人教版高中数学必修五试题及答案

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

新课标人教版必修5高中数学_综合检测试卷 附答案解析

新课标人教版必修5高中数学_综合检测试卷 附答案解析

新课标人教版必修5高中数学 综合检测试卷1.如果33log log 4m n +=,那么n m +的最小值是( )A .4B .34C .9D .18 2、数列{}n a 的通项为n a =12-n ,*N n ∈,其前n 项和为n S ,则使n S >48成立的n 的最小值为( )A .7B .8C .9D .103、若不等式897x +<和不等式022>-+bx ax 的解集相同,则a 、b 的值为( ) A .a =﹣8 b =﹣10 B .a =﹣4 b =﹣9 C .a =﹣1 b =9D .a =﹣1 b =2 4、△ABC 中,若2cos c a B =,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .锐角三角形5、在首项为21,公比为12的等比数列中,最接近1的项是( )A .第三项B .第四项C .第五项D .第六项6、在等比数列{}n a 中,117a a ⋅=6,144a a +=5,则1020a a等于( )A .32 B .23C .23或32D .﹣32或﹣237、△ABC 中,已知()()a b c b c a bc +++-=,则A 的度数等于( )A .120B .60C .150D .30 8、数列{}n a 中,1a =15,2331-=+n n a a (*N n ∈),则该数列中相邻两项的乘积是负数的是( )A .2221a aB .2322a aC .2423a aD .2524a a9、某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为( )A .41.1B .51.1C .610(1.11)⨯-D . 511(1.11)⨯- 10、已知钝角△ABC 的最长边为2,其余两边的长为a 、b ,则集合{}b y a x y x P ===,|),(所表示的平面图形面积等于( ) A .2 B .2-π C .4 D .24-π 11、在△ABC 中,已知BC=12,A=60°,B=45°,则AC= 12.函数2lg(12)y x x =+-的定义域是13.数列{}n a 的前n 项和*23()n n s a n N =-∈,则5a =14、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为15、《莱因德纸草书》(Rhind Papyrus)是世界上最古老的数学著作之一。

最新人教A版高中数学必修五综合测试题及答案3套

最新人教A版高中数学必修五综合测试题及答案3套

最新人教A 版高中数学必修五综合测试题及答案3套综合学业质量标准检测(一)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( B ) A .14 B .16 C .18D .20[解析] ∵S 4=1,S 8=3,∴a 1·1-q 41-q =1,a 1·1-q 81-q =3,∴1+q 4=3,即q 4=2,∴a 17+a 18+a 19+a 20=a 1q 16(1+q +q 2+q 3)=q 16·a 1(1-q4)1-q=16.2.若1+2+22+…+2n >128,n ∈N *,则n 的最小值( B ) A .6 B .7 C .8D .9[解析] 1+2+22+…+2n =2n +1-1. ∵2n +1-1>128=27,∴n +1>7,n >6. 又∵n ∈N *,∴n =7.3.已知集合A ={x ||x +1|≤2},B ={x |y =lg(x 2-x -2)},则A ∩∁R B =(C ) A .[-3,-1) B .[-3,-1] C .[-1,1]D .(-1,1][解析] 因为A ={x ||x +1|≤2}={x |-3≤x ≤1},B ={x |lg(x 2-x -2)}={x |x 2-x -2>0}={x |x <-1或x >2},所以∁R B ={x |-1≤x ≤2},所以A ∩∁R B ={x |-1≤x ≤1}.4.已知a >b >0,c ≠0,则下列不等式中不恒成立的是( B ) A .ac 2>bc 2 B .a -b c>0C .(a +b )(1a +1b)>4D .a 2+b 2+2>2a +2b[解析] ∵c ≠0,∴c 2>0,又∵a >b ,∴ac 2>bc 2; ∵a >b ,∴a -b >0,又c ≠0, ∴c >0时a -b c >0,c <0时,a -bc <0;∵a >b >0,∴(a +b )(1a +1b )=2+b a +ab>2+∵a >b >0,∴a 2+b 2+2-2a -2b =(a -1)2+(b -1)2>0, 故A ,C ,D 恒成立,B 不恒成立.5.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( C )A .12B .1C .3D .2[解析] 因为b 2+c 2-a 2=2bc cos A =bc ,所以cos A =12,因为A ∈(0,π),所以A =π3,所以△ABC 的面积为12bc sin A =12×4×32=3,故选C .6.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 解法1:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y=12,则ln x +ln y =ln(x +y )=ln1=0,排除D .故选C . 解法2:因为函数y =⎝⎛⎭⎫12x在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故选C .7.已知数列{a n },满足a n +1=11-a n,若a 1=12,则a 2015=( B )A .12B .2C .-1D .1[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期为3,而2015=671×3+2,∴a 2015=a 2=2.8.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( C )A .22B .4C .32D .6[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2).D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C .9.已知数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若a n +a n +1=11-3,则n 的值是( B )A .12B .9C .8D .6[解析] ∵a n =1n +n +1=n +1-n ,∴a n +a n +1=n +1-n +n +2-n +1 =n +2-n =11-3=11-9, ∴n =9.10.已知△ABC 中,∠A =30°,AB 、BC 分别是3+2、3-2的等差中项与等比中项,则△ABC 的面积等于( D )A .32B .34C .32或3 D .32或34[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理,得AB sin C =BCsin A ,3sin C =1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D . 11.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( C ) A .52 B .78 C .104D .208[解析] 由等差数列的性质得a 2+a 7+a 12=3a 7=24,∴a 7=8, ∴S 13=13a 7=104,故选C .12.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于13.( C ) A .2 B .3 C .4D .5[解析] 由已知得,1a +1b =1,a >0,b >0,则a +b =(a +b )(1a +1b )=2+b a +ab ≥2+2b a ·a b=4,当b a =ab,即a =b =2时取等号.[点评] 一个小题涉及到直线的方程与基本不等式,难度又不大,这是高考客观题命题的主要方向.平时就要加强这种小综合交汇训练.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=4. [解析] ∵2a 5-a 2a 8=2a 5-a 25=0,a n ≠0,∴a 5=2, ∴b 3+b 7=2b 5=2a 5=4.14.在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =π4.[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15.已知变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为⎝⎛⎭⎫12,+∞. [解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点, 位于直线l 1与x +2y -3=0之间时, z 仅在点A (3,0)处取得最大值, ∴-a <-12,∴a >12.16.已知点(1,t )在直线2x -y +1=0的上方,且不等式x 2+(2t -4)x +4>0恒成立,则t 的取值集合为{t |3<t <4}.[解析] ∵(1,t )在直线2x -y +1=0的上方, ∴t >3,∵不等式x 2+(2t -4)x +4>0恒成立, ∴Δ=(2t -4)2-16<0,∴0<t <4,∴3<t <4.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解析] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114①令这个等差数列的公差为d ,则a =aq +(4-1)·d .则d =13(a -a q),又有aq =a q +24×13×⎝⎛⎭⎫a -a q ② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.18.(本题满分12分)(2016·贵阳市第一中学月考)设函数f (x )=12sin2x -cos 2(x +π4).(1)若x ∈(0,π),求f (x )的单调递增区间;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (B2)=0,b =1,求△ABC 面积的最大值.[解析] (1)由题意可知,f (x )=12sin2x -1+cos (2x +π2)2=12sin2x -1-sin2x 2=sin2x -12.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .又因为x ∈(0,π),所以f (x )的单调递增区间是(0,π4]和[3π4,π).(2)由f (B 2)=sin B -12=0,得sin B =12,由题意知B 为锐角,所以cos B =32. 由余弦定理b 2=a 2+c 2-2ac cos B ,得1+3ac =a 2+c 2≥2ac ,即ac ≤2+3,当且仅当a =c 时等号成立. 因为S △ABC =12ac sin B ≤2+34,所以△ABC 面积的最大值为2+34. 19.(本题满分12分)为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.[解析] 设鱼塘的长为 x m ,宽为y m ,则农田长为(x +4)m ,宽为(y +4)m ,设农田面积为S .则xy =10 000,S =(x +4)(y +4)=xy +4(x +y )+16=10 000+16+4(x +y )≥10 016+8xy =10 016+800=10 816.当且仅当x =y =100时取等号. 所以当x =y =100时,S min =10 816 m 2. 此时农田长为104 m ,宽为104 m.20.(本题满分12分)(2015·浙江文,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .[分析] 等差等比数列的通项公式;数列的递推关系式;数列求和和运算求解能力,推理论证能力.解答本题(1)利用等比数列的通项公式求a n ;利用递推关系求b n .(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.[解析] (1)由a 1=2,a n +1=2a n ,得a n =2n . 当n =1时,b 1=b 2-1,因为b 1=当n ≥2时,1n b n =b n +1-b n由累乘法得:b n =n .①, 又∵b n =1,符合①式,∴b n =n (2)由(1)知,a n b n =n ·2n ,所以T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.21.(本题满分12分)(2016·河南高考适应性测试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(cos B,2cos 2C2-1),n =(c ,b -2a ),且m ·n =0.(1)求角C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. [解析] (1)∵m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0, ∴c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得 sin C cos B +(sin B -2sin A )cos C =0, ∴sin A =2sin A cos C .又∵sin A ≠0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由AD →=DB →,知CD →-CA →=CB →-CD →,所以2CD →=CA →+CB →, 两边平方得4|CD →|2=b 2+a 2+2ba cos C ∴b 2+a 2+ba =28.①又∵c 2=a 2+b 2-2ab cos C ,∴a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin C =2 3.22.(本题满分14分)已知α、β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a 、b ∈R ,求b -3a -1的最大值和最小值.[解析] ∵⎩⎪⎨⎪⎧α+β=-aαβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β)b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-10≤b ≤1. 建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.综合学业质量标准检测(二)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <b <0,则( C ) A .1a <1bB .0<a b <1C .ab >b 2D .b a >a b[解析] ∵a <b <0,∴两边同乘b ,得ab >b 2,故选C . 2.己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( A )A .A ∩B =∅ B .B ⊆AC .A ∩∁R B =RD .A ⊆B[解析] A ={x |x 2-3x +2<0}={x |1<x <2},B ={x |log 4x >12}={x |x >2},∴A ∩B =∅.故选A .3.(x -2y +1)(x +y -3)<0表示的平面区域为( C )[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C .4.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( C )A .1B .12C .34D .58[解析] ∵a 1=1,a n +1=12a n +12n ,∴a 2=12a 1+12=1,a 3=12a 2+14=34,∴选C .5.已知A 为△ABC 的一个内角,且sin A +cos A =23,则△ABC 的形状是( B ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不确定[解析] 解法1:∵sin A +cos A =23,∴(sin A +cos A )2=29,∴2sin A ·cos A =-79<0,∴A 为钝角,∴△ABC 的形状为钝角三角形.故选B .解法2:假设0<A ≤π2,则π4<A +π4≤3π4,∴sin(A +π4)≥22>13.∴sin A +cos A =2sin(A +π4)≥1>23.与条件矛盾,∴A >π2.故选B .6.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C )A .3B .932C .332D .33[解析] 依题意得a 2+b 2-c 2-2ab +6=0,∴2ab cos C -2ab +6=0,即ab =6,△ABC 的面积等于12ab sin C =332,故选C .7.在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( B ) A .18 B .99 C .198D .297[解析] 由已知得:a 3+a 9+a 6=27,即3a 6=27,a 6=9. ∴S 11=11(a 1+a 11)2=11×2a 62=11a 6=11×9=99.故选B .8.(2016·湖北七市教科研协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( B )A .9B .92C .4D .52[解析] 圆的标准方程为(x -1)2+(y -2)2=5,直线截圆所得的弦长为 25,等于直径,∴直线ax +by -6=0过圆心,即a +2b -6=0.又a >0,b >0,由基本不等式得a +2b ≥22ab ,即ab ≤92,当且仅当a =3,b =32时等号成立,∴ab 的最大值为92.故选B .9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35 m ,则此电视塔的高度是( A )A .521mB .10mC .4 90013mD .35m[解析] 作出示意图,设塔高OC 为h m ,在Rt △AOC 中,OA =h tan60°=33h ,OB =h . AB =35,∠AOB =150°,由余弦定理得352=(33h )2+h 2-2×33h ·h cos150°, 解得h =521.故选A .10.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n 5,则1b 1b 2+1b 2b 3+…+1b 10b 11等于( C )A .811B .919C .1021D .1123[解析] 由n a 1+a 2+…+a n =15n 得S n =a 1+a 2+…+a n =5n 2,则S n -1=5(n -1)2(n ≥2),a n =S n -S n -1=10n -5(n ≥2),当n =1时,a 1=5也满足.故a n =10n -5,b n =2n -1,1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以原式=12(1b 1-1b 11)=12×(1-121)=1021.故选C .11.已知O 是△ABC 的重心,且满足sin A 3·OA →+sin B 7·OB →+sin C 8·OC →=0,则角B 等于( B )A .30°B .60°C .90°D .120°[解析] 由正弦定理得:a 3OA →+b 7OB →+c 8OC →=0,又由题意得:OA →+OB →+OC →=0,∴a 3=b 7=c8,∴由余弦定理得:cos B =a 2+c 2-b 22ac=⎝⎛⎭⎫37b 2+⎝⎛⎭⎫87b 2-b 22×37b ×87b=12∴B =60°.故选B .12.已知x ,y 满足⎩⎪⎨⎪⎧x ≥2y ≥2,x +y ≤8,则z =x -y 的最大值为( A )A .4B .-4C .0D .2[解析] 作出不等式组表示的可行域如图阴影部分所示,由z =x -y 得y =x -z ,欲求z 的最大值,可将直线l :y =x 向下平移,当直线l 经过A 点时直线在y 轴上的截距-2最小,此时z 取得最大值.易求点A (6,2),则z max =6-2=4.故选A .二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为562.[解析] 在△ACD 中,cos ∠ADC =52+32-722×5×3=-12,所以∠ADC =120°,所以∠ADB=60°.在△ABD 中,由正弦定理得AB sin60°=AD sin45°,所以AB =562.14.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为-1≤a ≤0. [解析] 2x 2+2ax -a -1≥0⇔x 2+2ax -a ≥0,∴Δ≤0, ∴-1≤a ≤0.15.已知实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,那么a +2b 的最小值是10. [解析] 因为实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,整理1a -1+2b =1,所以a+2b =(a -1)+2b +1=[(a -1)+2b ]⎣⎡⎦⎤1a -1+2b +1=2(a -1)b +2b a -1+6,所以2(a -1)b +2ba -1+6≥22(a -1)b ×2b a -1+6=10.当且仅当2(a -1)b =2ba -1时取等号. 16.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤2,y ≥0,则z =(x +1)2+(y -1)2的最小值是12.[解析] 如图,可行域为△ABC 及其内部,其中A (-1,0),B (2,0),C (12,32).目标函数表示可行域内的点M 到点P (-1,1)的距离的平方,因此所求最小值为点P (-1,1)到直线AC :x -y +1=0的距离的平方,即(|-1-1+1|2)2=12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin2Asin2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.[分析] 考查同角三角函数基本关系式;正弦定理和三角形面积公式.三角恒等变换与运算求解能力.(1)利用两角和与差的正切公式,求出tan A ,再利用同角三角函数基本关系式得到结论; (2)已知A ,B 和a 可利用正弦定理形式的面积公式(两边及夹角)求解.[解析] (1)由tan(π4+A )=2,得tan A =13,所以sin 2A sin 2A +cos 2 A =2sin A cos A 2sin A cos A +cos 2 A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π)可得,sin A =1010,cos A =31010.由a =3,B =π4及正弦定理知:b =3 5.又sin C =sin(A +B )=sin A cos B +cos A sin B =255,所以S △ABC =12ab sin C =12×3×35×255=9.18.(本题满分12分)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. [解析] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x≥2.当且仅当x =1x ,即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f (x )x的最小值为-2.(2)解法1:因为f (x )-a =x 2-2ax -1,所以要使得“任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1, 则只要g (x )≤0在[0,2]上恒成立.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0所以a 的取值范围是[34,+∞).解法2:∵f (x )≤a 对任意x ∈[0,2]恒成立, ∴x 2-2ax -1≤0对任意x ∈[0,2]恒成立, 当x =0时,显然恒成立,a ∈R ;当x ∈(0,2]时,有a ≥x 2-12x ,令g (x )=x 2-12x ,则g (x )=x 2-12x 在(0,2]上单调递增,∴g (x )max =g (2)=34.∴a ≥34.综上得a 的取值范围是[34,+∞).19.(本题满分12分)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n (n 为偶数)a n+14 (n 为奇数).记b n =a 2n -1-14,n =1,2,3,….(1)求a 2、a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38,所以a 5=12a 4=14a +316,所以b 1=a 1-14=a -14,b 2=a 3-14=12(a -14),b 3=a 5-14=14(a -14).猜想:{b n }是公比为12的等比数列.证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12(a 2n -1+14)-14=12(a 2n -1-14)=12b n (n ∈N *),∴{b n }是首项为a -14,公比为12的等比数列.20.(本题满分12分)已知关于x 的一元二次不等式kx 2-2x +6k <0(k ≠0).导学号 54742970(1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围. [解析] (1)∵不等式的解集为{x |x <-3或x >-2}, ∴-3,-2是方程kx 2-2x +6k =0的两根,且k <0. ∴⎩⎪⎨⎪⎧(-3)×(-2)=6,(-3)+(-2)=2k ,∴k =-25. (2)∵不等式的解集为R ,∴⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66,∴k <-66. 即k 的取值范围是(-∞,-66). 21.(本题满分12分)已知a ,b ,c 分别是△ABC 的角A ,B ,C 所对的边,且c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin2A ,求A 的值.[解析] (1)∵c =2,C =π3,由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2;(2)∵sin C +sin(B -A )=2sin2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2,②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6,综上所述,A =π2或A =π6.22.(本题满分14分)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和S n .[解析] (1)设数列{a n }的首项为a 1,公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,S 10=10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2. 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)×22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,① 4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n -1,② ①-②得-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1 所以S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+16(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.学业质量标准检测(解三角形、数列部分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在锐角三角形ABC 中,已知A =2C ,则ac 的范围是( C )A .(0,2)B .(2,2)C .(2,3)D .(3,2)[解析] a c =sin A sin C =sin2Csin C =2cos C ,又A +B +C =π,A =2C ,∴π6<C <π4,∴2<ac< 3. 2.已知2a =3b =m ,且a ,ab ,b 成等差数列,则m =( C )A .2 C .6[解析] ∵2a =3b =m ,∴a =log 2又∵a ,ab ,b 成等差数列,∴2ab =a +b ⇒2=1a +1b=log m 2+log m 3=log m 6,∴m = 6.3.在△ABC 中,若(a -a cos B )sin B =(b -c cos C )sin A ,则这个三角形是( D ) A .底角不等于45°的等腰三角形 B .锐角不等于45°的直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形[解析] 由正弦定理,得a sin B =b sin A , ∴a sin B cos B =c sin A cos C , sin A sin B cos B =sin C sin A cos C . ∴sin2B =sin2C .∴B =C ,或2B =π-2C ,即B +C =π2.4.等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( B )A .66B .99C .144D .297[解析] 设b i =a i +a i +3+a i +6,则由条件知{b n }为等差数列,且b 1=39,b 3=27,∴公差d =b 3-b 12=-6,∴数列{a n }前9项的和a 1+a 2+…+a 9=b 1+b 2+b 3=3b 2=3(b 1+d )=3×(39-6)=99.5.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( C )A .43B .5C .52D .62[解析] ∵S △ABC =12ac sin B ,∴c =4 2.由余弦定理,得b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理,得2R =bsin B=52(R 为△ABC 外接圆的半径),故选C .6.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( B ) A .172B .192C .10D .12[解析] 由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B .7.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则A 的取值范围为( C )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)[解析] 由题意,得cos A =b 2+c 2-a 22bc >0,∴A <π2.又a >b >c ,∴A >B >C .又∵A +B +C =π,∴A >π3,故选C .8.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n ( C )A .4n -1B .4n -1 C .2n -1D .2n -1[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12) =2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 9.根据下边框图,对大于2的整数N ,输出的数列的通项公式是( C )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1[解析] 由程序框图可知a 1=2,a 2=22,a 3=23, ∴a n =2n .10.已知等比数列{a n }中,a n >0,a 5、a 95为方程x 2-10x +16=0的两根,则a 20·a 50·a 80的值为( B )A .32B .64C .256D .±64[解析] 由条件知a 5+a 95=10,a 5·a 95=16, ∵{a n }是等比数列,∴a 250=16,∵a n >0,∴a 50=4,∴a 20a 50a 80=a 350=64. 11.△ABC 中,A ︰B =1︰2,∠ACB 的平分线CD 把△ABC 的面积分成3︰2两部分,则cos A 等于( C )A .13B .12C .34D .0[解析] ∵CD 为∠ACB 的平分线, ∴点D 到AC 与点D 到BC 的距离相等, ∴△ACD 与△BCD 的高相等. ∵A ︰B =1︰2,∴AC >BC .∵S △ACD ︰S △BCD =3︰2,∴AC BC =32. 由正弦定理,得sin B sin A =32,又∵B =2A ,∴sin2A sin A =32,∴2sin A cos A sin A =32, ∴cos A =34.12.若△ABC 的三边为a ,b ,c ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,则函数f (x )的图象( B ) A .与x 轴相切 B .在x 轴上方 C .在x 轴下方D .与x 轴交于两点[解析] 函数f (x )相应方程的判别式Δ=(b 2+c 2-a 2)2-4b 2c 2 =(2bc cos A )2-4b 2c 2 =4b 2c 2(cos 2A -1).∵0<A <π,∴cos 2A -1<0,∴Δ<0, ∴函数图象与x 轴没交点.故选B .二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上) 13.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.[解析] ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.14.三角形一边长14,它对的角为60°,另两边之比为8︰5,则此三角形面积为 [解析] 设另两边长为8x 和5x ,则 cos60°=64x 2+25x 2-14280x 2,∴x =2,∴另两边长为16和10,此三角形面积S =12×16×10·sin60°=40 3.15.若数列{a n }满足a 1=2,a n =1-1a n -1,则a 2016=-1. [解析] ∵a 1=2,a n =1-1a n -1,∴a 2=1-1a 1=12,a 3=1-1a 2=-1,a 4=1-1a 3=2,a 5=1-1a 4=12,……∴数列{a n }的值呈周期出现,周期为3. ∴a 2016=a 3=-1.16.已知a ,b ,c 分别为 △ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC[解析] 由a =2,(2+b )(sin A -sin B )=(c -b )sin C 及正弦定理可得,(a +b )(a -b )=(c -b )·c∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°. 在△ABC 中,a 2=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc =bc ,(等号在b =c 时成立),∴bc ≤4.∴S △ABC =12bc sin A ≤12×4×32= 3. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos B +b cos A =2c cos C .(1)求C ;(2)若△ABC 的面积为23,a +b =6,求∠ACB 的角平分线CD 的长度.[解析] (1)已知a cos B +b cos A =2c cos C ,由正弦定理,得sin A cos B +sin B cos A =2sin C cos C ,所以sin(A +B )=2sin C cos C ,即sin C =2sin C cos C .因为0<C <π,所以cos C =12,故C =π3. (2)方法一:由已知,得S =12ab sin C =34ab =23,所以ab =8. 又a +b =6,解得⎩⎪⎨⎪⎧ a =2b =4,或⎩⎪⎨⎪⎧ a =4,b =2. 当⎩⎪⎨⎪⎧a =2b =4时,由余弦定理,得c 2=4+16-2×2×4×12=12, 所以c =2 3.所以b 2=a 2+c 2,△ABC 为直角三角形,∠B =π2. 因为CD 平分∠ACB ,所以∠BCD =π6. 在Rt △BCD 中,CD =2cos π6=433.当⎩⎪⎨⎪⎧ a =4b =2时,同理可得CD =2cos π6=433. 方法二:在△ABC 中,因为CD 平分∠ACB ,所以∠ACD =∠BCD =π6. 因为S △ABC =S △ACD +S △BCD ,所以S △ABC =12b · CD ·sin π6+12a ·CD ·sin π6=12CD ·sin π6·(a +b )=14(a +b )·CD . 因为S △ABC =23,a +b =6,即23=14×6·CD ,解得CD =433. 18.(本题满分12分))在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若m =(cos 2A 2,1),n =(cos 2(B +C ),1),且m ∥n .(1)求角A ;(2)当a =6,且△ABC 的面积S 满足3=a 2+b 2-c 24S时,求边c 的值和△ABC 的面积. [解析] (1)因为m ∥n ,所以cos 2(B +C )-cos 2A 2=cos 2A -cos 2A 2=cos 2A -cos A +12=0, 即2cos 2A -cos A -1=0,(2cos A +1)(coa A -1)=0. 所以cos A =-12或cos A =1(舍去),即A =120°. (2)由3=a 2+b 2-c 24S 及余弦定理,得tan C =33,所以C =30°. 又由正弦定理a sin A =c sin C,得c =2 3. 所以△ABC 的面积S =12ac sin B =3 3. 19.(本题满分12分)(2016·广西自治区质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n. [解析] (1)当n =1时,a 1=32a 1-1,∴a 1=2. ∵S n =32a n -1,① S n -1=32a n -1-1(n ≥2),② ∴①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2·3n -1.(2)由(1)得b n =2log 3a n 2+1=2n -1, ∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1) =12[(1-13)+(13-15)+…+(12n -3-12n -1)]=n -12n -1. 20.(本题满分12分)用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?[解析] 购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元),a 2=100+(2 000-100)×0.01=119(万元),a 3=100+(2 000-100×2)×0.01=118(万元),a 4=100+(2 000-100×3)×0.01=117(万元),…a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *).因此{a n }是首项为120,公差为-1的等差数列.故a 10=121-10=111(万元),a 20=121-20=101(万元).20次分期付款的总和为S 20=(a 1+a 20)×202=(120+101)×202=2 210(万元). 实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.21.(本题满分12分)在△ABC 中,若a 2+c 2-b 2=ac ,log 4sin A +log 4sin C =-1,S △ABC =3,求三边a ,b ,c 的长及三个内角A ,B ,C 的度数.[解析] 由a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12. ∵0°<B <180°,∴B =60°.∵S △ABC =12ac sin B =12ac ×32=3, ∴ac =4.①由log 4sin A +log 4sinC =-1,得sin A sin C =14. 由正弦定理,得ac 4R 2=14, ∴44R 2=14, ∴R =2(负值舍去).∴b =2R sin B =2×2×32=2 3. 由已知,得a 2+c 2-(23)2=4.②当a >c 时,由①②,得a =6+2,c =6- 2.∴三边的长分别为a =6+2,b =23,c =6- 2.由正弦定理,得sin A =a 2R =6+24=sin105°. ∴A =105°,即C =15°.同理,当a <c 时,a =6-2,b =23,c =6+2,A =15°,B =60°,C =105°.22.(本题满分14分)(2015·石家庄市一模)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(1)求数列{a n }、{b n }的通项公式;(2)求数列{a n b n }的前n 项和.[解析] (1)解法1:∵a n +1=λS n +1(n ∈N *),∴a n =λS n -1+1(n ≥2),∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0,又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,公比为λ+1的等比数列,∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1∴a n =2n -1,b n =1+3(n -1)=3n -2,解法2:∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)=λ2+2λ+1,∴4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0,得λ=1∴a n +1=S n +1(n ∈N *),∴a n =S n -1+1(n ≥2)∴a n +1-a n =a n ,即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,∴数列{a n }为以1为首项,公比为2的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1 ① ∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n ② ①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n整理得:T n =(3n -5)·2n +5.。

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案

高一数学人教a必修5试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为()。

A. -1B. 1C. 5D. -5答案:D2. 已知集合A={1,2,3},B={2,3,4},则A∩B等于()。

A. {1,2}B. {1,3}C. {2,3}D. {4}答案:C3. 函数y=x^2-4x+c的图像与x轴有两个交点,则c的取值范围是()。

A. c>4B. c<4C. c≥4D. c≤4答案:B4. 已知等差数列{a_n}的前三项分别为2,5,8,则其公差d为()。

A. 3B. 2C. 1D. 4答案:A5. 函数y=x^3+2x^2-x-2的导数为()。

A. 3x^2+4x-1B. 3x^2+4x+1C. 3x^2-4x+1D. 3x^2-4x-1答案:A6. 若sinα=3/5,且α为锐角,则cosα的值为()。

A. 4/5B. -4/5C. √7/5D. -√7/5答案:A7. 已知等比数列{a_n}的前三项分别为2,4,8,则其公比q为()。

A. 2B. 1/2C. 1D. 1/4答案:A8. 函数y=x^2-6x+8的最小值为()。

A. 2B. -2C. 8D. -8答案:B9. 若cosα=-√3/2,且α为钝角,则sinα的值为()。

A. 1/2B. -1/2C. √3/2D. -√3/2答案:B10. 函数y=x^3-3x^2+4的极值点为()。

A. 1B. 2C. -1D. 0答案:A二、填空题(每题4分,共20分)1. 若a,b,c是等差数列,且a+b+c=9,则b=______。

答案:32. 已知函数f(x)=x^2-6x+8,其对称轴方程为______。

答案:x=33. 函数y=x^3-3x^2+4的极值点为______。

答案:14. 若sinα=3/5,且α为锐角,则tanα的值为______。

答案:4/35. 已知等比数列{a_n}的前三项分别为2,4,8,则其通项公式为______。

人教版高中数学必修5教科书课后习题答案

人教版高中数学必修5教科书课后习题答案

人民教育出版社 高中数学必修五第一章 解三角形1.1两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1)14a ≈,19b ≈,105B =︒; (2)18a ≈cm ,15b ≈cm ,75C =︒. 2、(1)65A ≈︒,85C ≈︒,22c ≈;或115A ≈︒,35C ≈︒,13c ≈; (2)41B ≈︒,24A ≈︒,24a ≈. 练习(P8) 1、(1)39.6,58.2, 4.2 cm A B c ≈︒≈︒≈; (2)55.8,81.9,10.5 cm B C a ≈︒≈︒≈. 2、(1)43.5,100.3,36.2A B C ≈︒≈︒≈︒; (2)24.7,44.9,110.4A B C ≈︒≈︒≈︒. 习题1.1 A 组(P10) 1、(1)38,39,80a cm b cm B ≈≈≈︒; (2)38,56,90a cm b cm C ≈≈=︒ 2、(1)114,43,35;20,137,13A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈ (2)35,85,17B C c cm ≈︒≈︒≈;(3)97,58,47;33,122,26A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈; 3、(1)49,24,62A B c cm ≈︒≈︒≈; (2)59,55,62A C b cm ≈︒≈︒≈; (3)36,38,62B C a cm ≈︒≈︒≈; 4、(1)36,40,104A B C ≈︒≈︒≈︒; (2)48,93,39A B C ≈︒≈︒≈︒;习题1.1 A 组(P10)1、证明:如图1,设ABC ∆的外接圆的半径是R ,①当ABC ∆时直角三角形时,90C ∠=︒时,ABC ∆的外接圆的圆心O 在Rt ABC ∆的斜边AB 上.在Rt ABC ∆中,sin BC A AB=,sin ACB AB = 即sin 2a A R =,sin 2b B R = 所以2sin a R A =,2sin b R B = 又22sin902sin c R R RC ==⋅︒= 所以2sin , 2sin , 2sin a R A b R B c R C ===②当ABC ∆时锐角三角形时,它的外接圆的圆心O 在三角形内(图2),作过O B 、的直径1A B ,连接1A C ,则1A BC ∆直角三角形,190ACB ∠=︒,1BAC BAC ∠=∠. 在1Rt A BC ∆中,11sin BCBAC A B=∠, 即1sin sin 2aBAC A R=∠=, 所以2sin a R A =,同理:2sin b R B =,2sin c R C =③当ABC ∆时钝角三角形时,不妨假设A ∠为钝角, 它的外接圆的圆心O 在ABC ∆外(图3)(第1题图1) (第1题图2)作过O B 、的直径1A B ,连接1A C .则1A BC ∆直角三角形,且190ACB ∠=︒,1180BAC∠=︒-∠在1Rt A BC ∆中,12sin BC R BAC =∠,即2sin(180)a R BAC =︒-∠即2sin a R A =同理:2sin b R B =,2sin c R C =综上,对任意三角形ABC ∆,如果它的外接圆半径等于则2sin , 2sin , 2sin a R A b R B c R C ===2、因为cos cos a A b B =,所以sin cos sin cos A A B B =,即sin2sin2A B = 因为02,22A B π<<,所以22A B =,或22A B π=-,或222A B ππ-=-. 即A B =或2A B π+=.所以,三角形是等腰三角形,或是直角三角形.在得到sin2sin2A B =后,也可以化为sin2sin20A B -= 所以cos()sin()0A B A B +-= 2A B π+=,或0A B -=即2A B π+=,或A B =,得到问题的结论.1.2应用举例 练习(P13)1、在ABS ∆中,32.20.516.1AB =⨯= n mile ,115ABS ∠=︒,根据正弦定理,sin sin(6520)AS ABABS =∠︒-︒得sin 16.1sin115sin(6520)AS AB ABS ==⨯∠=⨯︒-︒∴S 到直线AB 的距离是sin 2016.1sin115sin 207.06d AS =⨯︒=⨯︒≈(cm ). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在ABP ∆中,180ABP γβ∠=︒-+,180()180()(180)BPA ABP αβαβγβγα∠=︒---∠=︒---︒-+=-在ABP ∆中,根据正弦定理,sin sin AP ABABP APB=∠∠ sin(180)sin()AP aγβγα=︒-+-sin()sin()a AP γβγα⨯-=-(第1题图3)所以,山高为sin sin()sin sin()a h AP αγβαγα-==-2、在ABC ∆中,65.3AC =m ,25251738747BAC αβ'''∠=-=︒-︒=︒909025256435ABC α''∠=︒-=︒-︒=︒ 根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 65.3sin7479.8sin sin6435AC BAC BC ABC '⨯∠⨯︒==≈'∠︒m井架的高约9.8m.3、山的高度为200sin38sin 29382sin9⨯︒︒≈︒m练习(P16) 1、约63.77︒. 练习(P18) 1、(1)约2168.52 cm ; (2)约2121.75 cm ; (3)约2425.39 cm . 2、约24476.40 m3、右边222222cos cos 22a b c a c b b C c B b c ab ac+-+-=+=⨯+⨯22222222222a b c a c b a a a a a+-+-=+===左边 【类似可以证明另外两个等式】习题1.2 A 组(P19)1、在ABC ∆中,350.517.5BC =⨯= n mile ,14812622ABC ∠=︒-︒=︒78(180148)110ACB ∠=︒+︒-︒=︒,1801102248BAC ∠=︒-︒-︒=︒根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 17.5sin 228.82sin sin 48BC ABC AC BAC ⨯∠⨯︒==≈∠︒n mile货轮到达C 点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在BCD ∆中,301040BCD ∠=︒+︒=︒,1801804510125BDC ADB ∠=︒-∠=︒-︒-︒=︒130103CD =⨯= n mile根据正弦定理,sin sin CD BDCBD BCD=∠∠ 10sin (18040125)sin 40BD=∠︒-︒-︒︒10sin 40sin15BD ⨯︒=︒在ABD ∆中,451055ADB ∠=︒+︒=︒,1806010110BAD ∠=︒-︒-︒=︒1801105515ABD ∠=︒-︒-︒=︒根据正弦定理,sin sin sin AD BD AB ABD BAD ADB ==∠∠∠,即sin15sin110sin55AD BD AB==︒︒︒10sin 40sin15sin1510sin 40sin15 6.84sin110sin110sin 70BD AD ⨯︒⨯︒⨯︒⨯︒︒===≈︒︒︒n mile sin5510sin 40sin5521.65sin110sin15sin70BD AB ⨯︒⨯︒⨯︒==≈︒︒⨯︒n mile如果一切正常,此船从C 开始到B 所需要的时间为:6.8421.65206010306086.983030AD AB +++⨯+≈+⨯≈ min即约1小时26分59秒. 所以此船约在11时27分到达B 岛. 4、约5821.71 m5、在ABD ∆中,700 km AB =,1802135124ACB ∠=︒-︒-︒=︒根据正弦定理,700sin124sin35sin 21AC BC==︒︒︒700sin35sin124AC ⨯︒=︒,700sin 21sin124BC ⨯︒=︒700sin35700sin 21786.89 km sin124sin124AC BC ⨯︒⨯︒+=+≈︒︒所以路程比原来远了约86.89 km.6、飞机离A 处探照灯的距离是4801.53 m ,飞机离B 处探照灯的距离是4704.21 m ,飞机的高度是约4574.23 m.7、飞机在150秒内飞行的距离是15010001000 m 3600d =⨯⨯根据正弦定理,sin(8118.5)sin18.5d x=︒-︒︒这里x 是飞机看到山顶的俯角为81︒时飞机与山顶的距离.飞机与山顶的海拔的差是:sin18.5tan81tan8114721.64 m sin(8118.5)d x ⨯︒⨯︒=⨯︒≈︒-︒ 山顶的海拔是2025014721.645528 m -≈8、在ABT ∆中,21.418.6 2.8ATB ∠=︒-︒=︒,9018.6ABT ∠=︒+︒,15 m AB =根据正弦定理,sin 2.8cos18.6AB AT =︒︒,即15cos18.6sin 2.8AT ⨯︒=︒塔的高度为15cos18.6sin 21.4sin 21.4106.19 m sin 2.8AT ⨯︒⨯︒=⨯︒≈︒9、3261897.8 km 60AE ⨯== 在ACD ∆中,根据余弦定理:AC =101.235== 根据正弦定理,sin sin AD ACACD ADC=∠∠ sin 57sin66sin 0.5144101.235AD ADC ACD AC ⨯∠⨯︒∠==≈30.96ACD ∠≈︒13330.96102.04ACB ∠≈︒-︒=︒(第9题)在ABC ∆中,根据余弦定理:AB =245.93=≈222222245.93101.235204cos 0.584722245.93101.235AB AC BC BAC AB AC +-+-∠==≈⨯⨯⨯⨯54.21BAC ∠=︒在ACE ∆中,根据余弦定理:CE =90.75=≈22222297.890.75101.235cos 0.42542297.890.75AE EC AC AEC AE EC +-+-∠=≈≈⨯⨯⨯⨯64.82AEC ∠=︒180(18075)7564.8210.18AEC ︒-∠-︒-︒=︒-︒=︒所以,飞机应该以南偏西10.18︒的方向飞行,飞行距离约90.75 km . 10、如图,在ABC ∆AC ==37515.44 km ==222222640037515.44422000.692422640037515.44AB AC BC BAC AB AC +-+-∠=≈≈-⨯⨯⨯⨯133.82BAC ∠≈︒, 9043.82BAC ∠-︒≈︒ 所以,仰角为43.82︒11、(1)211sin 2833sin 45326.68 cm 22S ac B ==⨯⨯⨯︒≈(2)根据正弦定理:sin sin a c A C =,36sin sin66.5sin sin32.8a c C A =⨯=⨯︒︒2211sin66.5sin 36sin(32.866.5)1082.58 cm 22sin32.8S ac B ︒==⨯⨯⨯︒+︒≈︒(3)约为1597.94 2cm12、212sin 2nR nπ.13、根据余弦定理:222cos 2a c b B ac +-= 所以222()2cos 22a a a m c c B =+-⨯⨯⨯B22222()22a a c b c a c ac +-=+-⨯⨯222222222211()[42()]()[2()]22a c a c b b c a =+-+-=+-所以a m =b m =,c m =14、根据余弦定理的推论,222cos 2b c a A bc +-=,222cos 2c a b B ca+-=所以,左边(cos cos )c a B b A =-222222()22c a b b c a c a b ca bc +-+-=⨯-⨯222222221()(22)222c a b b c a c a b c c +-+-=-=-=右边习题1.2 B 组(P20)1、根据正弦定理:sin sin a b A B =,所以sin sin a Bb A= 代入三角形面积公式得211sin 1sin sin sin sin 22sin 2sin a B B CS ab C a C a A A==⨯⨯= 2、(1)根据余弦定理的推论:222cos 2a b c C ab +-=由同角三角函数之间的关系,sin C == 代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == (3)根据三角形面积公式12a S a h =⨯⨯所以,22()()()a S h p p a p a p a a a ==---,即2()()()a h p p a p a p a a =--- 同理2()()()b h p p a p a p a b =---,2()()()c h p p a p a p a c=---第一章 复习参考题A 组(P24)1、(1)219,3851,8.69 cm B C c ''≈︒≈︒≈; (2)4149,10811,11.4 cm B C c ''≈︒≈︒≈;或13811,1149, 2.46 cm B C c ''≈︒≈︒≈ (3)112,3858,28.02 cm A B c ''≈︒≈︒≈; (4)2030,1430,22.92 cm B C a ''≈︒≈︒≈; (5)1620,1140,53.41 cm A C b ''≈︒≈︒≈; (6)2857,4634,10429A B C '''=︒=︒=︒; 2、解法1:设海轮在B 处望见小岛在北偏东75︒,在C 处望见小岛在北偏东60︒,从小岛A 向海轮的航线BD 作垂线,垂线段AD 的长度为x n mile ,CD 为y n mile.则 tan 30tan 308tan 30tan15tan1588tan15x x y y x x x x y y ⎧⎧=︒=⎪⎪⎪⎪︒⇒⇒=-⎨⎨︒︒⎪⎪=︒=+⎪⎪+︒⎩⎩8tan15tan304tan30tan15x ︒︒==︒-︒所以,这艘海轮不改变航向继续前进没有触礁的危险. 3、根据余弦定理:2222cos AB a b ab α=+-所以 222cos AB a b ab α=+-222cos 2a AB b B a AB+-=⨯⨯2222222cos 22cos a a b ab b a a b ab αα++--=⨯⨯+-22cos 2cos a b a b ab αα-=+-从B ∠的余弦值可以确定它的大小.类似地,可以得到下面的值,从而确定A ∠的大小. 22cos cos 2cos b a A a b ab αα-=+-4、如图,,C D 是两个观测点,C 到D 的距离是d ,航船在时刻1t 在A 处,以从A 到B 的航向航行,在此时测出ACD ∠和CDA ∠. 在时刻2t ,航船航行到B 处,此时,测出CDB ∠和BCD ∠. 根据正弦定理,在BCD ∆中,可以计算出BC 的长,在ACD ∆中,可以计算出AC 的长. 在ACB ∆中,AC 、BC 已经算出,ACB ACD BCD ∠=∠-∠,解ACD ∆, 求出AB 的长,即航船航行的距离,算出CAB ∠,这样就可以算出航船的航向和速度.(第2题)dCBA(第4题)5、河流宽度是sin()sin sin h αβαβ-. 6、47.7 m.7、如图,,A B 是已知的两个小岛,航船在时刻1t 在C 处,以从C 到D 的航向航行,测出ACD ∠和BCD ∠. 在时刻2t ,航船航行到D 处,根据时间和航船的速度,可以计算出C 到D 的距离是d ,在D 处测出CDB ∠和 CDA ∠. 根据正弦定理,在BCD ∆中,可以计算出BD 的长,在ACD ∆中,可以计算出AD 的长. 在ABD ∆中,AD 、BD 已经算出,ADB CDB CDA ∠=∠-∠,根据余弦定理,就可 以求出AB 的长,即两个海岛,A B 的距离.第一章 复习参考题B 组(P25)1、如图,,A B 是两个底部不可到达的建筑物的尖顶,在地面某点处,测出图中AEF ∠,AFE ∠的大小,以及EF 的距离. 定理,解AEF ∆,算出AE . 在BEF ∆中,测出BEF ∠和BFE ∠, 利用正弦定理,算出BE . 在AEB ∆中,测出AEB ∠,利用余弦定 理,算出AB 的长. 本题有其他的测量方法.2、关于三角形的面积公式,有以下的一些公式:(1)已知一边和这边上的高:111,,222a b c S ah S bh S ch ===;(2)已知两边及其夹角:111sin ,sin ,sin 222S ab C S bc A S ca B===;(3)已知三边:S =,这里2a b cp ++=;(4)已知两角及两角的共同边:222sin sin sin sin sin sin ,,2sin()2sin()2sin()b C Ac A B a B CS S S C A A B B C ===+++;(5)已知三边和外接圆半径R :4abc S R=. 3、设三角形三边长分别是1,,1n n n -+,三个角分别是,3,2απαα-.由正弦定理,11sin sin 2n n αα-+=,所以1cos 2(1)n n α+=-. 由余弦定理,222(1)(1)2(1)cos n n n n n α-=++-⨯+⨯⨯.即2221(1)(1)2(1)2(1)n n n n n n n +-=++-⨯+⨯⨯-,化简,得250n n -=所以,0n =或5n =. 0n =不合题意,舍去. 故5n =所以,三角形的三边分别是4,5,6. 可以验证此三角形的最大角是最小角的2倍. 另解:先考虑三角形所具有的第一个性质:三边是连续的三个自然数.(1)三边的长不可能是1,2,3. 这是因为123+=,而三角形任何两边之和大于第三边. (2)如果三边分别是2,3,4a b c ===.因为 2222223427cos 22348b c a A bc +-+-===⨯⨯22717cos22cos 12()1832A A =-=⨯-=2222222341cos 22234a b c C ab +-+-===-⨯⨯在此三角形中,A 是最小角,C 是最大角,但是cos2cos A C ≠, 所以2A C ≠,边长为2,3,4的三角形不满足条件.(3)如果三边分别是3,4,5a b c ===,此三角形是直角三角形,最大角是90︒,最小角不等于45︒. 此三角形不满足条件. (4)如果三边分别是4,5,6a b c ===.此时,2222225643cos 22564b c a A bc +-+-===⨯⨯2231cos22cos 12()148A A =-=⨯-=2222224561cos 22458a b c C ab +-+-===⨯⨯此时,cos2cos A C =,而02,A C π<<,所以2A C = 所以,边长为4,5,6的三角形满足条件.(5)当4n >,三角形的三边是,1,2a n b n c n ==+=+时,三角形的最小角是A ,最大角是C . 222cos 2b c a A bc +-=222(1)(2)2(1)(2)n n n n n +++-=++2652(1)(2)n n n n ++=++52(2)n n +=+1322(2)n =++222cos 2a b c C ab +-=222(1)(2)2(1)n n n n n ++-+=+2232(1)n n n n --=+32n n -=1322n=-cos A 随n 的增大而减小,A 随之增大,cos C 随n 的增大而增大,C 随之变小. 由于4n =时有2C A =,所以,4n >,不可能2C A =. 综上可知,只有边长分别是4,5,6的三角形满足条件.第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4等比数列 练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-== 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62) 1、证明:11111()(1())1n n n n n n n n n b bb a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++= 141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>+⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为33x x x ⎧⎪<<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)(第2题)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=。

高中数学必修5复习题及答案(A组)免费范文

高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。

数学必修五高中试题及答案

数学必修五高中试题及答案

数学必修五高中试题及答案一、选择题(每题3分,共30分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 已知点A(2, 3)和点B(-1, -2),求直线AB的斜率。

A. -1B. 1C. 2D. 33. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的首项为3,公差为2,求第10项的值。

A. 23B. 21C. 19D. 175. 若\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。

A. \( \frac{4}{5} \)B. \( \frac{3}{4} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)6. 一个正方体的体积为27,求其边长。

A. 3B. 4C. 5D. 67. 已知函数\( g(x) = x^3 - 2x^2 + x - 2 \),求\( g(2) \)的值。

A. -1B. 0C. 1D. 28. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 89. 已知\( a = 2 \),\( b = 3 \),求\( a^2 + b^2 \)的值。

A. 13B. 14C. 15D. 1610. 求\( \sqrt{64} \)的值。

A. 8B. 16C. 32D. 64二、填空题(每题2分,共20分)11. 若\( a \)和\( b \)互为相反数,则\( a + b = _______ 。

12. 一个二次方程\( ax^2 + bx + c = 0 \)的判别式为\( b^2 - 4ac \),当\( b^2 - 4ac < 0 \)时,方程有_______解。

13. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值。

必修五数学习题含答案

必修五数学习题含答案

必修五数学习题含答案必修五数学习题含答案数学作为一门科学的基础学科,对于培养学生的逻辑思维、分析问题和解决问题的能力起着至关重要的作用。

而必修五数学作为高中数学的一部分,涵盖了诸多重要的数学概念和方法。

本文将为大家介绍一些必修五数学习题,并提供相应的答案。

第一题:已知函数f(x) = 3x² + 2x - 1,求f(2)的值。

解答:将x = 2代入函数f(x)中,得到f(2) = 3(2)² + 2(2) - 1 = 3(4) + 4 - 1 = 12+ 4 - 1 = 15。

第二题:已知等差数列的首项为a₁,公差为d,前n项和为Sₙ,求Sₙ的表达式。

解答:等差数列的第n项可以表示为aₙ = a₁ + (n-1)d。

根据等差数列的性质,前n项和可以表示为Sₙ = (a₁ + aₙ) * n / 2。

将aₙ代入公式中,得到Sₙ = (a₁ + a₁ + (n-1)d) * n / 2 = (2a₁ + (n-1)d) * n / 2。

第三题:已知函数f(x) = x³ - 3x² + 2x - 1,求f(-1)的值。

解答:将x = -1代入函数f(x)中,得到f(-1) = (-1)³ - 3(-1)² + 2(-1) - 1 = -1 + 3 - 2 - 1 = -1。

第四题:已知等比数列的首项为a₁,公比为q,前n项和为Sₙ,求Sₙ的表达式。

解答:等比数列的第n项可以表示为aₙ = a₁ * q^(n-1)。

根据等比数列的性质,前n项和可以表示为Sₙ = a₁ * (1 - q^n) / (1 - q)。

第五题:已知函数f(x) = log₃(x + 2),求f(1)的值。

解答:将x = 1代入函数f(x)中,得到f(1) = log₃(1 + 2) = log₃(3) = 1。

通过以上五道数学习题的解答,我们可以看到数学问题的解决过程需要运用到各种数学知识和技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五·数学试卷Ⅳ
Ⅰ、选择题
一、选择题
1、在ABC V 中,若
sin cos A B
a b
=
,则角B 等于 ( ) A 、30︒ B 、45︒ C 、60︒ D 、90︒
2、在ABC V
中,10,30a c A ===︒,则角B 等于 ( )
A 、105︒
B 、60︒
C 、15︒
D 、105︒或15︒
3、已知一个锐角三角形的三边边长分别为3,4,a ,则a 的取值范围 ( )
A 、(1,5)
B 、(1,7) C
、) D

)
4、ABC V 中,若
1cos 1cos A a
B b
-=-,则ABC V 一定是
( )
A 、等腰三角形
B 、直角三角形
C 、锐角三角形
D 、钝角三角形
5、在等差数列{}
n a 中,若34567450a a a a a ++++=,则28a a +等于
( )
A 、45
B 、75
C 、180
D 、300
6、设等差数列{}
n a 的前n 项和为n S ,且211210,38m m m
n a a a S -+-+-==,则m 等于 ( ) A 、38 B 、20 C 、10 D 、9 7、若数列{}
n a
的通项公式为n a =
,且9m S =,则m 等于
( )
A 、9
B 、10
C 、99
D 、100
8、已知{}n a 为等差数列,135105a a a ++=,34699a a a ++=,用n S 表示{}
n a 的前n 项和,则使n S 达到最大值的n 是 ( )
A 、21
B 、20
C 、19
D 、18 9、若关于x 的不等式2
20ax bx ++>的解集为1
12
3x x ⎧⎫
-
<<⎨⎬⎩

,则a b -的值是 ( )
A 、-10
B 、-14
C 、10
D 、14 10、以原点为圆心的圆全部都在平面区域360
20
x y x y -+≥⎧⎨
-+≥⎩内,则圆面积的最大值为 ( )
A 、
185π B 、95
π
C 、2π
D 、π 11、已知0a b <<,且1a b +=,则下列不等式中,正确的是 ( ) A 、2log 0a > B 、12
a b
a
-< C 、22
log log 2a b +<- D 、12a b
b a
a +> 12、已知集合{}
22
40,1M x x N x
x ⎧⎫=->=<⎨⎬⎩⎭
,则M N I 等于 ( )
A 、{}2x x >
B 、{}
2x x <- C 、N D 、M
Ⅱ、非选择题
二、填空题
13、ABC V 的三个内角之比为1:2:3,则这个三角形的三边之比为 .
14.已知数列{}
n a 的前n 项和为2
31n S n n =++,则它的通项公式为 .
15、设等差数列{}
n a 的前n 项和为n S ,且53655S S -=,则4a = . 16、已知函数16
,(2,)2
y x x x =+∈-+∞+,则此函数的最小值为 . 三、解答题
17、在ABC V
中,已知a =2,150c B ==︒,求边b 的长及ABC V 的面积S .
18、在ABC V 中,sin b a C =且sin(90)c a B =︒-,试判断ABC V 的形状.
19、设等差数列{}
n a 的前n 项和为n S ,已知31124,0a S == (1)求数列{}n a 的通项公式; (2)求数列{}
n a 的前n 项和n S ;
(3)当n 为何值时,n S 最大并求n S 的最大值.
20、已知数列{}n a 的前n 项和为32n n S a =+,求数列{}
n a 的通项公式.
21、已知函数22(),(0,)x x a
f x x x
++=
∈+∞. (1)当1
2
a =
时,求函数()f x 的最小值; (2)若(0,),()6x f x ∀∈+∞>恒成立,求实数a 的取值范围.
22、已知关于x 的不等式()320a b x a b ++-<的解集为3.4x x ⎧⎫>-⎨⎬⎩

(1)求实数,a b 满足的条件;
(2)求关于x 的不等式2
()(21)220a b x a b x a -++-+->的解集.。

相关文档
最新文档