初中数学冀教版九年级下册第三十一章 随机事件的概率31.3 用频率估计概率-章节测试习题

合集下载

2019-2020年初中九年级下册数学第31章 随机事件的概率31.3 用频率估计概率冀教版复习特训

2019-2020年初中九年级下册数学第31章 随机事件的概率31.3 用频率估计概率冀教版复习特训

2019-2020年初中九年级下册数学第31章随机事件的概率31.3 用频率估计概率冀教版复习特训第二十八篇➢第1题【单选题】一个盒子中装有9颗蓝色幸运星,n颗红色幸运星,从中任意取出一颗红色幸运星的频率为0.25,则n为( )A、1B、3C、5D、7【答案】:【解析】:➢第2题【单选题】如图,任意抛掷一只纸质茶杯,下列与此事有关的描述正确的是( )A、杯口向下的概率为有误B、杯口朝上可能性很小,所以是不可能事件C、小红掷了5次,有4次杯子横卧,所以杯子横卧的概率为0.8D、当抛掷次数充分大时,杯口向上发生的频率可用来估计抛掷茶杯杯口向上的概率【答案】:【解析】:➢第3题【单选题】一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有( )个黄球.A、30B、15C、20D、12【答案】:【解析】:➢第4题【单选题】一个口袋中有红、白、黑球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后放回袋中.不断重复这个过程,共摸了100次球,发现有49次摸到红球,21次摸到黑球,则袋中白球大约是( )A、5个B、4个C、3个D、2个【答案】:【解析】:➢第5题【单选题】关于频率和概率的关系,下列说法正确的是( ).A、频率等于概率;B、当实验次数很大时,频率稳定在概率附近;C、当实验次数很大时,概率稳定在频率附近;D、实验得到的频率与概率不可能相等【答案】:【解析】:➢第6题【填空题】在一个不透明的布袋中装有除颜色外其余都相同的红、黄、蓝球共200个,墨墨通过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在25%和55%,则口袋中可能有黄球______个.【答案】:【解析】:➢第7题【填空题】在一个不透明的口袋中装有8个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则口袋中白球可能有______个.【答案】:【解析】:➢第8题【填空题】【答案】:【解析】:➢第9题【填空题】某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是______(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.A、③【答案】:【解析】:➢第10题【填空题】一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼______尾.【答案】:【解析】:➢第11题【填空题】某口袋中有红色、黄色、黑色的小球共50个,这些小球除颜色外都相同,通过多次试验后发现摸到红色球的频率稳定在20%,则袋中红色球是______个。

九年级数学下册31随机事件的概率教案(新版)冀教版

九年级数学下册31随机事件的概率教案(新版)冀教版

第三十一章随机事件的概率1.体会有些事件的发生是确定的,有些是不确定的.在具体问题情景中,能区分必然事件、不可能事件、随机事件.2.了解事件发生的可能性有大小之分,能对一些简单事件发生的可能性大小作定量描述.3.通过试验,知道大量重复试验时的频率具有稳定性,用频率估计事件发生的概率.4.能利用表格或树形图列举试验的所有可能结果,求简单事件的概率.5.能设计简单的试验,验证对事件发生的可能性大小的直观猜想.1.经历猜测、试验、收集与分析试验结果的过程,归纳出三种事件的各自的本质特征,抽象成数学概念.2.通过现实生活中的问题的探究,体会运用数学知识解决实际问题的方法,感受数学知识与现实世界的联系.3.通过直觉判断——试验——汇总试验数据——分析数据——发现规律等探究过程,让学生体会探究的乐趣,增强学习的自信心.4.通过观察列举法的结果是否重复和遗漏,总结列举不重复不遗漏的方法,培养学生观察、归纳、分析问题的能力.5.通过运用列表法或树形图法求事件的概率解决实际问题,提高学生解决问题的能力,发展应用意识.6.经历运用列表法或树形图法解决概率实际问题的过程,渗透数学建模的思想,感知数学的应用价值.1.从具体生活实例出发,观察、思考、总结,确定事件的分类,学会与他人合作交流,培养合作精神,发展随机观念.2.体验从事物的表象到本质的探究过程,感受数学的科学严谨性及生活中丰富的数学现象.3.通过在试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,培养学生的探索精神.4.在观察、思考、试验、归纳等数学活动中,培养学生的辩证唯物主义观点,增强学生的学科意识.5.通过对实际问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想.6.通过具体实际生活情景,经历用频率估计概率的过程,激发学生的学习兴趣,体验数学的应用价值.统计与概率主要研究现实生活中的数据和客观世界中的随机现象,它通过对数据的收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们作出合理的决策.对统计与概率知识的认识,学生在七八年级每学期都有接触,知识螺旋上升,逐步推进.现实生活中存在大量的不确定事件,在一次观察和试验中,不确定事件发生与否具有随机性,但在大量重复试验中却呈现出确定的规律性,而概率论正是研究这种不确定事件的规律性的学科.本章的内容包括认识确定事件和随机事件,理解概率的意义;初步认识频率的稳定性,用频率估计概率;用列举法求简单事件的概率.通过本章的学习,使学生初步感受随机现象,树立随机的观念,为进一步学习统计与概率的知识和方法奠定基础.对于随机事件的认识,让学生观察、分析摸球试验,体验有些事件的发生是不确定的,从而能区分确定事件和随机事件;随机事件发生的可能性相同时,可以利用概率公式计算事件的概率;用列举法分析事件发生的所有可能情况的结果数一般有列表和画树状图两种方法;随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定.这个稳定值就可以作为该事件发生概率的估计值.用等可能事件的概率公式解决一些现实问题,用频率来估计事件发生的概率在生活生产中有着广泛的应用.它有助于我们在错综复杂的情况下,分析事件的本质属性,帮助我们作出合理的判断,这是本章学习的重点.等可能事件的概率的计算往往需要学生有较强的分析和综合能力,对在保持试验条件不变的情况下,随着试验次数的增加,某事件出现的频率趋于稳定,学生较难理解,是本章教学的难点.【重点】理解随机事件、必然事件、不可能事件的定义,并能准确地对某一事件进行判断;理解概率的意义,会用列表法和树形图法求事件的概率,并能利用概率知识解决日常生活中的实际问题.【难点】理解概率的意义;会用列表法和树形图法求确定事件发生的概率,并能利用概率解决实际问题.1.概率内容比较抽象,试验的不确定性、概率结果的唯一性,常常使学生感到困惑.所以教学中应多选取贴近学生生活的实际问题,通过观察、分析大量学生熟悉而有趣的问题,使学生认识到不确定现象的普遍性,丰富对概率背景的认识.让学生亲身经历试验,分析试验结果,经历观察与思考、一起探究、大家谈谈等数学活动过程,调动学生的学习积极性,激发对概率学习的兴趣,培养学生的主动参与意识.2.在本章的教学中,教师要注重引导学生积极参与试验,并和学生小组内交流试验结果,体会随机事件在一次试验中具有不确定性,在大量试验下却呈现出确定的规律.在教学设计中,要根据现有条件,设计方便操作的试验,由于试验耗费的时间较多,可以安排学生课下进行试验,课堂上重点进行汇报试验结果、数据交流、统计分析、讨论交流.3.列举法计算事件的概率的教学,教师要提供不同类型的问题情景,让学生进行充分的观察思考和讨论交流,形成解决问题的策略,并对不同的观点进行辨析.同时引导学生探究计算概率的方法,特别对于两步完成的试验,可以用列表法列举试验的结果,对于两步以上完成的试验,用树形图列举试验的结果.4.根据《数学课程标准》,“概率与统计”这块内容到这里已全部学完.应适当注意统计与概率之间的内在联系,频率作为概率的估计值就是体现两者联系的一个方面.用频率的近似值估计概率,在教学中有两点要引起重视.一是试验条件不变,二是随着试验次数的增加,频率趋于稳定,这个稳定值可作为概率的估计值.试验条件不变实际上不容易做到,有条件的话用计算机模拟试验,教学效果将更好.31.1确定事件和随机事件1课时31.2随机事件的概率2课时31.3用频率估计概率2课时31.4用列举法求简单事件的概率2课时回顾与反思1课时31.1确定事件和随机事件1.初步认识有些事件的发生是确定的,有些事件的发生是不确定的.2.在具体的问题情景中区分必然事件、不可能事件和随机事件,能正确地描述事件.1.经历猜测、试验、收集与分析试验结果的过程,归纳出三种事件的各自的本质特征,抽象成数学概念.2.通过观察一些现象,初步认识有些事件的发生是确定的,有些事件的发生是不确定的,体会数学与生活密切联系.1.从具体生活实例出发,观察、思考、总结,确定事件的分类,学会与他人合作交流,培养合作精神,发展随机观念.2.体验从事物的表象到本质的探究过程,感受数学的科学严谨性及生活中丰富的数学现象.【重点】必然事件、随机事件和不可能事件的特点.【难点】能够判断具体问题情景中的随机事件类型.【教师准备】多媒体课件.【学生准备】预习教材P60~62.导入一:(课件展示)如图所示,彩票号码摇奖器中,有10个质地、大小完全相同的球,分别标号为0,1,2,…,9.摇奖器在转动的过程中,将有一个球从下方的洞中漏出.你事先能确定这个球的号码吗?漏出球的号码有多少种可能结果?每个号码出现的可能性大小是否相同?【师生活动】教师展示课件,学生观察回答,教师导出本章课题——随机事件的概率.导入二:播放一段天气预报,引出一句古语:“天有不测风云”.(课件展示)请说明下列事件是否一定发生.(1)太阳从西边落下;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解.【师生活动】教师展示问题,学生思考回答,教师点评并提问“上述事件是确定的吗?”,学生思考回答后,教师导出本节课课题——确定事件和随机事件.[设计意图]通过教材章题页中的彩票摇奖问题简要指明了本章学习的研究内容,激发学生的学习兴趣.通过学生熟知的生活常识和学科知识中生动的、有趣的实例,引出必然事件和不可能事件,很自然地进入新知识的学习和探究,同时体会数学与生活实际息息相关.观察与思考(课件展示)观察下列摸球试验,思考相应的问题.试验1:A盒中有10个大小和质地都相同的红球,搅匀后从中任意摸出1个球.事先能肯定摸到的是红球吗?能摸到黄球吗?试验2:B盒中有10个大小和质地都相同的球,其中6个是红球,4个是黄球,搅匀后从中任意摸出1个球.事先能肯定摸到的是红球吗?能肯定摸到的是黄球吗?试验3:C盒中有10个大小和质地都相同的球,分别标号为0,1,…,9,搅匀后从中任意摸出1个球.摸到球的号码有多少种可能结果?事先能肯定摸到球的号码是几吗?思路一【师生活动】学生独立思考后,小组内合作交流,小组代表回答,教师点评.教师根据学生回答归纳:(1)在试验1中,由于A盒中全是红球,所以摸到的肯定是红球.我们说“摸到红球”是必然发生的事情.由于A盒中没有黄球,所以肯定不会摸到黄球,即“摸到黄球”是不可能发生的事情.(2)在试验2中,可能摸到红球,也可能摸到黄球,事先不能肯定摸到的是红球还是黄球.我们说“摸到红球”和“摸到黄球”都是随机发生的事情.(3)在试验3中,标号为0,1,…,9的球都有可能被摸到,共有10种可能结果,但事先不能肯定哪种结果会发生.教师提问:1.在试验1中,“摸到红球”“摸到黄球”的事件分别是什么事件?2.在试验2中,“摸到红球”和“摸到黄球”是什么事件?【师生活动】学生思考回答,师生共同归纳概念.(课件展示)在一定条件下,必然发生的事情叫做必然事件,不可能发生的事情叫做不可能事件,可能发生也可能不发生的事情叫做随机事件.必然事件和不可能事件统称为确定事件.思路二【师生活动】学生独立思考回答试验1,学生亲自做试验2和试验3,重复试验几次,观察事件发生的情况,并回答提出的问题.教师引导思考:上面的事件可以分几类?各类事件有什么特点?【师生活动】学生观察思考后,小组合作交流,小组代表回答,教师点评,师生共同归纳有关概念.(课件展示)在一定条件下,必然发生的事情叫做必然事件,不可能发生的事情叫做不可能事件,可能发生也可能不发生的事情叫做随机事件.必然事件和不可能事件统称为确定事件.追加提问:1.在试验1中,“摸到红球”和“摸到黄球”分别是什么事件?2.试验2中,“摸到红球”和“摸到黄球”分别是什么事件?【师生活动】学生思考回答,教师点评.[设计意图]从试验出发,学生观察、思考、归纳,体会不同类型的事件的特点,培养学生的归纳总结能力,体会数学与生活之间密切联系.做一做(课件展示)【思考1】对于试验3,指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)摸到球的号码不超过9;(2)摸到球的号码为6;(3)摸到球的号码为10;(4)摸到球的号码为奇数.【师生活动】学生独立思考,小组内交流答案,小组代表回答,教师点评并给出提示.【提示】为方便起见,一般用大写拉丁字母A,B,C,…表示事件.例如,在试验3中,可设A=“摸到球的号码为奇数”,B=“摸到球的号码为偶数”,事件A和B都是随机事件.【思考2】你能举出现实生活中有哪些随机事件的实例吗?【师生活动】学生思考回答,教师鼓励学生大胆发言,教师点评并课件展示生活中常见实例.(课件展示)(1)抛掷一枚硬币,硬币落地后,“正面朝上”和“反面朝上”都是随机事件.(2)上学路上,小明在某个有交通信号灯的路口“遇到红灯”是随机事件.(3)小亮拨打火车票订票电话,“线路占线”是随机事件.(4)从一批节能灯管中任意抽查一只,“使用寿命超过3000 )表示“甲盒中抽取的卡片上的数为m,乙盒中抽取的卡片上的数为n”这一结果.(1)这样的“数对”共有多少种可能结果?(2)将所有这样的“数对”的可能结果及对应的两数之和填入下表:可能结果两数的和(3)P(两数之和为奇数)=,P(两数之和为偶数)=.【师生活动】学生独立思考完成后,小组内交流答案,小组代表展示结果,教师点评.[设计意图]通过做一做,进一步巩固求等可能事件的概率的方法,培养学生独立思考的习惯.例题讲解(课件展示)(教材第67页例2) 一副扑克牌除去“大、小王”后共有52张,充分洗匀后从中任意抽取1张牌.(1)抽到红心牌的概率是多大?(2)抽到A牌的概率是多大?(3)抽到红色牌的概率是多大?教师引导分析:1.52张扑克牌中任意抽取一张共有多少等可能的结果?2.52张扑克牌中红心牌有多少张、A有几张、红色牌有多少张?3.52张扑克牌中任意抽取一张,抽到红心的等可能的结果有几种?抽到A、抽到红色牌呢?4.你能根据概率的定义分别求出以上事件的概率吗?【师生活动】学生根据教师提出的问题,独立思考完成,小组内合作交流答案,小组代表展示,教师点评.(板书)解:从52张扑克牌中任意抽取1张牌,共有52种等可能结果,其中抽到红心牌的结果有13种,抽到A牌的结果有4种,抽到红色牌(红心牌13张、方块牌13张)的结果有26种.所以:P(抽到红心牌)==,P(抽到A牌)==,P(抽到红色牌)==.[设计意图]通过例题进一步理解简单事件的概率的意义,熟练应用概率的定义求简单事件的概率的方法步骤,培养学生分析问题、解决问题的能力.[知识拓展]1.概率是反映事件发生可能性大小的一般规律,同一个事件可能发生的概率与不可能发生的概率之和为1.2.在机会游戏中,判断游戏对甲、乙两人是否公平,即分别求出甲、乙两人获胜事件的概率,若两个事件的概率相等,则游戏公平,若两个事件的概率不相等,则游戏不公平.1.求简单事件概率的方法步骤.2.如何利用概率判断游戏是否公平.1.某种彩票中奖的概率是1%,下列说法正确的是()A.买1张这种彩票一定不会中奖B.买1张这种彩票一定会中奖C.买100张这种彩票一定会中奖D.买这种彩票中奖的可能性很小解析:中奖机会是1%,就是说中奖的概率是1%,机会较小,但也有可能发生.故选D.2.在一个不透明的口袋中,装有3个红球,2个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.解析:∵共5球在袋中,其中3个红球,∴摸到红球的概率为.故选C.3.写有“中国”“美国”“英国”“韩国”的四张卡片,从中随机抽取一张,抽到卡片所对应的国家在亚洲的概率是.解析:∵有“中国”“美国”“英国”“韩国”的四张卡片,卡片所对应的国家为亚洲的有“中国”“韩国”,∴从中随机抽取一张,抽到卡片所对应的国家为亚洲的概率是=.故填.4.从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为.5.小明和小华要下棋,在决定谁先下的时候,两人起了争执,都想自己先下,笑笑想了一个游戏规则:掷骰子,大于3小明先行,小于3小华先行,若恰好是3,两人不输不赢,你认为笑笑的游戏规则公平吗?大于3的有三种可能:4,5,6.小于3的有两种可能:1,2.所以小明先行的概率为=,小华先行的概率为=,因为≠,所以笑笑制订的游戏规则不公平.第2课时一起探究一一起探究二做一做例题讲解一、教材作业【必做题】【选做题】教材第69页习题B组的1,2题.二、课后作业【基础巩固】1.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的“6”,则她第三次抛掷,数字“6”朝上的概率为()A. B. C.1 D.无法确定摸出一个小球,其标号大于2的概率为 ()A. B. C. D.4.小刚掷一枚均匀硬币,结果是一连9次都掷出正面朝上,则他第10次掷硬币时,出现正面朝上的概率是()A.0B.1C.D.不确定5.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D.16.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸到一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.167.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.8.有4条线段,长度分别为3 cm,4 cm,5 cm,6 cm,从中任取3条,能构成直角三角形的概率是.9.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.10.在只有一张足球门票的情况下,两位球迷为决定谁去,进行了下面的游戏:两枚质地均匀的硬币同时抛出,若出现一正一反,则甲胜;若出现同正或同反,则乙胜.这样的游戏对甲、乙二人是否公平?【能力提升】11.一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是()A. B. C. D.12.某公司对一批某一品牌的衬衣的质量抽检结果如下表:抽查件数50 100 200 300 400 500次品件数0 4 16 19 24 30(1)从这批衬衣中任抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少需要准备多少件正品衬衣供买到次品的顾客调换?【拓展探究】13.如图所示的是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形),求下列事件的概率.(1)指针指向红色;(2)指针指向黄色或绿色.【答案与解析】1.A(解析:连续抛一均匀硬币2次,有可能两次都正面朝上,也可能都反面朝上,故选项A错误;连续抛一均匀硬币次都正面朝上,是一个随机事件,10次都可能正面朝上有可能发生,故选项B正确;大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故选项C正确;通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故选项D正确.)2.A(解析:根据题意,每个面出现的机会是相等的,所以第三次抛掷,朝上数字是“6”的概率是.)3.C(解析:从口袋中随机摸出一个小球,共有5种等可能的结果,而标号大于2的有3,4,5,共3种结果,所以所求概率为.)4.C(解析:抛掷一枚硬币,正面朝上的概率为,与投掷次数无关.)5.B(解析:四种图形中中心对称图形有2种,故P(中心对称图形)=.)6.B(解析:设有x个黄球,故P(抽到白球)==,故x=4.)7.(解析:∵共有8个粽子,火腿粽子有5个,∴从中任取1个,是火腿粽子的概率是.)8.(解析:4条线段中任取3条线段,共有3,4,5;3,4,6;4,5,6;3,5,6四种情况,其中3,4,5一组能构成直角三角形,所以所求概率为.)9.解:(1)从袋中摸出一个球是黄球的概率为=. (2)设从袋中取出x个黑球,根据题意可得=,解得x=2,所以从袋中取出2个黑球.10.解:这样的游戏对甲、乙二人公平.理由如下:两枚质地均匀的硬币同时抛出,可能的情况为:正正、正反、反正、反反,∴出现一正一反的概率是,出现同正或同反的概率是.∴这样的游戏对甲、乙二人公平.11.A(解析:观察这个图可知:黑色区域(3块)的面积占总面积(9块)的,故其概率为.)12.解:(1)=0.06,即从这批衬衣中抽1件是次品的概率约为0.06.(2)600×0.06=36(件),即至少需要准备36件正品衬衣供买到次品的顾客调换.13.解:按颜色把8个扇形分为红1、红2、绿1、绿2、绿3、黄1、黄2、黄3.所有可能结果的总数为8.(1)指针指向红色的结果有2种,∴P(指向红色)==. (2)指针指向黄色或绿色的结果有3+3=6(种),∴P(指向黄色或绿色)==.本节课通过设计判断一个机会游戏是否公平的问题情景,学生经过独立思考、小组合作交流、学生展示等数学活动作出判断,在教学活动中,教师鼓励学生大胆发表自己的看法,学生思维活跃,在具体情景中进一步理解概率的意义.在一起探究二中,教师引导学生用图形列举所有等可能的结果,为后边学习树形图求事件的概率打下铺垫,通过修改游戏规则,学生再次体会游戏是否公平通过两个事件的概率大小是否相等做出判断.做一做和例题讲解,教师把课堂再次交给学生,学生独立思考完成后,小组合作交流、展示,充分发挥学生在课堂上的主体作用,学生在课堂上体验成功的快乐,激发学习数学的兴趣.本节课是上节课求简单事件的概率的延续,大部分知识学生能够通过自主学习完成,在课堂上给学生自主学习、独立思考、小组合作交流的时间还是较少,教师放不开手脚,重复较多,在以后的教学中给学生更多的机会和时间,让他们充分融汇到自主学习中,在合作交流中提炼结论,让每个人在课堂上学到有价值的数学.此外学生第一次接触到用图形列举试验结果,教师在引导过程中语言不够简练明确,学生理解有困难时,没有通过具体事例,让学生亲自尝试用图形列举试验结果.本节课通过掷硬币游戏,判断游戏是否公平导入新课,学生在上节课学习概率的意义的基础上很自然地构建出新知识——通过计算事件的概率判断游戏是否公平,在教学设计中,给学生时间和空间进行独立思考、小组合作交流,让学生通过自主学习、合作交流归纳出结论,体验知识的形成过程.在教学设计中,用图形列举事件的结果是本节课的难点,教师引导语言要简练明确,设计一个小练习让学生独立完成,达到巩固难点的目的.最后的做一做及例题讲解,教师要放开手脚,让学生思考、交流完成,发挥学生的主体作用.练习(教材第68页)1.解:不同意,硬币正面朝上和反面朝上的概率都是,所以两人获胜的概率相同,游戏是公平的.2.解:丙的观点是正确的.理由为:指针停在蓝色区域的概率是不变的,与其他各次试验中指针停在何种区域无关,所以甲的观点不正确;指针停在蓝色区域的概率是,表明指针停在蓝色区域的可能性是,但并不说明重复试验三次一定会有一次指针停在蓝色区域,所以乙的观点不正确;由于三种颜色区域,在转盘中所占的比例相等,所以指针停在三个区域的概率相等.习题(教材第68页)A组。

冀教版九年级数学下册31.3 用频率估计概率 第2课时

冀教版九年级数学下册31.3 用频率估计概率 第2课时

31.3 用频率估计概率
第2课时
教学目标
1.知道当事件的试验结果不是有限个或结果发生的可能性不相等时,可以用频率来估计概率.
2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.
3.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学数学的思维方式思考生活中的实际问题,发展合作交流的意识和能力.
教学重难点
【教学重点】
理解当试验次数较大时,试验频率稳定于理论概率.
【教学难点】
理解利用频率估计概率.
课前准备

教学过程
思考:①观察统计表与统计图,你发现“成功”的频率有什么规律?
②随着抽取次数增加,“成功”的频率变化趋势有何规律?学生结合统计表和统计图思考.
(4)下面我们能否研究一下“失败”的频率情况?。

2020学年冀教版数学九年级下册第三十一章随机事件的概率 教案冀教版

2020学年冀教版数学九年级下册第三十一章随机事件的概率 教案冀教版

第三十一章随机事件的概率31.1 确定事件和随机事件学习目标1.理解必然事件、不可能事件和随机事件的概念;2.能够识别必然事件、不可能事件和随机事件.(重点)教学过程一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:必然事件、不可能事件、随机事件【类型一】必然事件例1下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4 D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误.故选C.【类型二】不可能事件例2下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.太阳从西边升起解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型三】随机事件例3下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________(填序号).解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是①③.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.三、板书设计必然事件:一定会发生不可能事件:一定不会发生随机事件:可能发生教学反思本节课由生活中常见的例子,引出必然事件、不可能事件、随机事件的概念,让学生了解到随机事件发生的可能性有大小,培养学生动脑的习惯,体验生活与新知识的紧密联系,提高学习兴趣.31.2 随机事件的概率31.2.1 概率的认识学习目标1.了解概率的定义,理解概率的意义;(重点)2.理解P (A )=mn(在一次试验中有n 种可能的结果,其中A 包含m 种)的意义.(重点) 教学过程 一、情境导入在如图所示(A ,B ,C 三个区域)的图形中随机撒一把豆子,豆子落在哪个区域的可能性最大?二、合作探究探究点:简单随机事件的概率 【类型一】 概率的简单计算例1盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A.13B.23C.16D.34解析:分母含有字母的式子是分式,整式a +1,a +2,2中,抽到a +1,a +2做分母时组成的都是分式,共有3×2=6种情况,其中a +1,a +2为分母的情况有4种,所以能组成分式的概率为46=23.故选B.方法总结:列举出所有情况,看能组成分式的情况占所有情况的多少即为所求的概率. 【类型二】 利用面积求概率例2一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知,阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.三、板书设计教学反思教学过程中,强调简单随机事件的概率的计算应确定事件总数及事件A 包含的数目.事件A 发生的概率P (A )的大小范围是0≤P (A )≤1.31.2.2 概率的简单应用学习目标1.进一步理解概率公式;(重点)2.能够用概率公式解决简单的实际问题. 教学过程 一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点:概率的简单应用 【类型一】 概率的实际应用例1小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120 B.15 C.14 D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14.故选C.方法总结:等可能性事件的概率的计算公式:P (A )=m n,其中n 是总的结果数,m 是该事件成立包含的结果数.【类型二】与函数有关的问题例2在y =□2x 2□8x □8的“□”中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中图象的顶点在x 轴上的概率为( )A.14B.13C.12D .1 解析:在“□”中,任意填上“+”或“-”,共有+++,++-,+-+,+--,-++,-+-,--+,---8种情况,当ac 的符号相同时,b 2-4ac =0,这种情况有+++,+-+,-+-,---4种,故图象的顶点在x 轴上的概率为48=12.故选C.方法总结:图象的顶点在x 轴上,即b 2-4ac =0,找出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【类型二】 游戏的公平性例3话说唐僧师徒越过石砣岭,吃完午饭后,三徒弟商量着今天由谁来刷碗,可半天也没个好主意。

最近冀教版九年级数学下册单元习题31.3 用频率估计概率

最近冀教版九年级数学下册单元习题31.3 用频率估计概率

冀教版初中数学九年级下册第三十一随机事件的概率31.3《利用频率估计概率》教学设计说明:本课通过以学生自主探究为出发点,以教师的诱导参与点拨为依托,通过丰富的实例及问题,让学生合作探讨,了解用频率估计概率的必要性和合理性,初步理解概率的统计定义;能通过对事件发生频率的分析,估计事件发生的概率;培养学生的动手能力和处理数据的能力,培养学生的理性精神.教材分析:“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究. 教材这样编排其主要意图有三:1、遵从概率的产生及发展规律. 历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律. 概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.学情分析:1、由于学生初学概率,且在此之前面对求概率的随机事件都是等可能事件,对于一些结果不是等可能的随机事件(如:认为姚明一次罚篮的结果进与不进是等可能的)会依然采取列举法,这类现象产生的原因是对用列举法求概率的两个条件把握不够,对事件发生的可能性大小分析不透彻所致.2、频率在一定程度上可以反映随机事件发生的可能性大小,但频率本身是随机的,在试验前不能确定,无法从根本上刻画事件发生可能性的大小,只有在大量重复试验的条件下,可以近似地作为这个事件的概率. 概率是巨大数据统计后得出的结论,是一种大的整体趋势,是频率在理论上的期望值,它是一个确定的常数,是客观存在的,与试验次数无关. 频率与概率是从量变到质变,是对立统一的. 对于初学者,对两者关系的理解,还需要一个循序渐进的过程.3、容易忽略“大量重复试验”这个用频率估计概率前提条件. 这一问题的出现也是对概率思想的内涵把握不够所致. 概率是针对大量重复试验而言的,如果试验次数太少,试验频率可能会与理论概率值产生较大的偏差,进而不能合理的估计概率.一、教学目标1、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性. 知道大量重复试验时频率可作为事件发生概率的估计值.2、结合生活实例,能进一步明晰频率与概率的区别与联系,了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.3、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.二、教学重难点:教学重点:了解用频率估计概率的必要性和合理性.教学难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.三、教学过程:(一)情景引入:问题1:姚明罚篮一次命中概率有多大?播放“NBA”(美国男子篮球职业联赛)08—09赛季火箭队VS奇才队的比赛片段,在姚明罚篮球出手后,画面停滞,屏幕显示:问题:姚明罚进的概率有多大?学生先思考、讨论、发言后媒体出示甲、乙、丙的说法:甲:100% 姚明是世界明星嘛!乙:50% 因为只有进和不进两种结果,所以概率为50%. 丙:80% 姚明很准的,大概估计有80%的可能性.同学们,你们同意谁的观点?学生充分交流后,老师对不同说法进行适当的评价,并借机复习用列举法求概率的条件,引导学生分析进与不进的可能性不相等,不能用列举法来求概率.师:那它究竟有没有规律,或者说还有没有其它的办法探求概率呢?屏幕上闪烁显示08—09赛季姚明罚篮命中率86. 6%.师:姚明的命中率从何而来?(统计结果)怎么统计的?(罚中个数与罚球总数的比值)这个比值叫什么?(这实际上就是频率,这种方法实际上就是用频率估计概率)在此基础上,导出课题.设计意图:从学生熟悉、感兴趣的事物和最喜欢的球星引入,激发学习兴趣的同时,得出姚明罚篮命中的可能性不相等,由此引发认知冲突,导入新课.(二)试验探究问题2:怎样用频率估计概率?1、抛掷一枚硬币正面(有数字的一面)向上的概率是二分之一,这个概率能否利用刚才计算命中率方法──通过统计很多掷硬币的结果来得到呢?设计意图:已知概率的情况下引入试验,基于以下原因:(1)抛掷硬币试验所需条件容易实现,可操作性强;(2)硬币试验历史上积累了大量数据,更有利于问题的说明;(3)用频率估计概率可以和前两节学习的概率的古典定义统一,两种不同的方法求得的是同一个概率,且概率的统计定义比古典定义更具一般性.2、试验一(掷硬币试验)全班共分8个小组,每小组5人,共抛50次,推荐组长一名,组长不参与抛掷.(1)抛掷要求:①抛掷时请将书本文具收入课桌内;②两人一组合,完成25次抛掷,一人抛一人画“正”记数,抛掷一次划记一次,“正面向上”一次划记一次;③抛的高度要达到自己坐姿的头顶高度,若硬币掉在地上,本次不作记录.(2)组长职责:①检查组员抛掷是否符合要求;②收集本组数据,把数据录入教师机中的抛掷情况表. 全班共同填写硬币抛掷统计表(表3),将第1组数据填在第一列,第1、2组的数据之和填在第二列,……8个组的数据之和填在第8列.设计意图:①“在相同条件下”使数据更真实有效;②合理分组,可以减少劳动强度,加快试验速度,同时在培养动手能力与探索精神中,培养团队协作精神.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)表3(硬币抛掷统计表)设计意图:这几个图表的给出可以正确有效地引导学生在有限的课堂时间内高效率地得到相关的试验数据及整理描述数据,为分析数据作准备. 同时,试验整个操作过程均由学生参与完成,教师只是作为组织者参与其中,关注学生的投入程度──能否积极、主动地从事各项活动,向同伴解释自己的想法,听取别人的建议与意见;关注学生在活动中表现出的实践能力、思维水平、团队意识.问题3:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0. 5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家的严谨,师:还有一位数学家,做了八万多次的试验.观察频率在0. 5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0. 5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关系?(试验次数越多频率越接近0. 5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0. 5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.设计意图:这六个问题的设置,循序渐进,促使学生更深入的分析数据,学生发现大量重复试验时频率稳定于概率,在头脑中再现了知识的形成过程,避免单纯地记忆,使学习成为一种再创造的过程.问题4:从一定高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不着地,估计一下哪种事件的概率更大.试验二(抛掷图钉试验)试验规则:1、全班分成8个小组,每小组5人,每组共完成50次试验,两人一组合完成25次试验,统一从数学课本高度处落下,做好记录;2、每个小组的组长汇总50次试验的结果,并报给教师,教师利用电子表格自动得出各组频率及累加后频率,绘制折线图.表4(小组抛掷图钉统计表)表5(图钉抛掷统计表)从表中可以发现,“图钉尖着地”的频率在左右摆动,并且随着统计数据的增加,这种规律愈加明显,所以估计从一定高度落下的图钉,图钉尖着地的概率是 .设计意图:学生通过抛掷硬币试验,初步得出大量重复试验时硬币正面向上的频率具有稳定性,可以用试验方法获得概率,但对于试验结果不具有等可能性的随机事件(如姚明罚篮一次进与不进可能性不等)是否具有稳定性尚不清楚,意在进一步说明频率的“稳定性”.(三)揭示新知问题5:为什么可以用频率估计概率?师:其实,不仅仅是掷硬币、掷图钉事件有规律,人们在大量的生产生活中发现:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率也总在一个固定数附近摆动,显示出一定的稳定性.引出瑞士数学家雅各布·伯努利最早阐明频率具有稳定性,介绍其家族前后三代共出13位大数学家和大物理学家,进行数学史的教育.师:由于大量重复试验的频率具有稳定性,由此可根据这个稳定的频率来估计概率.归纳:一般地,在大量重复试验中,如果事件A发生的概率m/n会稳定在某个常数p附近,那么事件A发生的概率P(A)=P.教师指出这是从统计的角度给出了概率的定义,也是探求概率的一种新方法,列举法仅限于试验结果有限个和每种结果出现的可能性相等的事件求概率,而用频率估计概率的方法不仅适用于列举法求概率的随机事件,而且对于试验的所有可能结果不是有限个,或各种结果发生的可能性不相等的随机事件,我们也可以用频率来估计概率.设计意图:引入瑞士数学家雅各布·伯努利的故事,增加学生学习数学的兴趣,同时,增加学习自信心,通过比较概率的统计定义与古典定义,引导学生发现用频率估计概率思想方法的重要作用.问题6:随机事件的概率P(A)有什么范围?对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?设计意图:通过探求取值范围,促进学生对用频率估计概率的内涵有更深一层的认识.(四)巩固练习问题7:“抢”某射击运动员在同一条件下的射击成绩记录如下:①计算表中相应的“射中9环以上”的频率(精确到0. 01);②这些频率稳定在哪一个常数附近?③根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1).设计意图:巩固新知,知能升级.问题8:“辩”(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对吗?(2)抛掷硬币100次,一定有50次正面向上吗?抛掷2n次一定有n次正面向上吗?(3)小明投篮5次,命中4次,他说一次投中的概率为45对吗?(4)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;……;依次类推,小明的爸爸昨天一次买了10注这种彩票,结果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!小明爸爸的说法正确吗?”设计意图:通过对生活中实例的辨析,进一步揭示概率的内涵──概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中反映出来. 反过来,试验次数太少时,有时不能合理估计概率.问题9:“议”频率与概率有什么区别与联系?学生思考、讨论后全班交流. 此处重点强调学生理解,若不能概括、归纳,则直接出示答案.设计意图:明晰频率与概率的联系与区别,渗透辩证思想,同时,深化新知,突破难点.四、教学总结问题10:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课学习的主要内容,并揭示蕴涵的数学思想方法.设计意图:通过小结与反思,使学生对本节课的内容有一个整体的认识和理解,对核心思想方法有了更深的体会. 同时,培养学生归纳概括能力和语言表达能力.课后作业(投针试验)(1)在一个平面上画一组间距为d=4cm的平行线,将一根长度为l=3cm的针任意投掷在这个平面上,针可能与某一直线相交,也可能与任一直线都不相交. 根据记录在下表中的投针试验数据,估计针与任一直线相交的概率.(2)在投针试验中,如果间距d=4cm、针长l=3cm时针与任一直线相交的概率为p,则当d不变l减小时概率p会如何变化?当l不变d减小时概率p会如何变化?(在试验中始终保持l<d)(3)查阅资料,了解布丰投针实验及概率公式,知道可用概率的方法得到圆周率π的近似值,了解蒙特卡罗方法.设计意图:复习巩固新知,培养动手能力,体验数学文化.。

冀教版九年级数学下册教学设计:31.3用频率估计概率

冀教版九年级数学下册教学设计:31.3用频率估计概率

冀教版九年级数学下册教学设计:31.3 用频率估计概率一. 教材分析本节课的内容是冀教版九年级数学下册的31.3节,主题是用频率估计概率。

这部分内容是在学生已经掌握了概率的基本概念和计算方法的基础上进行讲解的,旨在让学生通过实际操作,理解频率与概率之间的关系,学会如何用频率来估计概率。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和动手操作能力,对于概率这一概念已经有了初步的了解。

但是,对于如何用频率来估计概率,可能还存在一定的困惑。

因此,在教学过程中,需要引导学生通过实际操作,理解频率与概率之间的关系。

三. 教学目标1.知识与技能:让学生理解频率与概率之间的关系,学会如何用频率来估计概率。

2.过程与方法:通过实际操作,培养学生的动手操作能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。

四. 教学重难点重点:如何用频率来估计概率。

难点:理解频率与概率之间的关系。

五. 教学方法采用问题驱动的教学方法,引导学生通过实际操作,理解频率与概率之间的关系。

同时,运用小组合作的学习方式,培养学生的团队合作意识和探究精神。

六. 教学准备1.准备一些实际问题,让学生通过实际操作来估计概率。

2.准备一些关于频率与概率之间关系的资料,用于讲解和引导学生思考。

七. 教学过程1.导入(5分钟)通过提出一些实际问题,引导学生回顾概率的基本概念和计算方法。

例如,抛硬币、抽奖等,让学生思考这些问题背后的概率原理。

2.呈现(10分钟)讲解频率与概率之间的关系,引导学生理解如何用频率来估计概率。

通过展示一些实例,让学生明白频率是概率的一种表现形式,而概率则是频率的长期平均值。

3.操练(10分钟)让学生进行实际操作,估计一些问题的概率。

例如,抛硬币实验、抽奖问题等,让学生通过动手操作,体会如何用频率来估计概率。

4.巩固(10分钟)通过一些练习题,让学生巩固所学的内容。

例如,给出一些实际问题,让学生用频率来估计概率。

31.3 用频率估计概率-2021春冀教版九年级数学下册课件

31.3 用频率估计概率-2021春冀教版九年级数学下册课件

新知导入 课程讲授 随堂练习 课堂小结
5.某地区林业局要考察一种树苗移植的成活率,对该地区这种树 苗移植成活情况进行调查统计,并绘制了如图所示的统计表, 根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在___0_._9__,成活的概率估计值为 __0_._9__;
目录
新知导入 课程讲授 随堂练习 课堂小结
目录
新知导入 课程讲授 随堂练习 课堂小结
目录
用频率估计概率
练一练:在一个不透明的布袋中,红色、黑色、白色的乒乓球共有 20个,除颜色外,形状、大小、质地等完全相同,小明通 过多次摸球试验后,发现其中摸到红色、黑色球的频率稳 定在5%和15%,则口袋中白色球的个数很可能是___1_6____ 个.
新知导入 课程讲授 随堂练习 课堂小结
频率与概率的关系
练一练:关于频率和概率的关系,下列说法正确的是( B ) A.概率等于频率 B.当试验次数很大时,频率稳定在概率附近 C.当试验次数很大时,概率稳定在频率附近 D.试验得到的频率与概率不可能相同
目录
新知导入 课程讲授 随堂练习 课堂小结
目录
用频率估计概率
新知导入 课程讲授 随堂练习 课堂小结
目录
2.某人在做掷硬币试验时,投掷m次,正面朝上有n次即正面朝上
的频率是P=
n ,则下列说法中正确的是(
m
D
)
A.P一定等于 1
2
B.P一定不等于 1
2
C.多投一次,P更接近1
2
D.投掷次数逐渐增加,P稳定在 1 附近
2
新知导入 课程讲授 随堂练习 课堂小结
②若从布袋中任意摸出一个球,该球是黑球的概率最大;
③若再摸球100次,必有20次摸出的是红球.

九年级数学下册 第三十一章 随机事件的概率 31.3《用频率估计概率》课件

九年级数学下册 第三十一章 随机事件的概率 31.3《用频率估计概率》课件

棵来绿化校园,则至少向这个林
成活
业部门购买约 556 棵。
数 47 235 369 662 1335 3203 6335 8073 12628
(m)
成活 的频 率
0.940
0.871
0.883
0.923
0.890
0.915
0.9050.897Fra bibliotek0.902
第四页,共十六页。
问题2
某水果公司以2元/千克的成本新进了10000千克 的柑橘,如果公司希望这些柑橘能够获利5000 元,那么在出售柑橘(已去掉损坏的柑橘)时, 每千克大约定价为多少元比较(bǐjiào)合适?
录在下:
柑橘
总质 量
100 150 200 250 300 350 400 450
500
为简单起见,我们能否直接把表中的500千
损坏 柑橘
克柑橘对应的柑橘损坏的频率看作柑橘损坏
的概率? 质量 10.5
15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
柑橘 损坏 频率
问题1
某林业部门要考查某种幼树在一定(yīdìng)条件的移植 成活率,应采用什么具体的做法?
答:在同样条件下,大量地对这种幼树进行移 植(yízhí),并统计成活情况,计算成活的频率。如 果随着移植(yízhí)棵数n的越来越大,频率 m 越来 越稳定于某个常数,那么这个常数就可以被n 当 作成活率的近似值。
字的机会
第十二页,共十六页。
思考(sīkǎo)
在摸袜子的实验中,如果用6个红色玻璃珠, 另外(lìnɡ wài)还找了两张扑克牌,可以混在一起 做实验吗?
不可以,用不同的替代物混在一起,大大地改 变了实验条件,所以(suǒyǐ)结果是不准确的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节测试题1.【题文】某景区月日—月日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游.()随机选择一天,恰好天气预报是晴的概率是___________.()求随机选择连续的两天,恰好天气预报都是晴的概率.【答案】(1);(2).【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.2.【题文】某校教师开展了“练一手好字”的活动,校委会对部分教师练习字帖的情况进行了问卷调查,问卷设置了“柳体”、“颜体”、”欧体“和”其他“类型,每位教师仅能选一项,根据调查的结果绘制了如下统计表:类别柳体颜体欧体其他合计人数4106占的百分比0.50.251根据图表提供的信息解答下列问题:(1)这次问卷调查了多少名教师?(2)请你补全表格.(3)在调查问卷中,甲、乙、丙、丁四位教师选择了“柳体”,现从以上四位教师中任意选出2名教师参加学校的柳体兴趣小组,请你用画树状图或列表的方法,求选出的2人恰好是乙和丙两位教师的概率.【答案】(1)40;(2)详见解析;(3).【分析】(1)用欧体的频数除以其频率即可求得样本总数;(2)根据百分比=人数÷总人数分别求解可得;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【解答】解:(1)这次调查问卷中被调查的总人数为10÷0.25=40人;(2)柳体的人数为40×0.5=20人,颜体所占的百分比为4÷40=0.1,其他所占百分比为6÷40=0.15,补全表格如下:(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.3.【题文】我校初三某班 50 名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如表所示:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)填空:a= ______ ,b= ______ ;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“立定跳远”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有 3 名男生、2 名女生,为了了解学生的训练效果,从这 5 名学生中随机抽取两名学生进行推铅球测试,请用列表法或树形图法求所抽取的两名学生中至多有一名男生的概率.【答案】(1)0.24、16;(2)64.8°;(3)所抽取的两名学生中至多有一名男生的概率为.【分析】(1)根据表格求出a与b的值即可;(2)用360°乘以“立定跳远”对应的频率即可得;(3)画树状图得出所有等可能的情况数,找出抽取的两名学生中至多有一名男生的情况,即可求出所求概率.【解答】解:(1)a=12÷50=0.24,b=50×0.32=16,故答案为:0.24、16;(2)若将各自选项目的人数所占比例绘制成扇形统计图,则“立定跳远”对应扇形的圆心角的度数为360°×0.18=64.8°;(3)画树状图为:共有20种等可能的结果数,其中所抽取的两名学生中至多有一名男生的结果数为14,所以所抽取的两名学生中至多有一名男生的概率==.4.【题文】如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:朝下数字1234出现的次数16201410(1)求上述试验中“2朝下”的频率;(2)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于5的概率.【答案】(1);(2)P(两次朝下的数字之和大于5)=.【分析】(1)根据试验中“2朝下”的总次数除以总数即可得出答案;(2)列表列举出所有的可能的结果,然后利用概率公式解答即可.【解答】解:(1)“2朝下”的频率:=;(2)根据题意列表如下:总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于5的结果有6种.则P(两次朝下的数字之和大于5)==.5.【题文】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=_____,b=_____,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】 0.3 4【分析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.6.【题文】王老师将1个黑球和若干个白球(这些球除颜色外都相同)放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出1个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n1001502005008001000摸出黑球的次数m233160*********0.230.2070.300.260.2540.251摸到黑球的频率(1)根据上表数据估计从袋中摸出1个球是黑球的概率是_________;(2)估计袋中白球的个数.【答案】(1)0.25(2)估计袋中有3个白球【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)列用概率公式列出方程求解即可;【解答】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.7.【题文】某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?【答案】(1)答案见解析;(2)0.946;(3)①;②9.【分析】(1)根据统计表中的数据,先描出各点,然后折线连结即可;(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;(3)①用黄球的个数除以球的总个数即可;②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于,列出不等式,解不等式即可.【解答】解:(1)如图;(2)这批乒乓球“优等品”概率的估计值是0.946;(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,∴从袋中摸出一个球是黄球的概率为:=;②设从袋中取出了x个黑球,由题意得:,解得x≥,故至少取出了9个黑球.8.【题文】在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m6512417830248159918030.650.620.5930.6040.6010.5990.601摸到白球的频率(1)请估计:当n很大时,摸到白球的频率将会接近______ ;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为______ ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【答案】(1)0.6;(2)0.6;(3)盒子里黑、白两种颜色的球各有16只, 24只.【分析】⑴ 观察图表可知,当很大时,摸到白球的频率接近0.6 .⑵ 当实验次数很大时,频率接近概率,所以摸到白球的概率估值为0.6 .⑶ 摸到白球概率为0.6,摸到黑球的概率为0.4,那么白球数量为个,黑球数量为个.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6,故答案为:0.6;(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6,故答案为:0.6;(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.9.【题文】小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想,“反过来,能否用频率估计概率的方法,来估算某一不规则图形的面积呢”.请你设计方案,解决这一问题.(要求补充完整图形,说明设计步骤、原理,写出估算公式)【答案】(1)不公平,理由详见解析;(2)详见解析.【分析】(1)分别计算出阴影部分面积和非阴影部分面积,小红胜的概率=S阴影÷S总,小明胜的概率=S非阴影÷S总,则比较阴影部分和小圆面积即可知道是否公平;(2)用一正方形将不规则图形包围起来,根据用频率估计概率来设计.【解答】解:(1)不公平,理由:根据几何概率的求法:掷中阴影小红胜的概率就是阴影区域的面积与总面积的比值;小明胜的概率为小圆面积与总面积的比值,而计算可得大圆面积为9π,小圆面积为4π.则阴影部分面积为5π,则阴影部分面积比小圆面积大.则小红胜的概率大于小明胜的概率,所以该游戏是不公平的,对小红有利;(2)能利用频率估计概率的实验方法估算非规则图形的面积.设计方案:①设计一个面积为S的正方形将非规则图形围起来,如图:②蒙上眼在一定距离外向正方形内掷小石子,掷在正方形外不作记录;③掷的次数充分大,记录并统计结果,其中掷入正方形内m次,n次掷非规则图形内;④设非规则图形的面积为S1,用频率估计概率,即频率P(掷入非规则图形内)=≈概率P(掷入非规则图形内)=,解得S1≈.10.【题文】某人承包了一池塘养鱼,他想估计一下收入情况.于是让他上初三的儿子帮忙.他儿子先让他从鱼塘里随意打捞上了60条鱼,把每条鱼都作上标记,放回鱼塘;过了2天,他让他父亲从鱼塘内打捞上了50条鱼,结果里面有2条带标记的.假设当时这种鱼的市面价为2.8元/斤,平均每条鱼估计2.3斤,你能帮助他估计一下今年的收入情况吗?【答案】9660【分析】由最后捞出的鱼可知有标记的鱼的频率是=,再进一步求得池塘里鱼的总数,最后求出今年收入.【解答】解:设池塘中共有鱼x条,则=,得x=1500(条).则池塘中鱼的总质量为1500×2.3=3450(斤),则今年的收入约为3450×2.8=9660(元).答:今年的收入约为9660元.11.【题文】某个地区几年内的新生婴儿数及其中男婴数统计如下表:请回答下列问题:(1)填写上表各年的男婴出生频率.(结果都保留三个有效数字)(2)在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数并在它的附近摆动,我们把这个常数叫做事件A的概率,记作P A.= .根据(1)填写的结果及以上说明,这一地区男婴出生的概率P(A)=______.【答案】(1)分别填入:0.509,0.510,0.512,0.510;(2)0.51.【分析】(1)根据表中所给数据计算即可;(2)由题意结合(1)中计算所得数据可得出这一地区男婴出生的概率;【解答】解:(1)计算结果如下表:时间范围1年内2年内3年内4年内新生婴儿数(n)554596071352017190男婴数(m)28254900692587670.5090.5100.5120.510男婴出生频率()(2)由(1)中的计算可知,该地区男婴出生的频率随着统计次数的增加,逐渐稳定在常数0.51附近,因此这一地区男婴出生的概率:P(A)=0.51.12.【题文】某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率约为多少?【答案】(1)略(2)这名运动员射击一次,击中10环的概率约为0.9【分析】(1)按表格中所给数据计算即可;(2)在大次数的试验中,某一事件发生的频率逐渐接近该事件发生的概率,并围绕概率作小幅波动,结合(1)中计算所得数据可以估计出这么运动员射击一次,击中10环的概率.【解答】解:(1)计算结果如下表;射击次数n 10 20 5010020050010002000击中10环次数m81944931784538991802击中10环频率0.80.950.880.930.890.910.900.90(2)分析(1)中的计算结果可知,这名运动员的频率随着射击次数的增加,击中10环的频率逐渐稳定在0.90附近,并围绕0.90作小幅波动,由此可以估计这名运动员射击一次,击中10环的概率为0.90.13.【题文】保险公司对某地区人们的寿命调查后发现活到50岁的有69800人,在该年龄死亡的人数为 980人,活到70岁的有38500人,在该年龄死亡的有2400人.(1)某人今年50岁,则他活到70岁的概率为多少?(2)若有20000个50岁的人参加保险,当年死亡的赔偿金为每人2万元,预计保险公司该年赔付总额为多少?.【答案】(1)0.5566,(2)561.6万元.【分析】(1)利用活到70岁的有38500人,除以总人数得出答案即可;(2)利用20000人在69800人中所占比例结合在该年龄死亡的人数为980人,求出即可.【解答】解:(1)由题意可得:P=≈0.5516.答:某人今年50岁,则他活到70岁的概率为:0.5516;(2)由题意可得:×980×2≈561.6(万).答:预计保险公司该年赔付总额为561.6万元.14.【题文】某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣众人抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?【答案】(1)0.06;(2)36件【分析】(1)根据概率的求法,找准两点:1.符合条件的情况数目;2.全部情况的总数;二者的比值就是其发生的概率;(2)需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.【解答】解:(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)==0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.15.【题文】人寿保险公司的一张关于某地区的生命表的部分摘录如下:年龄活到该年龄的人数在该年龄的死亡人数40805008925078009951606989112007045502211980160782001………根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?(保留三个有效数字)(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?【答案】(1)0.0122、0.206(2)2438.18万【分析】(1)利用频率估算.(2)利用频率估算20000个人中有多少人去世,再乘以赔偿金.【解答】解:(1)P(50岁去世)= 0.0122,P(活到80岁)=0.206 .(2)951÷78009×20000×10≈2438.18万16.【题文】一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:实验次数20406080100120140160“兵”字面朝上频数14a384752667888相应频率0.70.450.630.590.52b0.560.55(1)请直接写出a,b的值;(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验2 000次,那么“兵”字面朝上的次数大约是多少?【答案】(1)a=18,b=0.55(2)估计概率的大小为0.55(3)“兵”字面朝上的次数大约是1100次【分析】(1)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.(3)根据利用频率估计概率可以得出出现“兵”字概率会接近于0.55,故可以得出游戏规则.【解答】解:(1)a=18,b=0.55.(2)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55,稳定在0.55左右,故估计概率的大小为0.55.(3)2000×0.55=1100(次).∴“兵”字面朝上的次数大约是1100次.17.【题文】某小区改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):A B Cm400100100n3024030p202060请根据以上信息,试估计“厨房垃圾”投放正确的概率.【答案】(1)(2)【分析】(1)根据题意画出树状图,由树状图可知总数为9,投放正确有3种,进而求出垃圾投放正确的概率;(2)由题意和概率的定义易得所求概率.【解答】解:(1)画树状图如下:共有9种等可能的结果数,其中垃圾投放正确的结果数为3,所以垃圾投放正确的概率为=.(2)=,所以估计“厨房垃圾”投放正确的概率为.18.【题文】一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请将数据补充完整;(2)画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?【答案】(1)0.55;(2)见解析;(3)0.55【分析】(1)根据图中信息,根据“频数除以实验次数,得到频率”,计算填表即可;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表格中的信息,用频率估计概率即可得答案.【解答】解:(1)所填数字为:40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.19.【题文】在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n很大时,摸到白球的概率约为______;(精确到0.1)(2)估算盒子里有白球________个;(3)若向盒子里再放入x个除颜色以外其他完全相同的球,这x个球中白球只有1个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请推测x的值最有可能是多少.【答案】(1) 0.6;(2) 24;(3) x的值最有可能是10.【分析】(1)求出所有试验得出来的频率的平均值即可;(2)用总球数乘以摸到白球的概率即可得出答案;(3)根据概率公式和摸到白球的个数,即可求出x的值.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)根据(1)得:40×0.6=24(个),答:盒子里有白球24个;(3)根据(2),得,解得x=10,∴可以推测出x的值最有可能是10.20.【答题】小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:依此估计此封闭图形ABC的面积是______m2.【答案】3π【分析】由表中记录的数据通过计算可知,随着投掷石子次数的增加,石子落在阴影内的次数与落在⊙O内(包括⊙O上)的次数之比逐渐稳定在2:1左右,由此说明S阴影=2S⊙O这样结合已知即可求出整个图形的面积了.【解答】解:由表中数据可得:当投掷石子50次时,;当投掷石子150次时,;当投掷石子300次时,;∴石子落在阴影部分的概率大约是落在⊙O内(包括和⊙O上)的概率的2倍,∴S阴影=2S⊙O,又∵S⊙O=,∴S阴影=,∴此封闭图形ABC的面积是:m2. 故答案为:.。

相关文档
最新文档