(完整版)人教版初中数学九年级全册教案,推荐文档
新人教版初中数学九年级上册全册教案

新人教版初中数学九年级上册全册教案一. 教材内容概述本教案为新人教版初中数学九年级上册的全册教案。
该教材主要包括以下几个模块:- 整式与分式- 历史与人物- 概率与统计- 等比数列- 性质与运算二. 教学目标通过本教材的研究,学生应达到以下数学能力和知识:1. 掌握整式与分式的基础概念和运算方法;2. 了解数学发展历史和相关数学人物的贡献;3. 理解和应用概率与统计的基本概念与方法;4. 掌握等比数列的性质和求解方法;5. 熟悉数的性质与数的运算法则。
三. 教学重点与难点1. 教学重点:整式与分式的基础概念与运算方法,概率与统计的基本概念和应用,等比数列的性质和求解方法。
2. 教学难点:整式与分式的运算方法,概率与统计的应用,等比数列的推导和求解。
四. 教学方法和手段本教案将采用以下教学方法和手段,以培养学生的数学思维和解决问题能力:1. 导入法:通过引入学生已有的数学知识,激发学生对新知识的兴趣;2. 探究法:组织学生进行探索性研究,培养学生的自主研究和合作研究能力;3. 归纳法:引导学生总结、归纳已学的数学知识,提高他们的综合运用能力;4. 实践法:设计适当的练和实践任务,帮助学生将所学的数学知识应用到实际问题中。
五. 教学内容安排根据教材的章节划分,本教案将按照以下方式安排教学内容:- 第一单元:整式与分式- 第二单元:历史与人物- 第三单元:概率与统计- 第四单元:等比数列- 第五单元:性质与运算六. 教学评价方法为了准确评价学生的数学研究情况,本教案将采用以下评价方法:1. 测试:通过书面测试和口头测试,检查学生对教学内容的掌握情况;2. 实践任务评价:评估学生在实际问题中应用数学知识的能力;3. 个人报告评价:鼓励学生进行主题研究,并评估他们的表达和分析能力。
七. 教学资源准备为了有效开展教学活动,本教案将准备以下教学资源:1. 教材:新人教版初中数学九年级上册教材;2. 录像资料:教学视频和相关实验视频等;3. 教学工具:计算器、几何工具、教学演示软件等。
新人教版九年级数学上册教案(全册,73页)

新人教版九年级数学上册全册教案设计第二十一章一元二次方程21.1一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x 2+6x -16=0移项→x 2+6x =16两边加(6/2)2使左边配成x 2+2bx +b 2的形式→x 2+6x +32=16+9 左边写成平方形式→(x +3)2=25降次→x +3=±5即x +3=5或x +3=-5 解一次方程→x 1=2,x 2=-8可以验证:x 1=2,x 2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0(2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略.(2)与(1)有何关联?二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a )2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x(3)x2-2x+12=0(4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4,5.21.2.3因式分解法掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零. 四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x 2-5x -3=0 (2)9x +2=x 2 (3)6x 2-3x +2=0 (4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围.重点二次函数的概念和解析式.难点本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力.。
人教版本初中数学初中九年级全册学习教案

一元二次方程(教课方案)教课内容本节课主要学习一元二次方程观点及一元二次方程一般式及有关观点.教课目的知识技术研究一元二次方程及其有关观点,能够鉴别各项系数;能够从实质问题中抽象出方程知识。
x2x56数学思虑在研究问题的过程中使学生感觉方程是刻画现实世界的一个模型,领会方程与实质生活的联系。
解决问题培育学生优秀的研究问题的习惯,使学生逐渐提升自己的数学修养。
感情态度经过用一元二次方程解决身旁的问题,领会数学知识应用的价值,提升学生学习数学的兴趣,认识数学对促使社会进步和发展人类理性精神的作用.重难点、要点要点:一元二次方程的定义、各项系数的鉴别,根的作用.难点:根的作用的理解.要点:经过提出问题,成立一元二次方程的数学模型,?再由一元一次方程的观点迁徙到一元二次方程的观点教课准备教师准备:制作课件,优选习题学生准备:复习有关知识,预习本节课内容教课过程一、情境引入【问题情境】75 x3500问题1x2如图,有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,而后将周围突出的部分折起,就能制作一个无盖方盒.假如要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?剖析:设切去的正方形的边长为xcm,则盒底的长为, 宽为.依据方盒的底面积为3600cm2,得方程为_______________,,整理,得x2x56问题2要组织一次排球邀请赛,参赛的每两个队之间都要竞赛一场.依据场所和时间等条件,赛程计划安排7天,每日安排4场竞赛,竞赛组织者应当邀请多少个队参赛?剖析:所有竞赛共4×7=28场设应邀请x个队参赛,每个队要与其余_____ 个队各赛1场,因为甲队对乙队的竞赛和乙队2对甲队的竞赛是同一场竞赛,因此所有竞赛共x75x 350 0______________场.得方程____________________________1整理,得【活动方略】教师演示课件,给出题目.学生依据所学知识,经过剖析设出适合的未知数,列出方程回答以下问题.【设计企图】由实质问题下手,设置情境问题,激发学生的兴趣,让学生初步感觉一元二次方程,同时让学生领会方程这一刻画现实世界的数学模型.二、研究新知【活动方略】学生活动:请口答下边问题.1)上边两个方程整理后含有几个未知数?2)依据整式中的多项式的规定,它们最高次数是几次?3)有等号吗?或与从前多项式同样只有式子?老师评论:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)?都有等号,是方程.归纳:像这样的方程两边都是整式,只含有一个未知数(一元),而且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个对于x的一元二次方程,?经过整理,?都能化成以下形式ax2+bx+c=0(a≠0).这类形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,此中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【设计企图】主体活动,研究一元二次方程的定义及其有关观点.三、典范点击例1将方程3x(x1)5(x2)化成一元二次方程的一般形式,并指出各项系数.解:去括号得3 x23x5x10,移项,归并同类项,得一元二次方程的一般形式3 x28x100.此中二次项系数是3,一次项系数是-8,常数项是-10.【活动方略】学生活动:学生自主解决问题,经过去括号、移项等步骤把方程化为一般形式,而后指出各项系数.教师活动:在学生指出各项系数的环节中,剖析可能出现的问题(比方系数的符号问题).【设计企图】进一步稳固一元二次方程的基本观点.2例2 猜想方程x x 56 0的解是什么?学生活动:学生能够采纳多种方法获得方程的解,比方能够用试试的方法取x=1、2、3、4、5等,发现x =8时等号成立,于是x=8是方程的一个解,这样等等.教师活动:教师指引学生自主研究,多种门路找寻方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).2【设计企图】研究一元二次方程根的观点以及作用.四、追踪训练。
最新人教版九年级数学全册教案(全册 共58页)

最新人教版九年级数学全册教案(全册共58页)目录第二十一章一元二次方程21.1 一元二次方程21.2.1配方法(第1课时)21.2.1配方法(第2课时)21.2.2公式法21.2.3因式分解法21.2.4 一元二次方程的根与系数关系21.3 实际问题与一元二次方程(第1课时)21.3 实际问题与一元二次方程(第2课时)小结第二十二章二次函数22.1.1 二次函数(第1课时)22.1.2二次函的图象和性质(第1课时)22.1.3.1二次函的图象和性质(第1课时)22.1.3.2二次函的图象和性质(第2课时)22.1.3.3二次函的图象和性质(第3课时)22.1.4 .1二次函的图象和性质(第1课时) 22.1.4.2用待定系数法求二次函数解析式(第1课时)22.2 用函数观点看一元二次方程(第1课时)22.3.1 实际问题与二次函数(第1课时)22.3.2 实际问题与二次函数(第2课时)小结(3课时)第二十三章旋转23.1 图形的旋转(1)23.1 图形的旋转(2)23.1 图形的旋转(3)23.2.1中心对称(1)23.2.1中心对称(2)23.2.1中心对称(3)22.2 中心对称图形,关于原点对称的点的坐标23.3 课题学习图案设计小结第二十四章圆24.1.1 圆24.1.2 垂直于弦的直径24.1.3 弧、弦、圆心角24.1.4 圆周角24.2.1 点和圆的位置关系24.2.2 直线和圆的位置关系24.2.3 圆和圆的位置关系24.3 正多边形和圆24.4圆锥的侧面积和全面积小结第二十五章概率25.1.1随机事件(第一课时) 25.1.1 随机事件(第二课时)25.1.2 概率的意义25.2 用列举法求概率(第一课时)25.2 用列举法求概率(第二课时25.2 用列举法求概率(第三课时) 25.3.1利用频率估计概率25.3.2利用频率估计概率25.4课题学习键盘上字母的排列规律小结教学过程设计一、复习引入导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。
人教版九年级数学教案大全(6篇)

人教版九年级数学教案大全(6篇)人教版九年级数学教案大全(6篇)九年级数学课件如何写。
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,下面小编给大家带来关于人教版九年级数学教案大全,希望会对大家的工作与学习有所帮助。
人教版九年级数学教案大全篇1回顾上学期学过的直线、线段、射线等的表示方法,我提问了三个成绩中等的学生,居然没有人能回答下来,提问三个好一点学生,什么是线段的中点、什么是角的平分线?也没有人回答得清楚。
说明,这些学生在寒假里根本就没有人进行复习,可能多数学生都沉迷于游戏而不能自拔。
于是复习上学期内容就干去了一节课时间。
第二节课才正式教学新课。
我先让学生举例相交线的实例,有几个学生举了教室中的相交线。
由于多媒体坏了,于是只有粉笔和嘴了。
由学生跟着画两条相交线,并标记角1,角2,角3和角4,接下来,让学生找到两角,有几对?生1到板板书在黑板上,也找齐了,共6组。
接下来,我让学生小组合作讨论:怎么样将这6组角进行分类。
学生讨论了十分钟,但是没有哪个组能正确分类。
于是我就将它们进行了分类:角1与角3,角2与4可以归为一类;角1与角2,角1与角4,角2与角3,角3与角4。
再次讨论:这两类角它们分别有哪些共同特征?(生讨论无果)第一类:两个角有公共的顶点,两边互为反向延长线,象这样的两个角叫做对顶角。
谜语:牛打架,打一数学名词)第二类:两个角有公共顶点和一条公共边,另一边互为反向延长线,象这样的两个角叫做邻补角。
邻补角有什么性质呢?从图可知,两个邻补角构成一个平角,因此,邻补角互补。
例:如图,两条直线相交于点0,角1=30度,求角2,角3,角4的度数。
小结:略作业:略。
从本节课的作业完成情况来看,学生对核心的两类角的特征没有掌握。
主要原因可能还是我身的表达不到位,变式练习举的例子少了,次要原因是学生的学习惯不好,不能专心听讲,导致学生不能准确识别对顶角和邻补角。
九年级数学上册(人教版)教案

九年级数学上册(人教版)教案第一章:实数1.1 有理数教学目标:理解有理数的定义及其分类;掌握有理数的运算方法,包括加、减、乘、除、乘方和开方;能够运用有理数解决实际问题。
教学内容:有理数的定义及分类;有理数的运算方法及运算律;有理数在实际问题中的应用。
教学步骤:1. 引入有理数的概念,引导学生理解有理数的定义及分类;2. 通过示例讲解有理数的运算方法,让学生进行练习;3. 引导学生运用有理数解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固有理数的运算方法;选取一些实际问题,让学生运用有理数解决。
1.2 实数教学目标:理解实数的定义及其与有理数的关系;掌握实数的运算方法,包括加、减、乘、除、乘方和开方;能够运用实数解决实际问题。
教学内容:实数的定义及其与有理数的关系;实数的运算方法及运算律;实数在实际问题中的应用。
教学步骤:1. 引入实数的概念,引导学生理解实数的定义及其与有理数的关系;2. 通过示例讲解实数的运算方法,让学生进行练习;3. 引导学生运用实数解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固实数的运算方法;选取一些实际问题,让学生运用实数解决。
第二章:方程2.1 一元一次方程教学目标:理解一元一次方程的定义及其解法;能够运用一元一次方程解决实际问题。
教学内容:一元一次方程的定义及解法;一元一次方程在实际问题中的应用。
教学步骤:1. 引入一元一次方程的概念,引导学生理解一元一次方程的定义;2. 通过示例讲解一元一次方程的解法,让学生进行练习;3. 引导学生运用一元一次方程解决实际问题,巩固所学知识。
作业布置:完成课后练习题,巩固一元一次方程的解法;选取一些实际问题,让学生运用一元一次方程解决。
2.2 二元一次方程教学目标:理解二元一次方程的定义及其解法;能够运用二元一次方程解决实际问题。
教学内容:二元一次方程的定义及解法;二元一次方程在实际问题中的应用。
教学步骤:1. 引入二元一次方程的概念,引导学生理解二元一次方程的定义;2. 通过示例讲解二元一次方程的解法,让学生进行练习;3. 引导学生运用二元一次方程解决实际问题,巩固所学知识。
(完整word版)人教版九年级数学上册全册教案集新课标推荐,推荐文档

第22章 二次根式22.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。
(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、式子)0(0≥≥a a 的意义是什么?4、)0()(2≥=a a a 的意义是什么?5、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 2、计算 :(1) 2)4( (2) 2)3(4(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。
3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式中,字母a 必须满足 ,________)(2=a才有意义。
(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x③2、(1)若有意义,则a 的值为___________.(2)若在实数范围内有意义,则x 为( )。
A.正数B.负数C.非负数D.非正数(四)展示反馈 (学生归纳总结)1.非负数a 的算术平方根a (a ≥0)叫做二次根式.二次根式的概念有两个要点:一是从形式上看,应含有二次根号;二是被开方数的取值范围有限制:被开方数a 必须是非负数。
人教版九年级数学教案_全册

南川区第三中学校课时教案南川区第三中学校课时教案解 列表.x… -3 -2 -1 0 1 2 3 … 12+-=x y … -8 -3 0 1 0 -3 -8 … 12--=x y…-10-5-2-1-2-5-10…描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线12--=x y 是由抛物线12+-=x y 向下平移2个单位得到的.思考把抛物线向上平移5个单位,会得到哪条抛物线?向下平移3个单位呢? 四、练习:教材第10页练习 五、归纳小结:抛物线2ax y =左右平移lcl 个单位得抛物线c a 2+=x y 作业布置 课本第17页作业题5题(1)板书设计正板书副板书1、知识回顾 2、合作学习 3、例题分析 4、练习:5、归纳小结: 备课活动意见教学后记签字南川区第三中学校课时教案它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是:(0,0),(-2,0),(2,0). 学生思考:1、对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .2、抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移2个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?三、学生练习:1.填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的2、不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗? 解: 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0),因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.四、课堂小结: 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、南川区第三中学校课时教案它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是:(0,0),(-2,0),(2,0). 学生思考:1、对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= .2、抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移2个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?三、学生练习:1.填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的2、不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗? 解: 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0),因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.四、课堂小结: 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、南川区第三中学校课时教案它们的开口方向都向,对称轴分别、、,顶点坐标分别为、、.三、学生看书12页例3教师讲解13页例4四、归纳小结:1、二次函数的图象的上下平移,只影响二次函数2)(hxay-=+k中k的值;左右平移,只影响h的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.2、说出函数2)(hxay-=+k(a、h、k是常数,a≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.2)(hxay-=+k 开口方向对称轴顶点坐标性质0>a<a学生练习14页:练习作业布置课本第17页作业题5题(3)、7题板书设计正板书副板书1、新课引入2、合作学习3、学生看书4、例题讲解5、课堂小结备课活动意见教学后记签字南川区第三中学校课时教案南川区第三中学校课时教案教学时间第周星期总第7课时课题26.2.1用函数观点看一元二次方程课型新授课教学目标二次函数与一元二次方程的相互转化重点h的值代入函数解析式就得到一元二次方程难点理解转化成方程后解的合理性教具准备教学过程教学内容一、新课引入:前面我们学习了函数与方程的关系,今天我们再来研究二次函数与一元二次方程的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:去括号得
3x2 3x 5x 10 ,
移项,合并同类项,得一元二次方程的一般形式
3x2 8x 10 0 .
其中二次项系数是 3,一次项系数是-8,常数项是-10. 【活动方略】 学生活动: 学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系 数. 教师活动:
个队各赛 1 场,由于甲队对
乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共
场.
得方程
1
整理, 得
【活动方略】 教师演示课件,给出题目.
学生根据所学知识,通过分析设出合适的未知数,列出方程回答问题.
【设计意图】
由实际问题入手x,2设置情x境问题, 5激6 发学生的兴趣,让学生初步感受一元二次方程,
五 当堂抽测
1.方程 2(x+3)=5,化成一般形式是
项系数为
,常数项为
.其中二次项系数为 。
,一次
2. 若方程 kx2+x=1 是一元二次方程,则 k 的取值范围是
.
3. 如果两个连续偶数的积是 168,求这两个偶数,如果设其中较小偶数为 x, 可列出方程
.化成一般形式是
4. 若关于 x 的方程(m+3) xm2 7 +(m-5)x+5=0 是一元二次方程,那么 m 的值为( )
3 教材 P27 练习 2 (把答案写在下面)
(1) (2) (3)
4.你能根据所学过的知识解出下列方程的解吗?
(1)x2 36 0 ;
(2) 4x2 9 0 .
【活动方略】 教师活动:操作投影,将答案显示,组织学生讨论.
学生活动:合作交流,讨论解答。
【设计意图】 使学生进一步理解一元二次方程的概念,对一元二次方程的根有更深刻的理解.
2
Байду номын сангаас
使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).
【设计意图】
探究一元二次方程根的概念以及作用.
四、跟踪训练。
1 将方程 4x(x-2)=25 化为一元二次方程的一般形式 中二次项系数是 ,一次项系数是 ,常数项是 。
,其
2 关于 x 的方程(m2-9) x2+(m-3) x +5=0 (1)当 m 取何值时是一元二次方程? (2)当 m 取何值时是一元一次方程?
,宽为
.根
据方盒的底面积为 3600cm2,得方程为
,,
整理, 得
问题 2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等 条件,赛程计划安排 7 天,每天安排 4 场比赛,比赛组织者应该邀请多少个队参赛?
分析:全部比赛共 4×7=28 场 设应邀请 x 个队参x赛2 ,每75个x 队3要50与其0他
22.1 一元二次方程(教案)
教学内容 本节课主要学习一元二次方程概念及一元二次方程一般式及有关概念. 教学目标 知识技能
探索一元二次方程及其相关概念,能够辨别各项系数;能够从实际问题中抽象出 方程知识。 数学思考
在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实 际生活的联系。 解决问题
x 在学生指出各项系 数2 的环节x中,分5析6可能出现的问题(比如系数的符号问题).
【设计意图】 进一步巩固一元二次方程的基本概念.
例 2 猜测方程 x2 x 56 0 的解是什么?
【活动方略】 学生活动: 学生可以采取多种方法得到方程的解,比如可以用尝试的方法取 x=1、2、3、4、5 等, 发现 x=8 时等号成立,于是 x=8 是方程的一个解,如此等等. 教师活动: 教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:
3
2 一元二次方程的一般形式 ax2+bx+c=0(a≠0) 和二次项、二次项系数,一次项、一次项 系数,常数项的概念及其它们的运用;
一、情境引入
【问题情境】 x2 75x 350 0
问题 1 如图,有一块矩形铁皮,长 100 cm,宽 50 cm.在它的四个角分别切去一个正 方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒 的底面积是 3 600 cm2,那么铁皮各角应切去多大的正方形?
分析:设切去的正方形的边长为 xcm,则盒底的长为
培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养。 情感态度
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习 数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 重难点、关键 重点:一元二次方程的定义、各项系数的辨别,根的作用.
难点:根的作用的理解. 关键:通过提出问题,建立一元二次方程的数学模型, 再 由 一 元 一 次 方 程 的 概 念 迁 移到一元二次方程的概念 教学准备 教师准备:制作课件,精选习题 学生准备:复习有关知识,预习本节课内容 教学过程
同时让学生体会方程这一刻画现实世界的数学模型.
二、探索新知 【活动方略】 学生活动:请口答下面问题. 1 上面两个方程整理后含有几个未知数? 2 按照整式中的多项式的规定,它们最高次数是几次? 3 有等号吗?或与以前多项式一样只有式子? 老师点评:(1)都只含一个未知数 x;(2)它们的最高次数都是 2 次的; ( 3 ) 都 有等号,是方程. 归纳:像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高 次数是 2(二次)的方程,叫做一元二次方程. 一般地,任何一个关于 x 的一元二次方程, 经过整理, 都能化成如下形式 ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式. 一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,a 是二次 项系数;bx 是一次项,b 是一次项系数;c 是常数项. 【设计意图】 主体活动,探索一元二次方程的定义及其相关概念. 三、范例点击
A.±3 B.3
C.-3
D.都不对
5.以-2 为根的一元二次方程是( )
A.x2+2x-x=0 D.x2+x-2=0
B.x2-x-2=0
C.x2+x+2=0
【活动方略】
学生独立思考、独立解题,教师巡视.
【设计意图】
检查学生对基础知识的掌握情况.
六 小结作业 1.问题:本节课你学到了什么知识?从中得到了什么启发? (1) 一元二次方程的概念;