舵机精简讲解
舵机的工作原理

舵机的工作原理舵机是一种常见的控制装置,广泛应用于机器人、无人机、模型飞机等领域。
它能够根据输入的控制信号,精确地控制输出轴的位置或者角度。
本文将详细介绍舵机的工作原理,包括舵机的构造、工作方式、控制原理以及常见的舵机类型。
一、舵机的构造舵机主要由机电、减速机构、位置反馈装置和控制电路组成。
1. 机电:舵机通常采用直流无刷机电(BLDC)或者直流有刷机电(DC)作为驱动力源。
这些机电具有高转速、高扭矩和高效率的特点,能够提供足够的动力来驱动输出轴的运动。
2. 减速机构:舵机的输出轴通常需要具备较大的扭矩和较低的转速,因此减速机构被用来减小机电输出的转速,并增加输出轴的扭矩。
减速机构通常由齿轮、传动杆和轴承等构件组成。
3. 位置反馈装置:为了实现精确的位置控制,舵机通常配备了位置反馈装置。
位置反馈装置可以是光电编码器、霍尔传感器或者磁编码器等,用于监测输出轴的位置并反馈给控制电路。
4. 控制电路:舵机的控制电路负责接收输入的控制信号,并根据信号的大小和方向来控制机电的转动。
控制电路通常由微控制器或者专用的控制芯片组成,能够实现精确的位置控制和速度控制。
二、舵机的工作方式舵机的工作方式可以分为开环控制和闭环控制两种。
1. 开环控制:开环控制是指舵机根据输入的控制信号直接控制机电的转动。
在开环控制中,舵机不会对输出轴的位置进行反馈,因此无法实现精确的位置控制。
开环控制适合于一些简单的应用场景,如模型飞机的舵机控制。
2. 闭环控制:闭环控制是指舵机通过位置反馈装置对输出轴的位置进行监测,并根据反馈信号来调整机电的转动。
闭环控制能够实现精确的位置控制,适合于需要高精度控制的应用场景,如机器人的关节控制。
三、舵机的控制原理舵机的控制原理主要包括脉宽调制(PWM)信号和位置反馈控制。
1. 脉宽调制信号:舵机接收的控制信号通常是一种脉宽调制信号,即脉冲的宽度来表示控制信号的大小和方向。
通常情况下,舵机接收一个周期为20毫秒的脉冲信号,脉冲宽度的范围普通在1毫秒到2毫秒之间。
舵机的工作原理

舵机的工作原理舵机是一种常见的电机控制装置,广泛应用于机器人、无人机、模型飞机等领域。
它通过控制电机的转动来实现精确的角度调整,使得被控制的机械部件能够按照预定的角度运动。
本文将详细介绍舵机的工作原理及其组成部分。
一、舵机的组成部分舵机主要由电机、减速器、控制电路和反馈装置组成。
1. 电机:舵机通常采用直流电机作为驱动源。
电机的特点是转速高、转矩大,能够提供足够的动力来驱动被控制的机械部件。
2. 减速器:舵机中的减速器主要用于减小电机的转速,增加输出的扭矩。
减速器通常采用齿轮传动的方式,通过不同大小的齿轮组合来实现减速。
3. 控制电路:控制电路是舵机的核心部分,它接收来自外部的控制信号,并根据信号的大小和方向来控制电机的转动。
控制电路通常由芯片、电容、电阻等元件组成。
4. 反馈装置:舵机的反馈装置主要用于检测输出轴的实际位置,并将其反馈给控制电路。
常见的反馈装置有光电编码器、霍尔传感器等。
二、舵机的工作原理可以简单概括为:接收控制信号→控制电路处理信号→驱动电机转动→输出轴运动。
1. 接收控制信号:舵机通常通过三线接口与外部设备连接,其中一条线用于接收控制信号。
控制信号通常是一个脉冲宽度调制(PWM)信号,脉冲的高电平时间决定了舵机输出轴的位置。
2. 控制电路处理信号:控制电路接收到控制信号后,会根据信号的高电平时间来判断输出轴应该转动到哪个位置。
控制电路会将输入信号与反馈信号进行比较,通过调整电机的转速和方向来使输出轴移动到目标位置。
3. 驱动电机转动:控制电路根据控制信号的大小和方向来控制电机的转动。
电机通过减速器传递转动力矩到输出轴,从而使输出轴按照预定的角度运动。
4. 输出轴运动:输出轴的运动受到驱动电机的控制,它会根据控制信号的变化而改变位置。
输出轴的位置通过反馈装置检测,并实时反馈给控制电路,以便进行修正。
三、舵机的工作特点舵机具有以下几个工作特点:1. 精确控制:舵机能够实现精确的角度控制,通常可以达到0.1°的精度。
简述舵机的结构及工作原理

简述舵机的结构及工作原理
一、结构
舵机主要由电机、减速器、位置反馈装置、控制电路和输出装置组成。
1. 电机:舵机内置有一种直流无刷电机,可提供高扭矩和精准的速度
控制。
2. 减速器:减速器是将电机提供的高速转动转换成低速高扭矩输出的
装置。
3. 位置反馈装置:位置反馈装置主要是用来检测舵机输出轴的位置,
并将信号反馈给控制电路。
4. 控制电路:控制电路是舵机的核心部件,它接收位置反馈信号,并
控制电机和减速器的运转,以实现舵机的精准定位和转动。
5. 输出装置:输出装置是连接在舵机输出轴上的杆件,其功能是将舵
机的输出扭矩传递给需要控制的机械部件。
二、工作原理
舵机通过接受来自遥控器或其他控制信号,控制舵机电机的轴向转动,从而转动输出装置,实现对机械部件的精准控制。
具体来说,舵机接收到控制信号后,控制电路会通过位置反馈装置来
检测输出轴的位置,并将电机控制器输出的电流的方向和大小进行调整,控制电机的转速和方向,从而实现舵机的转动和定位。
当舵机输出轴达到预设位置后,控制电路会停止控制电机转动,舵机也就完成了定位。
在实际的应用中,舵机通常被用来控制各种机械部件、机器臂或机器人等,实现精准的运动和位置控制。
总的来说,舵机通过精准的电机控制和位置反馈装置的配合工作,实现了对机械部件的精确控制,大大提高了机械装置的性能和精度。
舵机详解

舵机详解舵机(英文叫Servo):它由直流电机、减速齿轮组、传感器和控制电路组成的一套自动控制系统。
通过发送信号,指定输出轴旋转角度。
舵机一般而言都有最大旋转角度(比如180度。
)与普通直流电机的区别主要在,直流电机是一圈圈转动的,舵机只能在一定角度内转动,不能一圈圈转(数字舵机可以在舵机模式和电机模式中切换,没有这个问题)。
普通直流电机无法反馈转动的角度信息,而舵机可以。
用途也不同,普通直流电机一般是整圈转动做动力用,舵机是控制某物体转动一定角度用(比如机器人的关节)。
舵机的形状和大小多的让人眼花缭乱,大致可以分为下面这几种(如图所示)最右边的是常见的标准舵机,中间两个小的是微型舵机,左边魁梧的那个是大扭力舵机。
图上这几种舵机都是三线控制。
制作机器人常用的舵机有下面几种,而且每种的固定方式也不同,如果从一个型号换成一个型号,整个机械结构都需要重新设计。
第一种是MG995,优点是价格便宜,金属齿轮,耐用度也不错。
缺点是扭力比较小,所以负载不能太大,如果做双足机器人之类的这款舵机不是很合适,因为腿部受力太大。
做做普通的六足,或者机械手还是不错的。
第二种是SR 403,这款舵机是网友xqi2因MG995做双足机器人抖动太厉害,摸索找到的,经过测试。
制作双足机器人不错~~~至少不抖了。
优点是扭力大,全金属齿轮,价格也还算便宜。
缺点嘛。
做工很山寨。
其他缺点等待反馈第三种就是传说中的数字舵机AX12+,这个是久经考验的机器人专用舵机。
除了价格高,使用RS485串口通信(控制板就得换数字舵机专用控制板),其他都是优点。
下图是一个普通模拟舵机的分解图,其组成部分主要有齿轮组、电机、电位器、电机控制板、壳体这几大部分。
电机控制板主要是用来驱动电机和接受电位器反馈回来的信息。
电机嘛,动力的来源了,这个不用太多解释。
电位器这里的作用主要是通过其旋转后产生的电阻的变化,把信号发送回电机控制板,使其判断输出轴角度是否输出正确。
舵机的工作原理

舵机的工作原理舵机是一种常用的机电控制设备,广泛应用于机器人、航模、智能家居等领域。
它通过接收电信号来控制输出轴的位置,从而实现对机械装置的精确控制。
舵机的工作原理可以简单描述如下:1. 机电驱动:舵机内部包含一个直流机电,通常是一种直流有刷机电。
该机电通过电源提供的电流来驱动,并通过齿轮传动系统将转动运动转化为线性运动。
2. 位置反馈:舵机内部还配备了一个位置反馈装置,通常是一个旋转变阻器或者光电编码器。
该装置可以感知输出轴的位置,并将其转化为电信号反馈给舵机控制电路。
3. 控制电路:舵机的控制电路接收来自外部的控制信号,通常是一个脉冲宽度调制(PWM)信号。
控制电路将该信号与位置反馈信号进行比较,并通过调整机电驱动电流的大小和方向来实现输出轴位置的调节。
4. 闭环控制:舵机的控制电路采用闭环控制系统,即根据输出轴位置的反馈信息进行实时调整。
当控制信号发生变化时,控制电路会根据反馈信号的差异来调整机电驱动,使输出轴尽可能接近期望位置。
5. 力矩输出:舵机的输出轴通常配备一个输出臂,用于连接到需要控制的机械装置。
当舵机工作时,输出轴的运动会产生一定的力矩,用于驱动机械装置的运动。
需要注意的是,舵机的工作原理是基于机电驱动和位置反馈的闭环控制系统。
控制信号的频率和脉宽决定了舵机的响应速度和转动角度范围。
不同型号的舵机具有不同的工作特性和性能参数,如转动角度范围、响应时间、扭矩等。
总结起来,舵机的工作原理是通过控制电路接收控制信号,并根据位置反馈信息调整机电驱动,实现对输出轴位置的精确控制。
它在机器人、航模等领域中具有广泛的应用前景。
舵机工作原理

舵机工作原理舵机是一种常用于控制机械装置运动的设备,被广泛应用于无人机、机器人、车辆航模等领域。
它通过接收来自控制器的信号,控制舵机的位置和角度,从而实现对机械装置的精确控制。
本文将详细介绍舵机的工作原理和操作方式。
一、舵机的组成舵机由电机、减速器、控制电路和反馈机构组成。
1. 电机:舵机通常采用DC有刷电机作为驱动源。
直流电机的特点是转速高、响应快。
2. 减速器:舵机中的减速器主要用来减小电机输出轴的转速,增加扭矩输出。
常见的舵机减速器有齿轮减速器、行星减速器等。
3. 控制电路:舵机的控制电路是用来控制电机的转动方向和角度的关键部分。
控制电路通常采用H桥驱动电路来控制电机的正反转。
4. 反馈机构:舵机中的反馈机构用来实时检测舵机的位置和角度信息,并将其反馈给控制电路。
通常采用位置传感器(如光电编码器)或角度传感器(如霍尔效应传感器)来实现。
二、舵机的工作原理舵机通过控制电路接收外部信号,并通过电机和减速器转动输出轴来改变机械装置的位置或角度。
舵机工作原理的核心是控制电路中的位置控制回路和PID控制算法。
1. 位置控制回路:位置控制回路是舵机工作的基础。
它的主要任务是接收外部信号,将其转化为控制信号,并控制电机转动到相应的位置。
位置控制回路主要由控制芯片和位置传感器组成。
控制芯片负责解析控制信号,并将其转化为电机驱动信号。
位置传感器则实时监测舵机输出轴的位置,并将其反馈给反馈机构。
控制芯片根据反馈信号和目标位置信号的比较结果,调整电机的转动方向和速度,使得输出轴转动到目标位置。
2. PID控制算法:舵机的PID控制算法用于精确控制舵机输出轴的位置。
PID控制算法通过比较目标位置和实际位置的差异,产生一个误差信号,然后根据误差信号计算出控制信号。
PID控制器包括三个部分:比例(P)控制器、积分(I)控制器和微分(D)控制器。
比例控制器根据误差信号的大小来调整输出信号的大小;积分控制器根据误差信号的累积值来调整输出信号的积累量;微分控制器根据误差信号的变化速率来调整输出信号的变化速率。
机器人舵机说明

机器人舵机说明一、舵机简介舵机,顾名思义,大海航行靠舵手,舵机早期是应用在航模中控制方向的,在航空模型中,飞行器的飞行姿态是通过调整发动机和各个控制多面来实现的,后来有人发现这种机器的体积小、重量轻、扭矩大、精度高,由于具备了这样的优点,很适合应用在机器人身上作为机器人的驱动。
二、舵机的分类按照舵机的转动角度分有180度舵机和360度舵机。
180度舵机只能在0度到180度之间运动,超过这个范围,舵机就会出现超量程的故障,轻则齿轮打坏,重则烧坏舵机电路或者舵机里面的电机。
360度舵机转动的方式和普通的电机类似,可以连续的转动,不过我们可以控制它转动的方向和速度。
按照舵机的信号处理分为模拟舵机和数字舵机,它们的区别在于,模拟舵机需要给它不停的发送PWM 信号,才能让它保持在规定的位置或者让它按照某个速度转动,数字舵机则只需要发送一次PWM 信号就能保持在规定的某个位置。
关于PWM 信号在3.4节将会介绍。
三、舵机的内部结构一般来说,我们用的舵机有以下几个部分组成:直流电动机、减速器(减速齿轮组)、位置反馈电位计、控制电路板(比较器)。
舵机的输入线共有三根,红色在中间,为电源正极线,黑色线是电源负极(地线)线,黄色或者白色线为信号线。
其中电源线为舵机提供6V 到7V 左右电压的电源。
图1 舵机的内部结构四、舵机的工作原理及控制方法4.1 舵机运动的对应关系在对机器人进行动作编程之前我们需要知道,机器人有许多个关节,每一个关节我们称为一个自由度。
一般的机体,都有十几个自由度,这样才能够保证动作的灵活性。
在机器人机体上,我们通常使用舵机作为每一个关节的连接部分。
它可以完成每个关节的定位和运动。
舵机的控制信号相对简单,控制精度高,反应速度快,而且比伺服电机省电。
这些优点是非常突出的。
在下面的论述中,会涉及到舵机相关的控制原理,读者应反复详细阅读。
舵机的外观入下图所示:图2 舵机外观这里可以看到,舵机体积十分小巧。
舵机知识分享

舵机知识分享一,舵机的分类1,按照舵机的工作信号来分类:航模舵机有数码舵机Digital Servo,模拟舵机Analog Servo。
(1)数码舵机是数字传输(数字舵机Digital Servo),灵活方便、可靠、兼容性好,抗干扰能力强,可方便实现双向通信,是必然的趋势;(2)模拟舵机是现有的PWM模拟传输(模拟舵机Analog Servo),即脉宽的变化直接代表控制矢量,容易受干扰;2,按照舵机的工作电压来分类:普通电压舵机(4.8-6V),高压舵机HV SERVO (6-7.4V);高压舵机HV SERVO(9.4-12V)。
高压舵机是工作电压高在6-7.4V;9.4-12V(以后高压舵机的工作电压应该还会更高的),高压舵机的优点就是发热小,反应更灵敏,扭力更大。
3, 按照是否防水来分类:全防水舵机,普通舵机。
(全防水舵机的视频)4,机器人专用舵机与模型舵机的区别机器人用的大部分舵机和模型舵机都是一样的,只是航模用舵机限制转角,一般是90-270°,有些机器人舵机的工作角度到达360度,360度舵机一般都是用到机器人上的。
二,舵机的结构(舵机的结构视频)1,外壳:外壳材料有金属,塑料,半金属半塑料三种。
(全金属外壳舵机,半金属半塑料外壳舵机,塑料外壳舵机)2,马达: 无刷马达,空心杯马达,铁心马达。
(无刷马达舵机,空心杯马达舵机,铁芯马达舵机)3,齿轮套件:舵机的齿轮材料(Gear Material)有塑料和金属之区分,金1 / 2属齿轮的舵机一般皆为大扭力及高速型,具有齿轮不会因负载过大而崩牙的优点。
4,动力输出轴:(1),动力输出轴材料有塑料和金属之分,大扭力的一般都采用金属材料。
(2),标准舵机的输出轴的齿数有以下三种:25T(FUTABA品牌的舵机),24T (HITEC品牌的舵机),23T (JR品牌的舵机)。
这个参数主要用来匹配舵臂的,因为常规舵臂的齿数也是:25T (FUTABA),24T(HITEC),23T(JR)这三种,只有舵机轴的齿数和舵臂的齿数一样才能使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
舵机
------孟令军2014.8.13
-------更多请关注我的百度文库
》》什么是舵机?
【舵机定义】
舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。
能够利用简单的输入信号比较精确的转动给定角度的电机系统。
它是一个可以调制偏转角度的电机,从而用于一些车、体机器人的方向调制。
伺服马达三条线中白色的线是控制线,接到控制芯片上。
中间的是SERVO工作电源线(红色),一般工作电源是5V。
第三条是地线。
》》如何选择舵机呢??
【参数】
⑴转速
转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在
0.11/60°~0.21S/60°之间。
⑵转矩
舵机扭矩的单位是KG·CM,这是一个扭矩单位。
可以理解为在舵盘上距舵机轴中心水平距离1CM 处,舵机能够带动的物体重量。
⑶电压
较高的电压可以提高电机的速度和扭矩,舵机推荐的电压一般都是4.8V或6V。
⑷尺寸、重量和材质
舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。
塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。
所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。
所以:选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。
》》舵机如何调控???
【模拟舵机及其控制原理】
工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。
模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号(可以用pwm模块)来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。
舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。
具体电机内部是怎么运作的,笔者在此不多写了,因为我们是学怎么用他的,如果想深究,可以讨论。
【数字舵机及其控制原理】
1、防抖。
(模拟舵机调制不稳定,比如我期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后有向前调节,以至于出现不停的震荡)
2、响应速度快。
(数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,也能用PID进行调节)
如果想用数字舵机的可以研究PID算法。
-------------------下期学习PID算法--------------。