平行线 常考经典较难题、压轴题例题和巩固练习教学内容
平行线问题的典型例题和解决方法式 -回复

平行线问题的典型例题和解决方法式 -回复
平行线问题是几何学中常见的问题,下面给出一个典型例题和解决方法:
例题:已知在平面直角坐标系中,直线L1与x轴的夹角为30度,直线L2与x轴的夹角为60度,且L1与L2的斜率之和
为3/2。
求L1与L2的方程。
解决方法:
1. 首先,我们知道,直线与x轴的夹角可以通过斜率来表示。
直线L1与x轴的夹角为30度,根据三角函数的定义,
tan(30°)=1/√3,所以直线L1的斜率为k1=1/√3。
2. 同理,直线L2与x轴的夹角为60度,根据三角函数的定义,tan(60°)=√3,所以直线L2的斜率为k2=√3。
3. 根据斜率之和的关系,我们有 k1 + k2 = 3/2。
4. 将k1和k2的值代入方程,得到1/√3 + √3 = 3/2,整理得到
√3 + 3√3 = (3/2)√3,化简得到4√3 = (3/2)√3。
5. 由于等式两边都含有√3,且√3不等于0,所以我们可以将
等式两边除以√3,得到 4 = 3/2。
6. 由于等式两边不等,所以没有满足条件的直线L1和L2。
因此,此题无解。
总结:解决平行线问题的方法是,根据直线与x轴的夹角和斜率之间的关系,将已知条件用方程表示,并求解方程,得到直线的方程。
然后通过比较方程中的斜率和截距等特征,判断是否为平行线。
如果斜率和截距都相等,则两条直线平行;否则,两条直线不平行。
平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
人教版七年级数学下册期考重难点突破、典例剖析与精选练习: 平行线(附全解全析)

人教版七年级数学下册期考重难点突破、典例剖析与精选练习:平行线知识网络重难突破知识点一平行线及其判定平行线的概念:在同一平面内,不相交的两条直线叫做平行线,平行用符号“∥”表示,如:直线a与直线b互相平行,记作a∥b,读作a平行于b。
平行线的画法:一落、二靠、三移、四画。
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合平行公理(唯一性):经过直线外一点,有且只有一条直线与这条直线平行。
平行公理的推论(传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行几何描述:∵b∥a,c∥a∴b∥c平行线的判定判定方法 1 :两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简称:同位角相等,两直线平行判定方法 2 :两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简称:内错角相等,两直线平行判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简称:同旁内角互补,两直线平行几何符号语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典型例题】1.(2018·沈阳市第七中学初二期中)1.(2018·沈阳市第七中学初二期中)如果a//b,b//c,那么a//c,这个推理的依据是( )A.等量代换B.经过直线外一点,有且只有一条直线与已知直线平行C.平行线的定义D.平行于同一直线的两直线平行2.(2019·石家庄市第二十八中学初一期末)如图,直线//a b.则直线a,b之间的距离是()A.线段AB的长度B.线段CD的长度C.线段ABD.线段CD3.(2019·上海市中国中学初一期中)下列结论中,错误的是( )A.经过直线外一点,有且只有一条直线与这条直线平行B.如果直线a,b,c满足:a∥b,c∥b,那么a∥cC.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离4.(2019·福建莆田一中初一期中)下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行5.(2019·上海市嘉定区震川中学初一期中)下列说法中正确的个数有( )①两条直线被第三条直线所截,内错角相等;②在同一平面内不重合的两条直线有平行、相交和垂直三种位置关系;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离;④在同一平面内,垂直于同一条直线的两条直线互相平行。
人教七年级数学平行线与相交线总复习知识点归纳和例题精讲

平行线与相交线期末考试总复习考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是,那么称这两个角互为余角.2.补角:如果两个角的和是,那么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A+∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A 处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是______10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1-2-3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识别:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。
本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。
知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。
平行线可以用符号"// "表示。
2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。
- (b) 两条直线之间的对应角相等。
- (c) 一条直线与另一平行线的任意直线交角为180°。
3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。
- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。
- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。
经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。
例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。
例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。
例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。
以上是初三平行线知识点以及经典例题的介绍。
希望能对初三学生理解和掌握平行线有所帮助。
平行线知识点归纳及典型题目练习(含答案)

平行线知识点归纳及典型题目练习(含答案) -第一篇:平行线知识点归纳及典型题目练习(含答案)第五章相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________. 9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .- 115. 如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16. 如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.17. 如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.- 321.如图,已知ABC,AD BC于D,E为AB上一点,EF BC于F,DG//BA交CA于G.求证1 2.22.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.- 5第二篇:第五章相交线与平行线全章知识点归纳及典型题目练习(含答案)第五章相交线与平行线1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种. 7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________. 9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .- 115. 如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.16. 如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由.17. 如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE 过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.- 321. 如图,已知ABC,AD BC于D,E为AB上一点,EF BC于F,DG//BA交CA于G.求证1 2.22. 已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.- 5第三篇:相交线与平行线知识点归纳相交线与平行线知识点小结一、相交线1.相交线:两条直线相交,有且只有一个交点。
(完整版)平行线常考经典较难题、压轴题例题和巩固练习

平行线 例1 翻折 1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为的大小为 度.度.例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.量关系?并说明理由. 1AED B C2、如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB ∥CD . (1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为的数量关系为 ; (2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;系,并证明你的结论;(3)如图3,∠ABM=∠MBE ,∠CDN=∠NDE ,直线MB 、ND 交于点F ,则= .例4 平移1、如图1所示,已知BC ∥OA ,∠B=∠A=120°(1)说明OB ∥AC 成立的理由.成立的理由. (2)如图2所示,若点E ,F 在BC 上,且∠FOC=∠AOC ,OE 平分∠BOF ,求∠EOC 的度数.的度数. (3)在(2)的条件下,若左右平移AC ,如图3所示,那么∠OCB :∠OFB 的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA 时,求∠OCA 的度数.的度数.2、如图,已知AM ∥BN ,∠A=60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)求∠CBD 的度数;的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,∠ABC 的度数是的度数是.例5 作图—应用1、(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD 表示.试问:桥CD 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥CD 的位置.的位置.2、如图,平面上有直线a 及直线a 外的三点A 、B 、P .(1)过点P 画一条直线m ,使得m ∥a ;(2)过B 作BH ⊥直线m ,并延长BH 至B ′,使得BB ′为直线a 、m 之间的距离;之间的距离;(3)若直线a 、m 表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B 的路程最短,试问桥应建在何处?画出示意图.的路程最短,试问桥应建在何处?画出示意图.【巩固练习】【巩固练习】1、如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P ﹣2∠C=57°,则∠C 等于(等于( )A .24°B .34°C .26°D .22° 图2图1P BA题图第2题图题图第1题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类的位置关系是( )推,则l1和l8的位置关系是(A.平行.平行或垂直 D.无法确定.无法确定 .平行 B.垂直.垂直 C.平行或垂直4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有(为定值,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个第5题图题图第4题图题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于(等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为的值为 .第9题图题图题图第8题图第7题图题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为的度数为 .8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所的度数是.在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.;(1)如图1,直接写出∠A和∠C之间的数量关系之间的数量关系(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.之间的一点.之间的数量关系,并证明你的结论;(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.的大小.13、已知:如图,BC ∥OA ,∠B=∠A=100°,试回答下列问题:,试回答下列问题:(1)如图①所示,求证:OB ∥AC .(注意证明过程要写依据).(注意证明过程要写依据)(2)如图②,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF .(ⅰ)求∠EOC 的度数;的度数; (ⅱ)求∠OCB :∠OFB 的比值;的比值;(ⅲ)如图③,若∠OEB=∠OCA .此时∠OCA 度数等于度数等于 .(在横线上填上答案即可).(在横线上填上答案即可)14、已知直线AB ∥CD .(1)如图1,直接写出∠ABE ,∠CDE 和∠BED 之间的数量关系是之间的数量关系是 . (2)如图2,BF ,DF 分别平分∠ABE ,∠CDE ,那么∠BFD 和∠BED 有怎样的数量关系?请说明理由.理由.(3)如图3,点E 在直线BD 的右侧,BF ,DF 仍平分∠ABE ,∠CDE ,请直接写出∠BFD 和∠BED 的数量关系的数量关系.。
《平行线》全章复习与巩固(基础)知识讲解

《平行线》全章复习与巩固(基础)知识讲解【学习目标】1. 熟练找出“同位角、内错角、同旁内角”;2. 区别平行线的判定与性质,能用性质和判定解决综合问题;3. 通过具体实例认识平移,理解平移的性质;4. 会运用平行线和平移的知识解决有关的简单问题.【知识网络】【要点梳理】要点一、平行线的定义及三线八角1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线.要点诠释:(1)平行线定义中包含三层含义:在同一平面内、不相交、两条直线.(2)基本事实:经过直线外一点,有且只有一条直线与这条直线平行.2.三线八角:要点二、平行线的判定和性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线互相平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线间的距离处处相等.(2)初中阶级学习了三种距离:两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同. 要点三、图形的平移定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.要点诠释:平移的性质:(1)平移不改变图形的形状与大小,只改变图形的位置.(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.【典型例题】类型一、平行线的定义及三线八角1. (乌兰察布校级期中)a、b、c是平面上任意三条直线,交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对举一反三:【变式】如图,在正方体中:(1)找出与线段AB平行的线段:_________;(2)找出与线段AB相交的线段:______.2.如图,已知直线a、b被直线c所截. 图中八个角共有组同位角,组内错角,组同旁内角.举一反三:【变式】观察下图并填空:(1) ∠1 与是同位角;(2) ∠5 与是同旁内角;(3) ∠1 与是内错角.类型二、平行线的判定和性质3.如图,已知∠ADE = ∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( ).A.180°B.270°C.360°D.540°举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.类型三、图形的平移5.如图(1),线段AB经过平移有一端点到达点C,画出线段AB平移后的线段CD.举一反三:【变式】(福州自主招生)如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是()A. B. C. D..类型四、综合应用6.如图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固练习】一、选择题1.下列图中,∠1和∠2是对顶角的有()个.A.1个B.2个C.3个D.4个2.如图所示是同位角关系的是().A.∠3和∠4 B.∠1和∠4 C.∠2和∠4 D.不存在3.(春•鄂城区月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4 B.3 C.2 D.14.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是().A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.无法确定5.如图所示中,不能通过基本图形平移得到的是().6.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于().A.75°B.105°C.45°D.135°7.下列说法中,正确的是().A.过点P画线段AB的垂线.B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥AB.C.过一点有且只有一条直线垂直于已知直线.D.过一点有且只有一条直线平行于已知直线.8.如果在同一平面内有两个图形甲和乙,通过平移,总可以完全重合在一起(不论甲和乙的初始位置如何),则甲和乙是().A.两个点B.两个半径相等的圆C.两个点或两个半径相等的圆D.两个能够完合重合的多边形二、填空题9.如图所示,AB∥CD,EF分别交AB、CD于G、H两点,若∠1=50°,则∠EGB=________.10.(盐津县校级月考)平行用符号 表示,直线AB 与CD 平行,可以记作为 .11.每天小明上学时,需要先由家向东走150米到公共汽车站点,然后再乘车向西900米到学校,每天小明由家到学校移动的方向是________,移动的距离是________.12. (大庆校级自主招生)如图,点E 在AC 的延长线上,对于给出的四个条件: (1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE ;(4)∠D+∠ABD=180°. 能判断AB ∥CD 的有 个.13.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.14.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c .15. 如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西 .16.如图所示,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有 条.三、解答题17.(滨湖区校级期末)把图中的互相平行的线写出来,互相垂直的线写出来:18.如图所示,已知∠1=∠2,AC 平分∠DAB ,你能推断哪两条线段平行?说明理由.19.如图,在一块长为a 米,宽为b 米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其它部分都是草地.求草地的面积.北 北 甲 乙20.如图所示,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线
例1 翻折
1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1
的度数是
.
2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .
例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为 度.
1
A
E D B C
例3 平行线的性质
1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .
(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.
(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.
(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.
2、如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5=.
3、已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.
例4 平移
1、如图1所示,已知BC∥OA,∠B=∠A=120°
(1)说明OB∥AC成立的理由.
(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.
(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.
2、如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠CBD的度数;
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.
例5 作图—应用
1、(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.
(2)如图2,在一条河的两岸有A,B两个村庄,现在要在河上建一座小桥,桥的方向与河岸方
向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.
图2图1
B
A
2、如图,平面上有直线a及直线a外的三点A、B、P.
(1)过点P画一条直线m,使得m∥a;
(2)过B作BH⊥直线m,并延长BH至B′,使得BB′为直线a、m之间的距离;
(3)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.
【巩固练习】
1、如图,AB
∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P ﹣2∠C=57°,则∠C等于()
A.24°B.34°C.26°D.22°第1题图第2题图
2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()
A.76°B.78°C.80°D.82°
3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()
A.平行B.垂直C.平行或垂直D.无法确定
4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有()
A.1个B.2个C.3个D.4个
第4题图第5题图
5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.
第7题图第8题图第9题图
7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为.
8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .
9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是.
10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;
(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;
(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.
11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
12、如图1,AB∥CD,E是AB、CD之间的一点.
(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;
(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.
13、已知:如图,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①所示,求证:OB∥AC.(注意证明过程要写依据)
(2)如图②,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.
(ⅰ)求∠EOC的度数;(ⅱ)求∠OCB:∠OFB的比值;
(ⅲ)如图③,若∠OEB=∠OCA.此时∠OCA度数等于.(在横线上填上答案即可)
14、已知直线AB∥CD.
(1)如图1,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
(3)如图3,点E在直线BD的右侧,BF,DF仍平分∠ABE,∠CDE,请直接写出∠BFD和∠BED 的数量关系.。