图像匹配算法

合集下载

如何进行高效的图像匹配和图像配准

如何进行高效的图像匹配和图像配准

如何进行高效的图像匹配和图像配准图像匹配和图像配准是计算机视觉领域中常见的任务,其目的是通过计算机算法将两幅或多幅图像进行比较,从而找出它们之间的相似性或者进行图像的对齐。

本文将介绍一些高效的图像匹配和图像配准的方法。

一、图像匹配图像匹配即是将一幅图像中的特征在另一幅图像中找到对应物体或者区域。

下面是一些常见的图像匹配方法:1.特征点匹配特征点匹配是最常见的图像匹配方法之一,它通过在图像中提取特征点,并计算特征点的描述子,然后使用某种度量来比较两幅图像的特征点,找出最相似的特征点对。

常用的特征点匹配算法包括SIFT、SURF和ORB等。

2.直方图匹配直方图匹配是一种基于图像全局颜色或纹理分布的匹配方法,它将图像的直方图进行比较,通过计算直方图之间的相似性度量来进行匹配。

直方图匹配适用于颜色和纹理信息较为明显的图像匹配任务。

3.模板匹配模板匹配是一种基于像素点灰度值的匹配方法,它通过将一个预定义的模板图像滑动或者扫描到待匹配图像上,计算模板和图像之间的相似性度量,从而找到最佳匹配位置。

模板匹配适用于物体检测和目标跟踪等应用场景。

4.特征描述子匹配特征描述子匹配是一种将图像中的局部特征点的描述子进行比较的匹配方法,它通过计算特征点描述子之间的相似性度量找到最佳匹配。

常用的特征描述子匹配算法包括基于二值描述子的BRISK和ORB,基于二进制描述子的BRIEF和FREAK,以及基于浮点数描述子的SIFT、SURF和AKAZE等。

二、图像配准图像配准是将两幅或多幅图像进行对齐,使得它们在空间上或者几何上具有一致性。

下面是一些常用的图像配准方法:1.特征点配准特征点配准是将两幅图像中的特征点进行对应的一种配准方法,它通过计算特征点的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像的特征点对应一致。

常用的特征点配准方法包括RANSAC、LMS和Hough变换等。

2.像素级配准像素级配准是将两幅图像的像素进行一一对应的配准方法,它通过计算图像间的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像在几何上对应一致。

图像匹配算法

图像匹配算法

值 然后把这差值同其它点对的插值累加起来,当累加r次误
差超过 Th,则停下来,并记下次数r,定义SSDA的检测曲面为
min I(i,
j)
r
1 r m2
r k 1
(i,j,mk
,n
k
)
Th
(4)、把 I(i,值j) 大的 (点i, j作) 为匹配点,因为这点 上需要很多次累加才使总误差超过 Th。 特点:非匹配点用较少的计算就可以达到阈值而被丢 去,对非匹配点减少计算量,提高匹配速度。
基于灰度的匹配算法
1、ABS(Absolute Balance Search)算法:用模 板图像和待匹配图像上的搜索窗口之间的像素灰 度值的差别来表示二者的相关性。
计算ABS值有三种方法:
1)、
MD(m, n) max x, y
f1(x, y)
f2 (x m, y n)
2)、 SAD(m, n) f1(x, y) f2(x m, y n) xy
3)、
SSD(m, n)
( f1(x, y) f2(x m, y n))2
xy
特点:(1)、思路简单,实现方便。
(2)、模板图像或待匹配图像任一个发生线性 变换,算法失效。
2、归一化互相关匹配算法(NCC)
(Normalized Cross-Correlation):通过计
算模板图像和待匹配图像上的互相关值来确
^
^
(1)、定义误差值 (i,j,mk ,nk )= Sij(mk ,nk ) S(i, j) T (mk ,nk ) T
其中:
^
S (i,
j)1 M2MSij(m,n)m,n1
(2)、取一不变阈值 Th
^

图像匹配简介

图像匹配简介

图像匹配简介
图像匹配简介
图像匹配是指在两个或多个图像中寻找对应的像素,生成一组二元关系对应,即像素对的匹配关系。

图像匹配可以被应用到许多领域中,例如机器人和自动驾驶的感知和导航、虚拟现实、医学图像处理、智能监控系统以及文物保护等。

图像匹配算法可以被分为两个主要类别:基于特征的图像匹配算法和基于深度学习的图像匹配算法。

基于特征的图像匹配算法根据图像中的特征点进行匹配。

特征点指的是在不同的图像中表现出相似性的局部区域。

常用的特征点描述符包括尺度不变特征变换(SIFT)、方向梯度直方
图(HOG)、加速稳健特征(SURF)等。

基于特征的图像匹
配算法需要先对图像进行特征提取,然后进行特征匹配,最后根据匹配结果计算变换矩阵,进行图像配准。

这种算法的优点是适用于不同姿态、视角和光照条件下的图像匹配,但在图像中存在大量重复纹理或噪声时容易产生误匹配。

基于深度学习的图像匹配算法则是直接基于特征向量而非特征点进行匹配,可以使用卷积神经网络(CNN)结构进行特征
提取。

在深度学习方法中,通过使用语义吸收层或可形式化的聚合架构来生成不变于图像的特征编码,并对其进行匹配。

基于深度学习的图像匹配算法可以利用大量的数据进行监督学习,可以处理更加复杂的图像识别问题,对于捕捉图像的全局和局部变化具有更强的鲁棒性。

但是,由于深度学习模型很难理解,
它们通常需要更多的计算资源和更长的训练时间。

图像匹配是机器视觉领域中重要的一个方向,其应用范围非常广泛。

由于不同的特征提取方式和匹配策略的不同,每种算法都有其适用的场景。

在应用中需要根据不同的场景选择最适用的算法,以达到最佳的匹配效果。

图像匹配的算法种类和原理

图像匹配的算法种类和原理

图像匹配的算法种类和原理
图像匹配是一种广泛应用于计算机视觉领域的技术,用于判断两个或多个图像之间的相似性或是否存在某种关联。

以下是几种常见的图像匹配算法和其原理:
1. 直方图匹配:该算法基于图像的颜色分布,通过比较两个图像的直方图来评估它们的相似性。

直方图是一种将图像像素值与其频率关联起来的统计工具。

2. 特征点匹配:该算法通过提取图像中的特征点,如角点、边缘等,然后比较两个图像中的特征点之间的距离或相似性来确定它们之间的匹配关系。

常见的特征点匹配算法包括SIFT、SURF 和ORB。

3. 模板匹配:该算法使用一个预先定义好的模板图像,将其与输入图像进行比较,找出最佳匹配的位置。

模板匹配算法通常使用相关性或差异性度量来评估匹配程度。

4. 形状匹配:该算法旨在比较图像中的形状特征,例如提取图像边界上的轮廓,并计算它们之间的相似性。

形状匹配通常与图像分割和轮廓提取技术结合使用。

5. 神经网络匹配:近年来,深度学习和卷积神经网络(CNN)等技术的发展为图像匹配带来了新的突破。

使用深度神经网络,可以学习到更高级别的特征表示,并通过训练模型来实现图像匹配任务。

这些算法各有优缺点,并且在不同应用场景下具有不同的适用性。

在实际应用中,经常需要结合多种算法来实现更准确的图像匹配结果。

SLAM中图像特征匹配算法研究及其硬件实现

SLAM中图像特征匹配算法研究及其硬件实现

2、图像变换算法
2、图像变换算法
图像变换算法是指将原始卫星图像转换为另一种形式的图像,以突出某些特 征或进行更高级的处理。常用的图像变换算法包括傅里叶变换、小波变换、主成 分分析等。其中,傅里叶变换可以将图像从空间域转换到频率域,将图像中的高 频和低频成分分离出来,方便进行进一步的处理和分析;小波变换则可以将图像 分解成不同尺度的子图像,
3、ASIC芯片实现
总之,卫星图像处理算法是通过对卫星图像数据的分析和处理,提取出有用 的信息以满足不同应用需求的一种技术手段。为了提高算法的处理速度和效率, 可以采用GPU加速、FPGA实现和ASIC芯片实现等硬件实现方式。其中,GPU加速可 以大大提高算法的处理速度和效率;FPGA实现可以灵活地进行升级和维护;ASIC 芯片实现可以实现高效可靠的硬件加速。
3、ASIC芯片实现
3、ASIC芯片实现
ASIC是应用特定集成电路,它是一种为特定应用设计的集成电路,具有高性 能、低功耗、可靠性高等优点。因此,将卫星图像处理算法转化为ASIC芯片可以 实现高效可靠的硬件加速。ASIC芯片还可以具有成本低、易于维护等优点。常用 的ASIC设计工具包括Verilog和VHDL。这些工具可以使开发者设计出高性能、低 功耗的ASIC芯片加速器。
一、图像特征匹配算法研究
1、SIFT算法
1、SIFT算法
SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征 匹配算法,其特点是对图像的尺度、旋转、亮度等变化具有不变性。SIFT算法首 先提取关键点,然后对关键点进行描述,最后通过比对描述进行匹配。SIFT算法 具有较高的准确性和鲁棒性,但计算复杂度较高,不适合实时性要求较高的应用 场景。

图像特征点提取及匹配算法研究论文

图像特征点提取及匹配算法研究论文

图像特征点提取及匹配算法研究论文1.SIFT算法:SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征点提取算法。

该算法首先使用高斯滤波器对图像进行多尺度的平滑处理,然后使用差分算子来检测图像中的关键点,最后计算关键点的主方向和描述符。

SIFT算法具有尺度不变性和旋转不变性,对于图像中存在较大尺度和角度变化的情况下仍能提取出稳定的特征点。

2.SURF算法:SURF(Speeded Up Robust Features)算法是一种快速的特征点提取算法,它在SIFT算法的基础上进行了优化。

SURF算法使用Haar小波响应来检测图像中的特征点,并使用积分图像来加速计算过程。

此外,SURF算法还使用了一种基于方向直方图的特征描述方法,能够提取出具有旋转不变性和尺度不变性的特征点。

3.ORB算法:ORB(Oriented FAST and Rotated BRIEF)算法是一种快速的特征点提取和匹配算法。

该算法结合了FAST角点检测算法和BRIEF描述符算法,并对其进行了改进。

ORB算法利用灰度值的转折点来检测图像中的角点,并使用二进制字符串来描述关键点,以提高特征点的匹配速度。

ORB算法具有较快的计算速度和较高的匹配精度,适用于实时应用。

4.BRISK算法:BRISK(Binary Robust Invariant Scalable Keypoints)算法是一种基于二进制描述符的特征点提取和匹配算法。

该算法首先使用田字形格点采样方法检测关键点,然后使用直方图来描述关键点的方向和纹理特征。

最后,BRISK算法使用二进制字符串来表示关键点的描述符,并使用汉明距离来进行特征点的匹配。

BRISK算法具有较快的计算速度和较高的鲁棒性,适用于大规模图像匹配任务。

总结起来,图像特征点提取及匹配算法是计算机视觉领域中的重要研究方向。

本文介绍了一些常用的特征点提取及匹配算法,并对其进行了讨论。

特征 图像匹配算法

特征 图像匹配算法

特征图像匹配算法1. 简介特征图像匹配算法是一种计算机视觉中常用的算法,用于在两幅图像之间找到相对应的特征点,并将它们匹配起来。

这种算法在多个应用领域都有广泛的应用,包括图像检索、三维重建、目标跟踪等。

特征图像匹配算法的核心思想是通过提取图像中的关键特征点,然后计算这些特征点的描述子,在不同图像中进行匹配,找到相对应的特征点。

这些特征点通常是图像中的角点、边缘或者纹理等具有区分性的部分。

2. 特征提取在特征图像匹配算法中,特征点的提取是首要任务。

常用的特征点提取算法包括Harris角点检测、SIFT(Scale-Invariant Feature Transform)、SURF (Speeded-Up Robust Features)等。

•Harris角点检测是一种通过计算图像中像素点周围的灰度变化来检测图像中的角点的算法。

它主要是通过计算图像中每个像素点的窗口内的像素梯度的方差来确定是否为角点。

•SIFT是一种尺度不变特征变换的算法,它可以在不同大小和旋转角度的图像中匹配特征点。

SIFT算法首先通过高斯滤波器进行图像平滑,然后通过DoG(Difference of Gaussians)算子检测图像中的极值点作为特征点。

•SURF是一种类似于SIFT的特征提取算法,但它具有更快的计算速度和更好的旋转不变性。

SURF算法通过检测图像中的极值点,并计算它们的Haar小波特征来提取特征点。

3. 特征描述在特征提取之后,需要对特征点进行描述,以便在不同图像中进行匹配。

常用的特征描述算法包括ORB(Oriented FAST and Rotated BRIEF)、BRISK(Binary Robust Invariant Scalable Keypoints)等。

•ORB是一种具有旋转不变性和尺度不变性的特征描述算法。

它通过计算特征点周围的像素点在不同方向上的灰度变化来生成特征点的描述子。

最后,ORB算法将描述子通过二进制编码,以降低计算复杂度。

图像匹配算法的研究进展

图像匹配算法的研究进展

图像匹配算法的研究进展一、本文概述随着信息技术的飞速发展,图像匹配算法在诸多领域,如人脸识别、物体追踪、自动驾驶、医学影像分析以及遥感图像处理等,都发挥着越来越重要的作用。

图像匹配算法的核心在于通过一定的算法和策略,从大量图像中快速准确地找到目标图像,或者从同一场景的不同图像中找出相似或相同的部分。

本文旨在探讨图像匹配算法的研究进展,包括经典的算法、新兴的算法以及它们在不同领域的应用。

我们将回顾传统的图像匹配算法,如基于特征的方法、基于灰度的方法等,分析它们的优缺点以及适用场景。

然后,我们将重点介绍近年来兴起的深度学习在图像匹配领域的应用,包括卷积神经网络(CNN)、孪生网络(Siamese Network)等,以及它们在提高匹配精度和效率方面的突出表现。

我们还将讨论图像匹配算法在实际应用中面临的挑战,如光照变化、视角变化、遮挡等问题,以及针对这些问题的解决方案。

我们将展望图像匹配算法的未来发展趋势,包括算法性能的进一步提升、多模态图像匹配的研究、以及在大规模图像数据库中的应用等。

通过本文的综述,我们希望能够为读者提供一个全面而深入的图像匹配算法研究进展的概览,同时也为相关领域的研究人员提供有益的参考和启示。

二、图像匹配算法的基本原理图像匹配算法是计算机视觉领域的一个核心问题,它旨在从大量图像中找出具有相似性或相关性的图像。

这些算法的基本原理主要基于特征提取和相似性度量两个方面。

特征提取是图像匹配算法的首要步骤。

在这一过程中,算法会从图像中提取出关键信息,这些信息通常是对图像内容的抽象描述,如边缘、角点、纹理、颜色分布等。

这些特征的选择对后续的匹配效果至关重要,因为它们需要既能代表图像的主要内容,又具有一定的鲁棒性,能够在不同的光照、视角、尺度等条件下保持一致。

相似性度量是图像匹配算法的另一关键步骤。

在提取了特征之后,算法需要一种方法来量化两个图像之间的相似性。

常见的相似性度量方法包括欧氏距离、余弦相似度、汉明距离等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像匹配算法
各种图像匹配的文献都会出现“配准、匹配、几何 校正”三个词,它们的含义比较相似。 配准:一般两幅图像之间; 匹配:寻找同名特征(点) 的过程; 几何校正:根据主辅图像之间的几何变换关系,对 辅图像进行逐像素处理变为配准图像的过程叫做 “几何校正”。 图像匹配:把不同时间、不同成像条件下对同一景 物获取的两幅或者多幅图像在空间上对准,或根据 已知模式到另一幅图中寻找相应的模式 。 其实质是在基元相似性的条件下,运用匹配准则的 最佳搜索问题。
(30 312 )(03 21 )[(330 12 ) 2 (21 03 ) 2 ]
为加快匹配过程,可采用两步模板匹配策略。首先,使 用零阶矩算子进行粗匹配,获得可能的匹配位置点;然 后对可能的匹配点根据归一化的矩特征实现精匹配。
2、基于图像特征点的匹配算法
在点特征提取方法中,Harris算子是C.Harris和M.J.Stephens在 1988年提出的一种基于信号的点特征提取算子,给出了与自相关 函数相联系的矩阵M。M矩阵的特征值是自相关函数的一阶曲率, 如果两个曲率值都很高,那么就认为该点是点特征。
图像匹配主要可分为以灰度为基础的匹配和 以特征为基础的匹配。 1、灰度匹配 :通过利用某种相似性度量,如相关 函数、协方差函数、差平方和、差绝对值和等测 度极值,判定两幅图像中的对应关系。 2、特征匹配是指通过分别提取两个或多个图像的特 征(点、线、面等特征),对特征进行参数描述, 然后运用所描述的参数来进行匹配的一种算法。
j 0 k 0
J 1 K 1
2
DST ( x, y) 2[t ( j, k ) f ( x j, y k )]
j 0 k 0
J 1 K 1
DT ( x, y) [t ( j, k )]2
j 0 k 0
J 1 K 1
R ( x, y )
t ( j, k ) f ( x j, y k )
基于灰度的匹配算法
1、ABS(Absolute Balance Search)算法:用模板 图像和待匹配图像上的搜索窗口之间的像素灰度 值的差别来表示二者的相关性。
计算ABS值有三种方法: f1 ( x, y) f 2 ( x m, y n) 1)、 MD(m, n) max x, y 2) 、
r 00
, 式中,r=(p+q)/2+1,p+q=2,3.......
图像各阶不变矩定义为:
1=20 02
2 2=(20 02 )2 411
3=(30 312 ) 2 (321 03 ) 2 4=(30 12 ) 2 (21 03 ) 2 5=(30 312 )(30 12 )[(30 12 ) 2 3 (30 312 ) 2 ]
2、归一化互相关匹配算法(NCC) (Normalized Cross-Correlation):通过计 算模板图像和待匹配图像上的互相关值来确 定匹配的程度。 D( x, y) [ f ( x j, y k ) t ( j, k )]
J 1 K 1 j 0 k 0 2
M

m , n 1
T
M
2
T(m,n)
m, n 1
(2)、取一不变阈值 Th (3)、在子图 Sij (m,n) 中随机选取象点,计算它同T中的误差 值 然后把这差值同其它点对的插值累加起来,当累加r次误 差超过 Th ,则停下来,并记下次数r,定义SSDA的检测曲面为
I (i, j ) r r (i,j,m ,n ) T k k h min 2 1 r m k 1
(03 321 )(03 21 )[(30 12 ) 2 3 (03 12 ) 2 ]
2 6=(20 02 )[(30 12 ) 2 (03 21 ) 2 ] 411 (30 12 )(03 21 )
7=(321 03 )(30 12 )[(30 12 ) 2 3 (21 03 ) 2 ]
j 0 k 0
J 1 K 1
[ f ( x j, y k )] [t ( j, k )]
j 0 k 0 j 0 k 0
J 1 K 1
J 1 K 1
2
3、序惯相似检测算法(SSDA)
由于相关法匹配计算量很大,因为模板要在 (N-M+1) 2 个参考 位子上做相关计算,其中除一点以外都是在非匹配点上做无用 功。SSDA算法的要点: ^ ^ ij (1)、定义误差值 (i,j,mk ,n k )= S (mk ,n k ) S (i, j) T (mk ,n k ) T M ^ M 1 ^ ij 其中: S (i, j ) 2 1 S (m,n)
(2)选取局部极值点 特征点就是局部范围内的极大兴趣值对应的像素点。 因此在计算完各点的兴趣值后,要提取原始图像中所 有局部兴趣值最大的点。在实际操作中,可以依次以 每个像素为中心的3X3的窗口中提取最大值。如果中心 像素的兴趣值就最大值,则该点就是特征点。
(3)根据需要提取一定数目的特征点局部极值点的数 目往往很多,可以对所有极值点进行排序,根据要求 选取兴趣值最大的若干点作为最后的结果。
D( x, y) [ f ( x j, y k )] 2 t ( j, k ) f ( x j, y k ) [t ( j, k )]2
2 j 0 k 0 j k j 0 k 0
J 1 K 1
J 1 K 1
J 1 K 1
DS ( x, y) [ f ( x j, y k )]
SAD(m, n) f1 ( x, y) f 2 ( x m, y n)
x y
( f1 ( x, y ) f 2 ( x m, y n)) 3)、 SSD(m, n) x y
2
特点:(1)、思路简单,实现方便。 (2)、模板图像或待匹配图像任一个发生线 性变换,算法失效。
基于特征的匹配算法
1、图像不变矩匹配算法(IM):两幅图像之 间的相似度可以用它们的7个不变矩之间的相 似性来描述。
p q阶矩的定义为: m pq= x p yq f ( x, y )式中:(x,y)为图像位置坐标,f ( x, y )为图像灰度。
x y
当图像发生平抑变化时,m pq也将发生变化。为使具有平移不变性,定义p+q阶中心矩为: upq
gx M=G( s ) gx g y
-
gx g y 2 , I det( M ) ktr ( M ), k 0.04 gy
-
式中:g x为x方向的梯度,g y为y方向的梯度,G( s )为高斯模板。 det为矩阵的行列式,tr为矩阵的直迹,k为默认常数。
(1)公式的意义:对操作灰度图像的每个点,计算其在横向和 纵向的一阶导数,这样可以得到三副新的图像。三副图像中的 每个像素对应的属性值分别代表为 g x,gy,g x g y ,对这三副图 像进行高斯滤波,可计算出原图像上对应的每个点的兴趣值。
(4)、把 I (i, j ) 值大的(i, j ) 点作为匹配点,因为这点 上需要很多次累加才使总误差超过 Th 。 特点:非匹配点用较少的计算就可以达到阈值而被丢 去,对非匹配点减少计算量,提高匹配速度。
4、其他匹配算法
(1)、幅度排序相关算法 (2)、FFT的相关算法 (3)、相位相关算法
xf ( x, y) yf ( x, y) ( x x)( y y ) f ( x, y ),式中:= x , y= f ( x, y) f ( x, y)
x y x y x y x y x yf ( x, y )归 Nhomakorabea化为:pq=
u pq u
相关文档
最新文档