3.1随机事件的概率

合集下载

3.1随机事件的概率(上课用)

3.1随机事件的概率(上课用)

出生婴儿数 出生男婴数
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524. 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
2、游戏的公平性
在一场乒乓球比赛前,必须要决定由 谁先发球,并保证具有公平性,你知道裁 判员常用什么方法确定发球权吗?其公平 性是如何体现出来的?
裁判员拿出一个抽签器,它是-个像大硬币似的均 匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一 名运动员,要他猜上抛的抽签器落到球台上时,是红圈 那面朝上还是绿圈那面朝上.如果他猜对了,就由他先 发球,否则,由另一方先发球. 为什么要这样做呢? 这样做体现了公平性,它使两名运动员的先发球机 会是等可能的.用概率的语言描述,就是两个运动员取 得发球权的概率都是0.5.
对于某个现象,如果能 让其条件实现一次,就是 进行了一次试验 . 试验和实验的结果,都 是一个事件.
试判断这些事件发生的可能性: (1)木柴燃烧, 产生热量必然发生 必 然 (2)明天,地球仍 事 会转动 必然发生 件 (3)实心铁块丢入水中, 不 铁块浮起 不可能发生 可 0 能 (4)在标准大气压0 C以下, 事 雪融化 不可能发生 件
特等奖;同时抛10枚硬币,10枚都正面朝上。 (2)例如:在王府井大街问路时,碰到会说中文的人;去 烤鸭店的顾客点烤鸭;在1—1000的自然数中任选一个
习题答案
数,选到的数大于1。
课堂小结
(1)必然事件:在条件S下,一定会发生的事件, 叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的 事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为 相对于条件S的确定事件; (4)随机事件:在条件S下可能发生也可能不 发生的事件,叫相对于条件S的随机事件。

北师大版必修三3.1随机事件的概率

北师大版必修三3.1随机事件的概率

3:某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 进球次数
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 30
0.75
50 40
0.80
进球频率
(1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约是多少? 概率约是0.8 (3)这位运动员进球的概率是0.8,那么他投10次篮一定能 投中8次吗? 不一定. 投10次篮相当于做10次试验,每次试验的结果都是随 机的, 所以投10次篮的结果也是随机的. 但随着投篮次数的增 加,他进球的可能性为80%.
思考:在实际问题中,随机事件A发生 的概率往往是未知的(如在一定条件下 射击命中目标的概率),你如何得到事 件A发生的概率? 通过大量重复试验得到事件A发 生的频率的稳定值,即概率.
思考:在相同条件下,事件A在先后两次 试验中发生的频率fn(A)是否一定相等? 事件A在先后两次试验中发生的概率 P(A)是否一定相等? 频率具有随机性,做同样次数的重 复试验,事件A发生的频率可能不相同; 概率是一个确定的数,是客观存在的, 与每次试验无关.
练一练
1.抛掷100枚质地均匀的硬币,有下列一些说法: ①全部出现正面向上是不可能事件; ②至少有1枚出现正面向上是必然事件; ③出现50枚正面向上50枚正面向下是随机事件, 以上说法中正确说法的个数为 A.0个 B.1个 C.2个 D.3个 (B)
2.下列说法正确的是 ( C ) A.任何事件的概率总是在(0,1)之间 B.频率是客观存在的,与试验次数无关 C.随着试验次数的增加,频率一般会越来越接近概率 D.概率是随机的,在试验前不能确定

3.1 随机事件的概率 课件(北师大必修3)

3.1 随机事件的概率 课件(北师大必修3)

200 20 所以, n ≈ ,解得 n≈1 500, 150 所以该自然保护区中天鹅的数量约为 1 500.
[悟一法]
利用频率近似等于概率的关系求未知量 (1)抽出 m 个样本进行标记,设总体容量为 n,则标记概 m 率为 n ; (2)随机抽取 n1 个个体,出现其中 m1 个被标记,则标记 m1 频率为 n ;
0.524,0.494,这些数字在0.5附近左右摆动,由概率的统 计定义可得,“正面向上”的概率为0.5.
[悟一法] 频数、频率和概率三者之间的关系
(1)频数是指在n次重复试验中事件A出现的次数,频
率是频数与试验总次数的比值,而概率是随机事件发生的 可能性的规律体现; (2)随机事件的频率在每次试验中都可能会有不同的 结果,但它具有一定的稳定性;概率是频率的稳定值,不 会随试验次数的变化而变化.
估计该自然保护区中天鹅的数量.
[自主解答]
设保护区中天鹅的数量为 n,假定每只天鹅
被捕到的可能性是相等的,从保护区中任捕一只,设事件 A= 200 {捕到带有记号的天鹅},则 P(A)= n . 第二次从保护区中捕出 150 只天鹅,其中有 20 只带有记 号,由概率的定义可知 P(A)≈ 20 . 150
(2)这位运动员投篮一次进球的概率P≈0.76.
[研一题]
1 掷一颗均匀的正方体骰子得到 6 点的概率是 , 6
[例 2]
是否意味着把它掷 6 次能得到 1 次 6 点?
[自主解答]
把一颗均匀的骰子掷 6 次相当于做 6 次试
验, 因为每次试验的结果都是随机的, 所以做 6 次试验的结 果也是随机的. 这就是说, 每掷一次总是随机地出现一个点 数,可以是 1 点,2 点,也可以是其他点数,不一定出现 6 1 点.所以掷一颗骰子得到 6 点的概率是 ,并不意味着把它 6 掷 6 次能得到 1 次 6 点.

人教版高中数学必修三3.1.1-随机事件的概率

人教版高中数学必修三3.1.1-随机事件的概率

知识梳理
频率与概率的联系与区分
频率是概率的近似值,概率是频率的稳定 值,随着实验次数的增加,频率会稳定在 概率附近;
频率本身是随机的,在实验前不能确定;
概率是一个确定的数,是客观存在的,与 实验次数无关。
思考?
问题4:根据概率的概念,是不是实验次 数多的频率一定比实验次数少的频率更 接近于概率?
注:相对于条件S下
探究新知(一)
思考:下面事件属于什么事件:
明天会下雨 太阳东升西落 煮熟的鸭子飞了
水中捞月 买的彩票中了500万大奖
奥运冠军张梦雪射击四次,四次命中把心
探究新知(二) 概率——度量事件产生可能性的大小
探究新知(二)
实验方案
假设同学们手中都是质ห้องสมุดไป่ตู้均匀的一元硬币
1 三人一小组,每小组掷硬币10次; 2 以数学书的高度作为掷硬币的高度,将 硬币竖立落下,规定有数字一面为正面; 3左手边同学扶书,中间同学掷硬币,右 手边同学记录硬币正面朝上的次数,并填 入课本P109的表格中。
第三章 概率 3.1随机事件的概率
创设情境 引出课题
早上,我起床晚了,急忙去学校上学,在学 校楼梯上遇到了班主任,他批评了我,哎,我 想我今天运气不好,班主任经常在办公室的啊! 我决定明天一定不能迟到了,不然明早我又会 在楼梯上遇到班主任了。
中午放学回家,看了场篮球赛,我想长大后 我会比姚明还高,我将长到100m高。
知识运用
射击次数n
10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率 m
n
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是 多少?

3.1 随机事件的概率

3.1 随机事件的概率

3.天气预报的概率解释:
天气预报是气象专家根据观测到的气象资 料和专家们的实际经验,经过分析推断得到的. 它不是本书上定义的概率,而是主观概率的一种. 〖思考〗某地气象局预报说,明天本地降 水概率为70%,你认为下面两个解释中哪一个代 表气象局的观点? (1)明天本地有70%的区域下雨,30%的区 域不下雨;
必然事件发生的概率为1;不可能事 件发生的概率为0;随机事件发生的概率 P(A)∈(0,1).
二.概率的定义: 对于随机事件,知道它发生的可能性 大小是非常重要的.用概率度量随机事件 发生的可能性大小能为我们的决策提供 关键性的依据.那么,如何才能获得随机事 件发生的概率呢?
1.掷硬币试验: 第一步:……第二步:……第三步:…… 第四步:请把全班每个同学的试验中正面朝上 的次数收集起来,并用条形图表示. 正面出现次数的频数表 第五步:请同学们找出掷硬币时“正面朝上” 这个事件发生的规律性. 随着试验次数的增加,正面朝上的频率稳 定于0.5附近.

(2)明天本地下雨的机会是70%.
例:生活中,我们经常听到这样的议论: “天气预报说昨天降水概率为90%,结果根本 一点雨都没下,天气预报也太不准确了。”学 了概率后,你能给出解释吗? 解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此, “昨天没有下雨”并不说明“昨天的降水概 率为90%”的天气预报是错误的。
例1:把同样大小的9个白色乒乓球和1个黄色 乒乓球放在一个不透明的袋子中,每次摸出1球后 放回袋中,这样摸10次, (1)每次摸到白球的可能性大还是黄球的可 能性大?
(2)摸的10次中是否一定至少有1次摸到黄球? 答:每次摸到白球的概率是0.9,而每次摸到 黄球的概率为0.1,因此每次摸到白球的可能性 要大.

课件3:3.1.1 随机事件的概率

课件3:3.1.1 随机事件的概率

频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.

3.1 随机事件的概率

3.1 随机事件的概率

3.1 随机事件的概率【知识点总结】3.1.1 —3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

人教A版高中数学必修3《第三章 概率 3.1 随机事件的概率 3.1.2 概率的意义》_1

概率的意义一、教材内容分析本节为人教版必修3第三章3.1随机事件的概率中的第二小节3.1.2概率的意义,通过本节的学习,学生能正确理解概率。

本节在内容和结构上起着承上启下的作用,乘上:通过了解概率的意义,明白概率与第二章统计的联系;启下:通过了解概率的重要性,引出后两节概率的计算。

二、教学目标1.知概念识与技能:正确理解概率的意义;了解概率在实际问题中的应用,增强学习兴趣;进一步理解概率统计中随机性与规律性的关系。

2.过程与方法:通过对生活中实际问题的提出,学生掌握用概率的知识解释分析问题,着重培养学生观察、比较、概括、归纳等思维能力,并进一步培养将实际问题转化为数学问题的数学建模思想。

3.情感态度与价值观:鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,激发学生的学习兴趣。

三、学情分析学生已经学习了3.1随机事件的概率再加上初中对概率的了解,所以学生的认知起点较高,理解本节内容不难。

作为新授课,学生对于概率在实际问题中的应用具有较高的学习兴趣,但是用概率的知识解释问题的能力仍需进一步提高。

教师在本节讲授需要注意理论联系实际,同时注意培养学生的科学素养。

四、教学重难点重点:概率的正确理解及在实际中的应用难点:实际问题中体现随机性与规律性之间的联系,如何用概率解释这些具体问题。

五、教学策略1.教学方法:讲授法,讨论法,引导探究法2.教学手段:多媒体教学工具六、教学过程学生——完成探究并且回答原因不公平,各班被选到概率不相等,其中7班被选中概率最大..2决策中的概率思想问题:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为生产过程中发生小概率事件,我们有理由认为生产过程中出现了问题,应该立即停下生产进行检查。

3.天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。

你认为下面两个解释中哪一个能代表气象局的观点?教师、学生——归纳总结. 归纳提升:七、板书设计八、教学反思本节是培养学生对数学产生兴趣的关键一节,教师要紧抓理解概率的意义和培养学生的学习兴趣这两个任务进行教学,通过生日在同一天的探讨,“生日悖论”的提出和在实际问题中的应用,提高学生学习数学的兴趣,通过孟德尔的豌豆试验培养学生科学探究的意识,树立学生严谨的科学观. 该节课十分有创意,在教材内容的基础上作了适当的必要的扩展,激发学生兴趣,教学目的明确,方法得当,引导自主探究、合作交流完成任务,整个课堂效率非常高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规定:必然事件发生的概率为1;不 可能事件发生的概率为0;随机事件发生 的概率P(A)∈(0,1).
二.概率的定义: 对于随机事件,知道它发生的可能性 大小是非常重要的.用概率度量随机事件 发生的可能性大小能为我们的决策提供 关键性的依据.那么,如何才能获得随机事 件发生的概率呢?
随机事件在一次试验中是否发生 虽然不能事先确定,但是在大量重 复试验(随机试验)的情况下,它 的发生是否会呈现出一定的规律性 呢?
276
2557 4948
0.552 0.5114
0.4948
138
685 1313 6838 13459
2000 10000
20000
10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
摸彩球试验(3个球里有2个红球)
出现正 面的频 m 率 n

摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
0.2 0.54
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838 0.67295
500
5000 10000 20000 50000
汽车在一年内出交通事故的概率就是未知的,保险公司收取汽车 的保险费就与此概率有关,一般以当地交通部门的统计数据为依 据,得到该事件发生的频率作为一年内出交通事故的概率的估计 值.
(2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
因此,我们可以用这个常数来事件A,如果随着试验 次数的增加,事件A发生的频率fn(A)稳定 在某个常数上,把这个常数记作 P(A), 称为事件A的概率。 因此,可以用频率fn(A)来估计概率 P(A).
频率与概率的区别与联系:
(1)频率是概率的近似值,随着试验次数的增 加,频率会越来越接近概率.在实际问题中,通常事 件的概率未知,常用频率作为它的近似值.比如一辆
2、如何计算随机事件发生的概率?
最直接的方法就是试验(观察)
1.掷硬币试验: 第一步:……第二步:……第三步:…… 第四步:请把全班每个同学的试验中正面朝上 的次数收集起来,并用条形图表示.
第五步:请同学们找出掷硬币时“正面朝上” 这个事件发生的规律性. 随着试验次数的增加,正面朝上的频率稳 定于0.5附近.
• • • • •
例1:指出下列事件是必然事件,不可能事 件,还是随机事件? (1)某同学竞选学生会主席的成功性; (2)当x是实数时,x2≥0; (3)技术充分发达后,不需要任何能量的 “永动机”将会出现; (4)一个电影院某天的上座率超过50%. (5)某人给朋友打电话,却忘记了电话号码 的最后一个数,就随意的按了一个数字,刚 好是朋友的电话号码。
率是10%”,可能绝大多数人出门都不会带雨具; 而如果天气预报报道“今天降水的概率是90%”, 那么大多数人出门都会带雨具.
2.由特殊的事件转到一般事件: 一般说来,随机事件A在每次试验中是否 发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率会逐渐稳 定在区间[0,1]中的一个常数上. 3.解释这个常数代表的意义: 这个常数越接近于1,表明事件A发生的频 率越大,频数就越多,也就是它发生的可能性越 大;反过来,事件发生的可能性越小,频数就越少, 频率就越小,这个常数也就越小.
随机试验(抛硬币、掷骰子试验)
• ①试验可以在相同的情形下重复进行; • ②试验的所有结果是明确可知的,但不止 一个; • ③每次试验都是出现这些结果中的一个, 但在一次试验之前却不能确定这次试验会 出现哪一个结果。
探究
1、对于随机事件,如何来度量他发生的可能性?
概率度量随机事件发生的可能性的大小
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
投掷一枚硬币,出现正面可能性有多大?
★频数与频率: 在相同的条件S下重复n次试验,观察 某一事件A是否出现,称n次试验中事件A 出现的次数nA为事件A出现的频数;
nA 称事件A出现的比例fn(A)= 为事 n 件A出现的频率.
频率的取值范围是[0,1].
活动 与 探究
抛硬币试验
试验次 数(n) 10 100 出现正 面的次 数(m) 2 54
试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
(3)概率是频率的稳定值,概率是一个确定 的数,是客观存在的,与每次试验无关.
比如,如果一个硬币是质地均匀的,则掷硬币出现正面朝上的 概率就是0.5,与做多少次试验无关.
三.求随机事件概率的必要性: 知道事件的概率可以为人们做决策提 供依据. 概率是用来度量事件发生可能性大小 的量.小概率事件很少发生,而大概率事件 经常发生.例如天气预报报道“今天降水的概
不可能事件
随机事件
• 在一定条件S下,一定会发生的事件,叫做相 对于条件S的必然事件,简称必然事件. • 在一定条件S下,一定不会发生的事件,叫做 相对于条件S的不可能事件,简称不可能事件. • 在一定条件S下可能发生也可能不发生的事 件,叫做相对于条件S的随机事件;简称随 机事件. • 确定事件和随机事件统称为事件,一般用大 写字母A,B,C……表示.
相关文档
最新文档