞行器巡航制导、导弹地形匹配及投射系统的导航目标制导等领域得到了广泛的应用。
影像匹配实质上是在两幅或多幅影像上识别同名点的过程,同名点的确定是以匹配测度为基础的。
目前,影像匹配的算法主要分为基于灰度的匹配和基于特征的匹配。
同名点的确定是以匹配测度为基础的,其中相关系数就是测度中的一种。
相关系数法是一种基于灰度的匹配。
这种方法基于统计理论,对像点进行灰度检测,并利用一定的算法进行相似性度量,即计算相关系数。
相关系数是标准化的协方差函数,即协方差除以两信号的方差得到。
当相关系数最大时,就认为是同名像点。
最小二乘法在影像匹配中的应用是 20 世纪 80 年代发展起来的,该方法充分利用了影像窗口内的信息进行平差计算,使影像匹配可以达到 1/10 甚至 1/100 像素的高精度,即影像匹配精度可达到子像素等级。
为此,最小二乘影像匹配被称为“高精度影像匹配”,它不仅仅可以被用于一般的产生数字地面模型,生产正射影像图,而且可以用于控制点的加密(空中三角测量)及工业上的高精度量测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 1
i 1
i 1
N
(xi x)( yi y)
i1
N
N
(xi x)2 ( yi y)2
i1
i1
Y aY b
即灰度矢量经线性变换后相关 系数是不变的
差平方和(差矢量模)
S2( p, q) [g(x, y) g(x p, y q)]2dxdy
( x, y)D
mn
S 2 (c, r)
i1 A B C i A i1 A B C
A i B ( i1 i1 ) / 2 C ( i1 2 i i1
k i B 2C
A i B ( i1 i1 ) / 2 C ( i1 2 i i1
k i
i1 i1
2(i1 2i i1
由相关系数抛物线拟合可使相关 精度达到0.15~0.2子像素精度
C max
在二维空间中是平行于(或E)的一条 直线
减去信号的均值等于去掉 其直流分量。因而当两影像 的灰度强度平均相差一个常 量时,应用协方差测度可不 受影响。
相关系数(矢量夹角)
( p, q)
C( p, q) CggCgg ( p, q)
Cgg
{g( x, y) E[g( x, y)]}2 dxdy
协方差函数(矢量投影)
C( p,q) {g(x, y) E[g(x, y)]}{g(x p, y q) E[g(x p, y q)]}dxdy
( x,y)D
E[g( x. y)] 1
g( x, y)dxdy
D ( x, y )D
E[g(x p, y q)] 1
g(x p, y q)]dxdy
Zi=Zmin+i·Z 高程搜索步距 Z可由所要求的高程精度确定
计算左右像坐标
(xi’, yi’)与(xi”,yi”):
xi f
a1( X a3 ( X
X s ) b1(Y X s ) b3(Y
Ys) c1(Z Zs ) Ys) c3 (Z Zs )
yi
f
a2 ( X a3 ( X
( gi, j g )(gir, jc g)
i1 j1
mn
mn
(gi, j g )2
( gir, jc gr,c )2
i1 j1
i1 j1
gc,r
1 mn
m i1
n
gir, jc
j1
g
1 mn
m i 1
n
gi, j
j 1
相关系数的实用公式为:
(c, r)
m
i1
相关函数(矢量数积)
R( p, q) g(x, y)g(x p, y q)dxdy
( x, y )D
R( p0, q0)> R(p, q)( pp0, qq0)
若 R( p0, q0)> R(p, q)( pp0, qq0),则 p0, q0为搜索区影像相对 于目标区影像的位移参数。对于一维相 关应有q 0。
( X Y ) X Y cos cos
XY
XY
取值范围满足
1
相关系数是灰度线性变换的不变量
N
N
(xi x)( yi y)
( xi x)[(ayi b)(ay b)]
i1
i 1
N
(xi x)2 ( yi y)2
N
N
( xi x)2 [(ayi b)(ay b)]2
j 1
g
1 mn
m i 1
n
gi, j
j 1
C(c0, r0) > C(c, r)( cc0, rr0)
则c0, r0为搜索区影像相对于目标区影像 的位移行、列参数
协方差函数的估计值即矢量的数积
N
N
C ( X Y ) (xi x)( y j y) xiyj
i1
i1
C是在的投影与的长之积,因而协方差 测度等价于在上投影最大,
Ys) c2(Z Zs) Ys) c3(Z Zs)
分别以(xi’, yi’)与(xi”,yi”)为中心在 左右影像上取影像窗口,计算其匹配测度, 如相关系数pi。
将i的值增加1,重复(2),(3)两步, 得到0,1,2,···n取其最大者k:
k= max{0,1,2,···n}
还可以利用k及其相邻的几个相关 系数拟合一抛物线,以其极值对应的 高程作为A点的高程,以进一步提高 精度,或以更小的高程步距在一小范 围内重复以上过程。
( x, y )D
离散灰度数据差绝对值和的计算公式为
mn
S (c, r)
gi , j gir , jc
i 1 j 1
若S(c0, r0) < S(c, r)( cc0, rr0),则c0, r0为搜索区影像相对于目标区影像的位移行、列 参数。对于一维相关应有r 0。
两影像窗口灰度差绝对值和即灰度矢 量X与Y之差矢量之分量的绝对值之和
( gi, j gir, jc )2
i 1 j 1
若S2(c0, r0) < S2(c, r),则c0, r0为搜 索区影像相对于目标区影像的位移行、列 参数。对于一维相关应有r 0。
两影像窗口灰度差的平方和即灰度向 量X与Y之差矢量
N
S2 X Y 2 (x1 y1)2 (x2 y2)2 (xN yN )2 (xi yi)2 i1
X s ) b2 (Y X s ) b3(Y
Ys) c2 (Z Zs ) Ys) c3 (Z Zs )
xi f
a1( X a3( X
X s) b1(Y X s) b3(Y
Ys) c1(Z Zs) Ys) c3(Z Zs)
yi
f
a2( X a3( X
X s) b2(Y X s) b3(Y
铅垂线轨迹法(VLL-Vertical Line Locus
在物方有一条 铅垂线轨迹, 它在影像上的 投影是一直线。 就是说VLL与地 面交点A在影像 上的构像必定 位于相应的 “投影差”上。
地
A
面
VLL法影像匹配示意图
A?
在铅垂
A
线上
地面
那一个点 正确?
具体步骤
给定地面点的平面坐标(X,Y) 与近似最低高程Zmin。
图5-3-7 相关系数抛物线拟合
影像匹配精度
影像匹配(相关)即使 在定位到整像素的情况 下,其理论精度也可达 到大约0.3像素的精度。
整像素相关的精度
影像相关是左影像为目标区与右影像 上搜索区内相对应的相同大小的一影像 相比较,求得相关系数,代表各窗口中 心像素的中央点处的匹配测度
半 个 像 素
离散灰度数据对相关函数的估计公式为
mn
R(c, r)
gi , j gir , j c
i 1 j 1
若
R(c0,r0) R(c,r)
(r r0), c c0)
则c0, r0为搜索区影像相对于目标区影 像的位移行、列参数。对于一维相关应 有r 0。
相关函数的估计值即矢量X与Y的数积
N
( x, y )D
Cgg( p, q) {g(x p, y q) E[g(x p, y q)]}2dxdy
( x, y)D
若(p0, q0) > (p, q)( pp0, qq0), 则 p0, q0为搜索区影像相对于目标区影像的位移 参数。对于一维相关应有q 0。
(c, r)
mn
R( X Y )
xi y j
i 1
在N维空间{ y1,y2,,yN}中,R是y1, y2,,yN的线性函数
N
R
xi y j max
i 1
它是N维空间的一个超平面。当N=2时 R= x1yl+ x2y2
(X·Y)= |X| ·|Y|·cos= max
|Y|cos= max
相关函数最大 (即矢量X与Y 的数积最大) 等价于矢量Y在 X上的投影最大
误差服从内的均匀分布(为像素大小)
2 x
2
x
2
(
x
)dx
2
( x) {1 / ,
x
2
0
2 x 2
12
整像素相关的精度
x 0.29
用相关系数的抛物线拟合提高相关精度
图5-3-7 相关系数抛物线拟合
f(s)= A+ B·S+ C·S2
抛物线顶点k处 的位置应为
k i B 2C
取相邻像元3个 相关系数进行抛 物线拟合时
N
S x1 y1 x2 y2 xN yN xi yi
i1
当N=2时,
S x1 y1 x2 y2 min
基于物方的影像匹配(VLL法)
影像匹配的目的是提取物体的几何 信息,确定其空间位置,
能够直接确定物体表面点空间三维 坐标的影像匹配方法得到了研究,这 些方法也被称为“地面元影像匹配”
D ( x, y )D
若C(p0, q0) > C(p, q)( pp0, qq0),则 p0, q0为搜索区影像相 对于目标区影像的位移参数。对于 一维相关应有q 0。
mn
C(c, r)
( gi, j g ) ( gir, jc g)
i1 j1
gc,r
1 mn
m i 1
n
gir , jc
n j1
(gi,
j
gir,
jc
)
1 m
n
(
m i1
n
m
gi, j )(
j1
i1
n
gir, jc )
j1
m
[
i1
n
g2 i, j
j1
1
m
(
m n i1
n
m
gi, j )2 ][
j1