八年级数学上册 第七章 平行线的证明达标测试卷 北师大版
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(包含答案解析)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40° 2.如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是( ) (1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个3.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°4.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个5.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 6.用反证法证明“m 为正数”时,应先假设( ).A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数7.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角8.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离9.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6810.下列说法:①同位角相等; ②任意三角形的三条中线交于一点;③钝角三角形只有一条高;④三角形的两边长分别为6和9,则这个三角形的第三边长不可能为16;⑤面积相等的两个三角形是全等图形;⑥两个直角一定互补其中,正确的有( )A .4个B .3个C .2个D .1个 11.下列说法正确的是( ) A .同位角相等B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 12.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确二、填空题13.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.14.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.15.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.16.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.17.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.18.如图,BE 、CE 分别是△ABC 内角∠ABC 和外角∠ACD 的平分线,若∠A=70°,则∠BEC=___________.19.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.20.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.三、解答题21.如图,已知点E 在直线DC 上,射线EF 平分AED ∠,过E 点作EB EF ⊥,G 为射线EC 上一点,连接BG ,且90EBG BEG ︒∠+∠=.(1)求证:DEF EBG ∠=∠;(2)若EBG A ∠=∠,求证://AB EF .22.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值. (2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A 的最大值. 23.如图,AB ∥CD ,点E 是CD 上一点,连结AE .EB 平分∠AED ,且DB ⊥BE ,AF ⊥AC ,AF 与BE 交于点M .(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.24.如图,AF 分别与BD 、CE 交于点G 、H ,155∠=︒,2125∠=︒.若A F ∠=∠,求证:C D ∠=∠.25.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .26.如图,AB DB =,ABD ACD ∠=∠,AC 与BD 交于点F ,点E 在线段AF 上,AE DC =,6DBE ∠=︒,108BCD ∠=︒.(1)求证:BCD BEA ≅△△;(2)求AFD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵△CDB′是由△CDB 翻折得到,∴∠CB′D =∠B ,∵∠CB′D =∠A +∠ADB′=∠A +20°,∴∠A +∠A +20°=90°,解得∠A =35°.故选:C .【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.B解析:B【分析】过点E 做直线EF 平行于直线AB ,然后根据同位角和同旁内角即可判断(2)和(3),其中(1)和(4)无法判断.【详解】过点E 做直线EF 平行于直线AB ,如下图所示,(1)无法判断;(2)∵AB//CD ,AB//EF∴EF//CD∴70AEF ∠=︒,15DEF ∠=︒∴85AED ∠=︒故(2)正确;(3)由(2)得A CEF CED DEF ∠=∠=∠+∠,DEF D ∠=∠∴A CED D ∠=∠+∠故(3)正确;(4)无法判断;故选B .【点睛】本题考查了平行线的性质和判定,重点是做出辅助线,然后利用平行线的性质进行求解. 3.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.4.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C ,则2∠C=180°,∠C=90°,所以△ABC 是直角三角形;②因为∠A :∠B :∠C=2:3:5,设∠A=2x ,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC 是直角三角形;③因为∠A=90°﹣∠B ,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠B ﹣∠C=90°,则∠B=90°+∠C ,所以三角形为钝角三角形.所以能确定△ABC 是直角三角形的有①②③.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC 是直角三角形.5.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 7.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A 选项中,两直线平行,同位角相等,说法正确,是真命题;B 选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C 选项中,只有两直线平行时,同旁内角才互补,是假命题;D 选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题. 故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.8.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B .两直线平行,内错角相等,该项为假命题;C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C .【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.9.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.10.B解析:B【分析】根据相关性质依次判定各个说法即可.【详解】①错误,仅当两直线平行时,同位角才相等;②正确,三角形的中线一定会交于一点;③错误,钝角三角形也有三条高,其中有两条高在三角形外部;④正确,三角形两边长分别为6和9,则3<第三边长<15;⑤错误,不可通过面积判定全等;⑥正确,两个直角相加为180°,互补故选:B .【点睛】本题考查一系列性质,解题时需要注意一些性质或定理成立的前提条件,若遗失前提条件,则不成立.11.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.12.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a ∥b ,b ∥c ,则a ∥c ,说法正确;②若a ⊥b ,b ⊥c ,则a ⊥c ,说法错误,应为同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ; 故选:A .【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.二、填空题13.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.14.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 15.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键. 16.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE和BC被AB所截∴当时AD∥BC(内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE和BC被AB所截,∴当DAB B∠=∠时,AD∥BC(内错角相等,两直线平行).故答案为DAB B∠=∠【点睛】此题考查平行线的性质,难度不大17.15°【分析】根据三角形的内角和等于180°求出∠BAC再根据角平分线的定义求出∠BAE根据直角三角形两锐角互余求出∠BAD然后根据∠DAE=∠BAE-∠BAD计算即可得解【详解】解:∵∠ABC=3解析:15°【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【详解】解:∵∠ABC=30°,∠ACB=60°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是三角形的平分线,∴∠BAE=12∠BAC=12×90°=45°,∵AD是三角形的高,∴∠BAD=90°-∠B=90°-30°=60°,∴∠DAE=∠BAD-∠BAE=60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.18.35°【分析】根据角平分线的定义可得出再根据外角的性质可得与通过角度的计算可得出答案【详解】解:∵BECE分别是△ABC内角∠ABC和外角∠ACD 的平分线∴又∵∠ACD是△ABC的外角∴∴∵∠ECD解析:35°【分析】根据角平分线的定义,可得出12EBC ABC∠=∠,12ECD ACD∠=∠,再根据外角的性质可得ACD A ABC ∠=∠+∠与ECD BEC EBC ∠=∠+∠,通过角度的计算可得出答案.【详解】解:∵BE 、CE 分别是△ABC 内角∠ABC 和外角∠ACD 的平分线, ∴12EBC ABC ∠=∠,12ECD ACD ∠=∠, 又∵∠ACD 是△ABC 的外角,∴ACD A ABC ∠=∠+∠, ∴A ACD ABC ∠=∠-∠∵∠ECD 是△BCE 的外角,∴ECD BEC EBC ∠=∠+∠∴1111()2222ECD EBC ACD ABC ACD E ABC A B C ∠-∠=∠-∠=∠-∠=∠∠=, ∵∠A=70°, ∴1352A BEC ∠∠==︒, 故答案为:35°.【点睛】 本题考查了角平分线的定义和三角形外角的性质,熟练运用三角形外角的性质进行角度的计算是解题的关键.19.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG 中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.20.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正 解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据题意得到90FEB ∠=︒,再根据等量代换的方法求解即可;(2)通过已知条件证明A AEF ∠=∠,即可得到结果;【详解】(1)∵EB EF ⊥,∴90FEB ∠=︒,∴1809090DEF BEG ∠+∠=︒-︒=︒.又∵90EBG BEG ︒∠+∠=,∴DEF EBG ∠=∠.(2)∵EF 平分AED ∠,∴AEF DEF ∠=∠.∵EBG A ∠=∠,DEF EBG ∠=∠,∴A DEF ∠=∠.又∵DEF AEF ∠=∠,∴A AEF ∠=∠,∴//AB EF .【点睛】本题主要考查了平行线的判定,结合角平分线的性质和垂直的性质证明是解题的关键. 22.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去,B A的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.23.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.24.见详解【分析】根据平行线的判定与性质进行推理论证即可.【详解】证明:∵∠2+∠AHC =180°,∴∠AHC =180°−∠2=180°−125°=55°,∴∠AHC =∠1=55°,∴BD ∥CE (同位角相等,两直线平行),∴∠ABD =∠C (两直线平行,同位角相等),∵∠A =∠F (已知),∴AC ∥DF (内错角相等,两直线平行),∴∠ABD =∠D (两直线平行,内错角相等),∴∠C =∠D (等量代换);【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键,属于中考常考题型.25.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠, AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.26.(1)见解析;(2)78︒【分析】(1)根据ABD ACD ∠=∠,AFB CFD ∠=∠得出D A ∠=∠,然后利用SAS 即可证明三角形全等;(2)由(1)可知BCD BEA ∆≅∆,由题意知108BCD ∠=︒,即可得出 BEF ∠的度数,然后由AFD BEF DBE ∠=∠+∠求值即可;【详解】解:(1)证明:ABD ACD ∠=∠,AFB CFD ∠=∠,D A ∴∠=∠.在BCD ∆和BEA ∆中,CD EA D A BD BA =⎧⎪∠=∠⎨⎪=⎩()BCD BEA SAS ∴∆≅∆.(2)BCD BEA ∆≅∆,108BCD ∠=︒,108BEA BCD ∴∠=∠=︒,18010872BEF ∴∠=︒-=︒.6DBE ∠=︒,72678AFD BEF DBE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质与判定以及三角形的内角和,正确理解知识点是解题的关键;。
北师大版八年级数学上册 第七章 平行线的证明 测试题

北师大版八年级数学上册第七章平行线的证明测试题4.如图3所示,直线a,b被直线c所截,若a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°图35.如图4,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()图4A.80°B.60°C.50°D.40°6.如图5,在4×4的网格纸中,∠α,∠β,∠γ三个角的大小关系是()A.∠α=∠β>∠γB.∠α<∠β<∠γC.∠α>∠β>∠γD.∠α=∠β=∠γ图57.将一副三角尺按图6放置,则下列结论:①∠1=∠3;②若∠2=30°,则AC∥DE;③若∠2=30°,则BC∥AD;④若∠2=30°,则∠4=∠C.其中正确的有()A.①②③B.①②④C.③④D.①②③④二、填空题(每小题4分,共20分)8.如图7,直线a,b被直线c所截,若满足________,则a,b平行.图79.如图8所示,AB∥CD,∠1=60°,FG 平分∠EFD,则∠EGF=________°.图810.如图9所示,P是△ABC内一点,连接BP并延长交AC于点D,连接PC,把∠1,∠2,∠A从大到小排列为______________.图911.如图10,△ABC中,∠B=40°,∠C =30°,D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADC的度数为________.12.如图11,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=88°,则∠C的度数为________.图11三、解答题(共52分)13.(6分)如图12,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.图1214.(10分)将一副三角尺拼成如图13所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1315.(9分)如图14,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于点H,求∠BHC的度数.图1416.(12分)如图15,点E在线段CD上,AE,BE分别平分∠DAB和∠CBA,∠AEB=90°,设AD=x,BC=y,且(x-3)2+|y-4|=0.(1)求AD和BC的长;(2)你认为AD和BC有什么位置关系?并证明你的结论.图1517.(15分)探究与发现:如图16①,在△ABC 中,∠B=∠C=45°,点D在BC边上,点E 在AC边上,且∠ADE=∠AED.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC(点B,C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由;(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.图161.B 2.D 3.C 4.C5.C 6.A7. B 8.∠1=∠2或∠2=∠3或∠3+∠4=180°(答案不唯一)9.3010.∠1>∠2>∠A11.110°12.46°13.解:∵EF∥BC,∴∠BAF=180°-∠B=100°.∵AC平分∠BAF,∴∠CAF=12∠BAF=50°.∵EF∥BC,∴∠C=∠CAF=50°. 14.解:(1)证明:如图,∵CF平分∠DCE,∴∠1=∠2=12∠DCE.∵∠DCE=90°,∴∠1=45°.又∵∠3=45°,∴∠1=∠3,∴CF∥AB(内错角相等,两直线平行).(2)∵∠D=30°,∠1=45°,∴∠DFC=180°-30°-45°=105°. 15.解:∵∠A∶∠ABC∶∠ACB=3∶4∶5,设∠A=3α,∠ABC=4α,∠ACB=5α,∴3α+4α+5α=180°,解得α=15°.∴∠ABC=60°,∠ACB=75°.在△DBC中,由∠BDC=90°,知∠DBC=90°-75°=15°.在△ECB中,由∠CEB=90°,知∠ECB=90°-60°=30°.在△BHC中,∠BHC=180°-15°-30°=135°.16.解:(1)∵(x-3)2+|y-4|=0,∴x-3=0,y-4=0,解得x=3,y=4,即AD=3,BC=4.(2)AD∥BC.证明:∵AE,BE分别平分∠DAB和∠CBA,∴∠DAE=∠EAB,∠CBE=∠EBA.∵∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠DAE+∠CBE=90°,∴∠EAB+∠EBA+∠DAE+∠CBE=90°+90°=180°,即∠DAB+∠ABC=180°,∴AD∥BC.17.解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°.∵∠DAE=∠BAC-∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°-75°=30°.(3)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x. ∵∠DAE=∠BAC-∠BAD=90°-x,∴∠ADE=∠AED=90°+x2,∴∠CDE=45°+x-90°+x2=12x,∴∠BAD=2∠CDE.(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x.∵∠DAE=∠BAC-∠BAD=180°-2∠C-x,∴∠ADE=∠AED=∠C+12 x,∴∠CDE=∠B+x-(∠C+12x)=12x,∴∠BAD=2∠CDE.。
八年级数学上册第七章平行线的证明检测试题北师大版有答案

适用精选文件资料分享八年级数学上册第七章平行线的证明检测试题(北师大版有答案)第七章平行线的证明质量评估( 时间 :90 分钟满分:120分)一、选择题 ( 每题 3 分, 共 30 分) 1. 以下语句不是命题的是() A.三角形的内角和是180°B. 角是几何图形 C. 对顶角相等吗 D.两个锐角的和是一个直角 2. 以下各命题中 , 属于假命题的是 () A. 若a-b=0, 则 a=b=0 B. 若 a-b>0, 则 a>b C. 若 a-b<0, 则 a<b D. 若 a- b≠0,则 a≠b 3. 以下命题正确的选项是 () A. 三角形的外角大于它的内角B. 三角形的一个外角等于它的两个内角 C. 三角形的一个内角小于与它不相邻的外角 D. 三角形的外角和是180° 4. 在四边形 ABCD中, 如果∠ B+∠C=180°, 那么 () A.AB ∥∥与 CD订交与 DC垂直 5. 在ABC中, ∠A=2∠B=75°, 则∠C等于 ()° B.67 °° D.135 ° 6. 如图, 以下条件中不可以判断直线 l1 ∥l2 的是 () A. ∠1=∠3 B. ∠2=∠3 C. ∠4=∠5D.∠2+∠4=180° 7. 如图 ,AB∥CD,∠C=110°, ∠B=120°, 则∠ BEC 等于 () A.110 ° B.120 ° C.130 ° D.150 ° 8. 如右图所示,AB∥CD,AD∥BC,则以下各式中正确的选项是 () A. ∠1+∠2>∠3 B. ∠1+∠2=∠3 C. ∠1+∠2<∠3 D. ∠1+∠2与∠3大小没法确立 9.假如一个三角形的两个外角的和是270°, 那么这个三角形必定是() A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形10. 如图 , 把 ABC纸片沿 DE折叠 , 点 A落在四边形 BCDE的内部 ,() A. ∠A=∠1+∠2 B.2 ∠A=∠1+∠2 C.3 ∠A=2∠1+∠2∠A=2(∠1+∠2)二、填空题 ( 每题 4 分, 共 32 分)11. 假如一个三角形的三个外角的度数比为5∶6∶7, 那么这个三角形的三个内角的度数比为, 最小内角的度数为. 12.如右图所示,AB∥CD∥EF,那么∠ BAC+∠ACE+∠CEF=度. 13.直角三角形两锐角的均分线订交所成的钝角等于度. 14. 以以下图 ,A,B 之间有一座山 , 一条笔挺的铁路要经过 A,B 两地 , 在 A地测得铁路的走向是北偏东 68°20',假如 A,B 两地同时动工 , 那么在 B 地按方向施工才能使铁路在山中正确接通. 第 14题图第 15题图第16题图 15. 以以下图 , ∠1+∠2+∠3+∠4=度. 16.以以下图 , 点D在ABC的边 BC的延长线上 ,DE⊥AB于 E, 交 AC于适用精选文件资料分享F, ∠B=50°,∠CFD=60°,则∠ ACB=. 17.如图 ,将三角板的, 若∠ 1=65°,则∠2的度数为.直角极点放在直尺的一边上第 17题图第 18题图18.某机器部件的横截面以以下图, 按要求线段AB和DC的延长线订交成直角才算合格 , 一工人测得∠ A=23°, ∠D=31°, ∠AED=143°, 请你帮他判断该部件能否合格 :.( 填“合格”或“不合格” ) 三、解答题 ( 共 58 分) 19.(9 分) 以以下图 , 在 ABC中, 延长 CA到 E, 延长BC到 F,D 是 AB上的一点 . 求证∠ ACF>∠ADE.20.(9 分) 以以下图 ,AD⊥BC,EF⊥BC,∠4=∠C.求证∠ 1=∠2. 21.(10分) 以以下图 , 在 ABC中, ∠BAC=4∠ABC=4∠C,BD⊥AC,垂足为 D,求∠ABD的度数 . 22.(10 分) 以以下图 , 已知 C,P,D 在同一条直线上,∠BAP与∠ APD互补 , ∠1=∠2, ∠E与∠F相等吗 ?试说明原由 .23.(10 分) 以以下图 ,F 是 ABC中 BC延长线上一点 ,EF⊥AB于点E,CD⊥AB于点 D,∠CGF=∠CFG,求证 CD均分∠ ACB. 24.(10 分) 如右图所示, 在ABC中,AC⊥BC于C,DE⊥BC于E,FG⊥AB于G,∠1=∠2, 求证∠2与∠3互余 .【答案与分析】 1.C( 分析 : 此题易误选为 D.) 2.A(分析:若a-b=0,则 a=b.) 3.C 4.A(分析:解此类问题时,可画图帮助我们解决.)5.B( 分析 : 由 2∠B=75°, 得∠°.)6.B7.C( 分析 : 过点 E 作 AB 的平行线 .)8.B(分析:∵AB∥CD,∴∠ 1=∠BDC,又AD∥BC,∴∠ 2=∠CBD,∠3是BCD的外角 , 故∠ 3=∠CBD+∠BDC,即∠3=∠1+∠2.) 9.B(分析:三角形的外角和是360°.) 10.B(分析:根据题意得∠ FED=∠AED,∠FDE=∠ADE,由三角形内角和定理, 可得∠FED+∠EDF=180° - ∠F=180°- ∠A, ∴∠ AEF+∠ADF=2(180° - ∠A),∴∠ 1+∠2=360° - ( ∠AEF+∠ADF)=360°- 2(180 °- ∠A)=2∠A. ∴2∠A=∠1+∠2. 应选∶3∶240° 12.360 13.135 14.南偏西68°° ° 18.不合格(分析:延长AE交CD于 F, 延长 AB,DC订交于点 G.由于∠ AED是DEF的一个外角 , 因此适用精选文件资料分享∠AED=∠DFE+∠D.同理∠ DFE=∠A+∠G.因此∠ AED=∠A+∠G+∠D,因此∠ G=∠AED- ∠A- ∠D=143°- 23°- 31°=89°. 而按要求线段 AB和DC的延长线订交成直角才算合格 , 但 89°<90°, 因此该部件不合格 .) 19. 证明 : ∵在 ABC中, ∠ACF=∠CAB+∠B, 在 ADE中, ∠CAB=∠E+∠ADE,∴∠ ACF>∠ADE. 20. 证明: ∵AD⊥BC,EF⊥BC(已知 ), ∴AD∥EF(垂直于同一条直线的两直线平行 ). ∴∠ 2=∠CAD(两直线平行 , 同位角相等 ). ∵∠ 4=∠C(已知), ∴DG∥AC(同位角相等 , 两直线平行 ). ∴∠ 1=∠CAD(两直线平行 ,内错角相等 ). ∴∠ 1=∠2( 等量代换 ). 21. 解: 设∠ C=x,则在ABC中,有 x+x+4x=180°, 解得 x=30°, 因此∠ BAC=120°. 由于 BD⊥AC, 因此∠D=90°, 因此∠ ABD=∠BAC- ∠D=120° - 90°=30°. 22. 解: ∠E与∠F 相等 . 原由以下 : 由于∠ BAP和∠ APD互补 , 因此 AB∥CD(同旁内角互补 , 两直线平行 ), 因此∠ BAP=∠CPA(两直线平行 , 内错角相等 ). 由于∠ 1=∠2, 因此∠ PAE=∠APF,因此 AE∥PF(内错角相等 , 两直线平行 ),因此∠ E=∠F( 两直线平行 , 内错角相等 ). 23.证明:由于EF⊥AB,CD⊥AB,因此 CD∥EF,因此∠ BCD=∠CFG,∠DCG=∠CGF.由于∠CGF=∠CFG,因此∠ BCD=∠DCA,因此 CD均分∠ ACB. 24. 证明 :由于AC⊥BC于 C,因此∠ BCA=90°. 由于 DE⊥BC,因此∠ BED=90°,因此DE∥AC,因此∠ 2=∠DCA.由于∠ 1=∠2, 因此∠ 1=∠DCA,因此FG∥CD, 因此∠ BGF=∠BDC.由于 FG⊥AB于 G,因此∠BGF=90°, ∠BDC=∠2+∠3=90°. 因此∠2 与∠3互余 .。
北师大版初二数学上册第7章平行线的证明测试题(含答案)

北师大版初二数学上册第7章平行线的证明测试题(含答案)一、选择题(本大题共8小题,共24.0分)1.如图,AB//CD,CB⊥DB,∠D=65∘,则∠ABC的巨细是()A. 25∘B. 35∘C. 50∘D. 65∘2.一个正方形和两个等边三角形的位置如图所示,若∠3=50∘,则∠1+∠2=()A. 90∘B. 100∘C. 130∘D. 180∘3.如图,已知△ABC中,点D在AC上,延长BC至E,相连DE,则下列结论不成立的是()A. ∠DCE>∠ADBB. ∠ADB>∠DBCC. ∠ADB>∠ACBD. ∠ADB>∠DEC4.如图,AB//CD,直线EF交AB于点E,交CD于点F,EG中分∠BEF,交CD于点G,∠1=50∘,则∠2即是()A. 50∘B. 60∘C. 65∘D. 90∘5.如图,已知直线AB//CD,BE中分∠ABC,交CD于D,∠CDE=150∘,则∠C的度数为()A. 150∘B. 130∘C. 120∘D. 100∘6.如图,直线a//b,∠A=38∘,∠1=46∘,则∠ACB的度数是()A. 84∘B. 106∘第 1 页C. 96∘D. 104∘7.适合条件∠A=12∠B=13∠C的△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形8.已知:直线l1//l2,一块含30∘角的直角三角板如图所示部署,∠1=25∘,则∠2即是()A. 30∘B. 35∘C. 40∘D. 45∘二、填空题(本大题共6小题,共24.0分)9.如图,DAE是一条直线,DE//BC,则x=______ .10.如图,已知AB//CD,∠DEF=50∘,∠D=80∘,∠B的度数是______ .11.如图,已知∠A=∠F=40∘,∠C=∠D=70∘,则∠ABD=______ ,∠CED=______ .12.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100∘,则∠BAC=______ .13.等腰三角形一腰上的高与另一腰的夹角是40∘,则该等腰三角形顶角为______ ∘.14.如图所示,AB=BC=CD=DE=EF=FG,∠1=130∘,则∠A=______ 度.三、解答题(本大题共6小题,共52.0分)15.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB//CD.16.一天,爸爸带着小刚到建筑工地去玩,望见有如图所示的人字架,爸爸说“小刚,我考考你,这个别字架的夹角∠1即是130∘,你能求出∠3比∠2大几多吗?”小刚马上得到了正确答案,他的答案是几多?请说明理由.17.如图,点A、B、C、D在联合条直线上,BE//DF,∠A=∠F,AB=FD.求证:AE=FC.18.如图,△ABC中,∠BAC=90∘,∠ABC=∠ACB,∠BDC=∠BCD,∠1=∠2,求∠3的度数.19.如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70∘,求∠EDF的度数.20.如图所示,已知∠1+∠2=180∘,∠3=∠B,试鉴别∠AED与∠C的巨细干系,并对结论举行说理.答案1. A2. B3. A4. C5. C6. C7. B8. B9. 64∘10. 50∘11. 70∘;110∘12. 120∘13. 50或13014. 1015. 证明:∵BE⊥FD,∴∠EGD=90∘,∴∠1+∠D=90∘,又∠2和∠D互余,即∠2+∠D=90∘,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB//CD.16. 解:小刚的答案为50∘.理由如下:如图,设∠1的邻补角为∠4,∵∠1=130∘,∴∠4=180∘−130∘=50∘,∵∠3是人字架三角形的外角,∴∠3=∠2+∠4,∴∠4=∠3−∠2=50∘,∴∠3比∠2大50∘.第 3 页17. 证明:∵BE//DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.18. 解∵∠BAC=90∘,∠ABC=∠ACB,∴∠ACB=45∘,∵∠BDC=∠BCD,∠BCD=∠ACB+∠2,∴∠BDC=∠BCD=45∘+∠2,∵∠1=∠2,∴∠BDC=∠BCD=45∘+∠1,∵∠BDC+∠BCD+∠1=180∘,∴2(45∘+∠1)+∠1=180∘∴∠1=30∘,=75∘.∴∠3=180∘−30∘219. 解:∵∠A+∠B+∠C=180∘,∴∠B+∠C=110∘,∵∠B=∠DEB,∠C=∠DFC,∴∠B+∠DEB+∠C+∠DFC=220∘,∵∠B+∠DEB+∠C+∠DFC+∠EDB+∠FDC=360∘,∴∠EDB+∠FDC=140∘,即∠EDF=180∘−140∘=40∘20. 证明:∵∠1+∠4=180∘(邻补角定义)∠1+∠2=180∘(已知)∴∠2=∠4(同角的补角相等)∴EF//AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠B=∠3(已知),∴∠ADE=∠B(等量代换),∴DE//BC(同位角相等,两直线平行)∴∠AED=∠C(两直线平行,同位角相等).。
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》测试卷(含答案解析)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 5.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4 B .3 C .2 D .16.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°7.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 8.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 10.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 11.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 12.下列说法正确的是( ) A .同位角相等 B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 二、填空题13.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).16.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.17.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.18.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的是_____(填序号)19.下列命题是假命题的是有____________①内错角相等 ②同位角相等,两直线平行 ③一个角的余角不等于它本身 ④相等的角是对顶角.20.如图,将ABC 纸片沿DE 折叠,使点A 落在点'A 处,且'A B 平分ABC ∠,'A C 平分ACB ∠,若1268∠+∠=︒,则'BA C ∠的度数是______________.三、解答题21.如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .22.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.25.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.26.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误;②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.6.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠DAC=1∠BAC=31°,2∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.11.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.12.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.二、填空题13.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒,∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.16.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 17.40【分析】根据三角形的内角和得出再利用角平分线得出利用三角形内角和解答即可【详解】是高是角平分线故答案为40【点睛】本题考查了三角形的内角和定理熟悉直角三角形两锐角互余和三角形的内角和等于是解题的 解析:40【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可. 【详解】AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=,AE 是角平分线,68BAC ∴∠=,180726840C ∴∠=--=.故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.18.①③【解析】分析:分别根据平行线的性质对顶角及邻补角的定义平行公理及推论对各小题进行逐一分析即可详解:①符合对顶角的性质故①正确;②两直线平行内错角相等故②错误;③符合平行线的判定定理故③正确;④如解析:①③【解析】分析:分别根据平行线的性质、对顶角及邻补角的定义、平行公理及推论对各小题进行逐一分析即可.详解:①符合对顶角的性质,故①正确;②两直线平行,内错角相等,故②错误;③符合平行线的判定定理,故③正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故④错误.故答案为①③.点睛:本题考查的是平行线的性质、对顶角及邻补角的定义、平行公理及推论,熟知以上各知识点是解答此题的关键.19.①③④【分析】根据平行线的判定与性质判断①②利用反证法证明③④即可【详解】①应该是两直线平行内错角相等故①是假命题;②同位角相等两直线平行正确故②是真命题;③直角的余角等于它本身故③是假命题;④相等解析:①③④【分析】根据平行线的判定与性质判断①②,利用反证法证明③④即可.【详解】①应该是两直线平行,内错角相等,故①是假命题;②同位角相等,两直线平行,正确,故②是真命题;③直角的余角等于它本身,故③是假命题;④相等的角不一定是对顶角,故④是假命题.故答案为:①③④.【点睛】本题主要考查判断命题的真假,解此题的关键在于熟练掌握各个基本知识点.20.107°【详解】【考点】几何图形翻折变换(折叠问题)四边形内角和定理平角的定义三角形的两条内角平分线所夹的角与顶角的关系【分析】将纸片沿折叠使点落在点处可知根据四边形内角和等于可得而所以所以根据可求 解析:107°【详解】【考点】几何图形翻折变换(折叠问题)、四边形内角和定理、平角的定义、三角形的两条内角平分线所夹的角与顶角的关系.【分析】将ABC ∆纸片沿DE 折叠,使点A 落在点'A 处,可知A DA E ∠=∠' .根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' .而1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=,所以12360ADA AEA ︒∠+∠+∠+='∠',所以12A ∠+∠=∠+2DA E A '+∠=∠ .根据1268︒∠+∠=,可求出68234A ︒︒∠=÷= .根据'A B 平分ABC ∠,'A C 平分ACB ∠ 可知,'BA C ∠是两条内角平分线所夹的角,根据公式有'BA C ∠190902A ︒︒=+∠= 1341072︒︒+⨯= . 【解答】解:根据折叠可得A DA E ∠=∠',根据四边形内角和等于360︒,可得360A DA E ADA AEA ︒''∠+∠+∠+∠=' . 根据平角的定义有1180ADA ︒'∠+∠=,2180AEA ︒'∠+∠=12360ADA AEA ︒''∴∠+∠+∠+∠=122A DA E A ∴∠+∠=∠+='∠∠'A B 平分ABC ∠,'A C 平分ACB ∠∴'BA C ∠1190903410722A ︒︒︒︒=+∠=+⨯= 故答案为:107︒ .三、解答题21.证明见解析【分析】先根据已给的角度判断BD//CE ,从而可得∠ABD=∠C ,再根据等量代换可得∠ABD=∠D ,从而可证//AC DF .【详解】证明:∵178∠=︒,2102∠=︒,∴∠1+∠2=78°+102°=180°,∴BD//CE ,∴∠ABD=∠C ,∵C D ∠=∠,∴∠ABD=∠D ,∴//AC DF .【点睛】本题考查平行线的性质和判定.熟练掌握平行线的性质和判定定理,并能正确识别同位角、同旁内角是解题关键.22.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A , 则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.25.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 26.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.。
北师大八年级数学上《第七章平行线的证明》综合测评(含答案)

第七章 平行线的证明综合测评时间90分钟 满分120分班级:_________姓名:__________得分:________一、精心选一选(每小题3分,共24分) 1.下列命题是真命题的是( ) A.若a 2=b 2,则a=bB.若∠1+∠2=90º,则∠1与∠2互余C.若∠α与∠β是同位角,则∠α=∠βD.若a ⊥b ,b ⊥c ,则a ⊥c2.下列命题中,是公理的是( )A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º 3.如图1,下列条件能判定AB ∥CD 的是( )A.∠1+∠2=180ºB.∠3=∠2C.∠2=∠1D.∠1+∠3=180º4.如图2,已知AB ∥CD ,能得到∠1=∠2的依据是( )A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知在△ABC 中,∠A ,∠B 的外角分别是120º,150º,则∠C 等于( ) A.60º B.90º C.120º D.150º6.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( ) A.a=-3 B.a=-1 C.a=1 D.a=37.如图3,已知∠2是△ABC 的一个外角,那么∠2与∠B+∠1的大小关系是( ) A.∠2>∠B+∠1 B.∠2=∠B+∠1 C.∠2<∠B+∠1 D.无法确定8.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( )A.三中B.二中C.一中D.不能确定 二、细心填一填(每小题4分,共32分)9.把命题“直角三角形的两锐角互余”改写成“如果……那么……”的形式是________. 10.如图4所示,添加一个条件______,可使AC ∥DE.图1 3 2DC BA 1 BA1 2 图2 CD E A BCD 21 图311.如图5,已知直线a ∥b ,小杜把直角三角尺的直角顶点放在直线b 上,若∠1=18°,则∠3的度数为____________.12.如图6,点D 为BC 延长线上的一点,∠A=∠ACB ,∠A=2∠B ,则∠ACD 的度数为________.13.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a ,b ,c 满足(a -b)(a+b)+c 2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号). 14.如图7,把一个长方形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠AED '=30º, 则∠CFE=_____________°.15. 如图8,把一块含有30°角(∠A=30°)的直角三角尺ABC 的直角顶点放在长方形桌面CDEF (CD ∥EF )的一个顶点C 处,桌面的另一个顶点F 与三角尺斜边相交于点F ,如果∠1=40°,那么∠AFE=________°.16.小明同学连续观察了太原市2014年8月份某几天的天气情况,他的观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数为_________.三、耐心做一做(共64分) 17.(8分)读句画图:如图9,直线CD 与直线AB 相交于点C ,根据下列语句画图:(1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =120°,猜想∠PQC 是多少度?并说明理由.18.(10分)如图10,已知点B ,D ,G 在同一条直线上,AB ∥CD ,∠1=∠2,请问BE 与DF 平行吗?为什么?图4 图5图6 图7A B CD E F D 'C '图9 1 2 A BCD E F 图10G19.(10分)已知:如图11,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =120°,求∠DAC 的度数.20.(10分)阅读理解:如果三角形满足一个角α是另一个角β的3倍时,那么我们称这个三角形为“智慧三角形”.其中α称为“智慧角”.解答问题:⑵ 一个角为60º的直角三角形______(填“是”或“不是”)“智慧三角形”,若是,“智慧角”是_____.⑵已知一个“智慧三角形”的“智慧角”为108°,求这个“智慧三角形”各个角的度数.21.(12分) 如图12已知四边形ABCD 中,BC ⊥AB ,CF 平分∠DCB ,∠DCF +∠BAE =90°,试判断AE 与CF 的位置关系,并说明理由.22.(14分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图13所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系. 解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图14所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.AB D EC 图13 A B DEC F图11 图12(拟题张华)第七章平行线的证明综合测评(一)一、1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.A二、9.如果一个三角形是直角三角形,那么这个三角形的两锐角互余10.答案不唯一,如∠A=∠BDE11.72º12.108º13. ③14.105 15.1016.10天提示:由题意知,小明同学每天测两次,共测的次数为7+5+8=20.因此他共测了20÷2=10(天).三、17.解:(1)(2)如图所示.(3)∠PQC=60°.理由:因为PQ∥CD,所以∠DCB+∠PQC=180°.因为∠DCB=120°,所以∠PQC=180°-120°=60°.18.解:BE∥DF.理由:因为AB∥CD,所以∠ABG=∠CDG .因为∠1=∠2,所以∠ABG-∠2=∠CDG-∠1,即∠EBG=∠FDG.所以BE∥DF.19.解:因为∠BAC=120°,所以∠2+∠3=60°.①因为∠1=∠2,所以∠4=∠3=∠1+∠2=2∠2.②把②代入①,得3∠2=60°,所以∠2=20°. 所以∠1=∠2=20°.所以∠DAC=∠BAC-∠1=120°-20°=100°.20.解:⑴是90º⑵因为这个“智慧三角形”的“智慧角”为108°,所以另一个角为108º÷3=36º,第三个内角为180º-108º-36º=36º.即这个“智慧三角形”各个角的度数分别为108°,36°,36°.21.调北八13~14学年第一学期20期3版22题答案.。
北师大版八年级上册数学第七章平行线的证明综合素质评价试题(含答案)

八年级上册数学第七章综合素质评价一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.下列选项中,是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗C.延长线段AO到点C,使OC=OAD.两直线平行,内错角相等2.【2022•广东佛山南海区模拟】如图,a∥b,∠1=120°,则∠2等于() A.30°B.90°C.60°D.50°(第2题) (第3题)3.如图,下列条件中,能判定AD∥BC的有()①∠1=∠4;②∠2=∠3;③∠1+∠2=∠3+∠4;④∠A+∠C=180°;⑤∠A+∠ABC=180°;⑥∠A+∠ADC=180°.A.1个B.2个C.3个D.4个4.下列命题中,是假命题的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.等腰三角形的两底角相等D.三个角都相等的三角形是等边三角形5.某学员在驾校练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°6.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是() A.如果a∥b,a⊥c,那么b⊥cB.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥cD.如果b⊥a,c⊥a,那么b∥c7.下列说法正确的是()A.命题一定是定理,但定理不一定是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题8.如图,F是△ABC的角平分线CD和BE的交点,CG⊥AB于点G.若∠ACG=36°,则∠DFE的度数是()A.117°B.108°C.144°D.148°(第8题) (第9题)9.如图,在△ABC中,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于()A.10°B.15°C.20°D.30°10.如图,在△CEF中,∠E=80°,∠F=50°,AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.45°B.50°C.55°D.80°(第10题) (第11题)11.如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=45°,∠C =73°,则∠DAE的度数是()A.14°B.24°C.19°D.9°12.如图,AD∥BC,∠D=∠ABC,点E是DC上一点,连接AE并延长,交BC的延长线于点H.点F是AB上一点,且∠FBE=∠FEB,∠FEH的平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°(第12题) (第14题)二、填空题:本大题共6小题,每小题4分,共24分.13.将命题“等角的余角相等”写成“如果…,那么…”的形式为__________________________________________________________________.14.三角板是我们学习数学的好工具,将一副直角三角板按如图所示的方式摆放,点C在FD的延长线上,点B在DE上,AB∥CF,∠EFD=∠A=90°,∠E =30°,∠ABC=45°,则∠CBD=__________°.15.要说明命题“若a<b,c<d,则a-c<b-d”是假命题,可以举反例:a=4,b=5,c=________,d=________.16.如图,在△ABC中,点D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC =66°,则∠DAC的度数是________.(第16题) (第17题) (第18题)17.如图,在△ABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.18.如图,将一张三角形纸片ABC沿DE折叠,使点A落在四边形BCDE外部的点A′处,且点A′与点C在直线AB的异侧,已知∠C=90°,∠A=30°.若△A′DE 的一边与BC平行,则∠ADE的度数是____________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.如图,∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M,BC∥EF,求∠BMD的度数.20.如图,已知AB∥CD,E是直线AB上的一点,CE平分∠ACD,CF⊥CE,∠1=32°.(1)求∠ACE的度数;(2)若∠2=58°,求证:CF∥AG.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,把△ABC沿EF折叠,使点A落在点D处.(1)若DE∥AC,试判断∠1与∠2的数量关系,并说明理由;(2)若∠B+∠C=130°,求∠1+∠2的度数.22.如图,在四边形ABCD中,CE⊥AD于点E.若(),(),则().(1)从①CB=CD,②∠D+∠ABC=180°,③AC平分∠DAB中选择两个作为条件,剩下的一个作为结论,构成一个真命题,并说明理由,条件:________,________,结论:________.(2)在(1)的条件下,若AD=8,DE=2,CE=3,求△ABC的面积.五、解答题(三):本大题共2小题,每小题12分,共24分.23.已知直线a∥b,直线c和直线a,b分别相交于A,B两点,直线d和直线a,b分别相交于C,D两点.(1)如图①,当点P在线段AB上(点P不与点A,B重合)运动时,猜测∠1,∠2,∠3之间的数量关系,并说明理由;(2)如图②,当点P在线段AB的延长线上运动时,∠1,∠2,∠3之间的数量关系为________;(3)如图③,当点P在线段BA的延长线上运动时,∠1,∠2,∠3之间的数量关系为________.24.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一盏探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光束自AM顺时针旋转至AN便立即回转,灯B射出的光束自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射.若灯A射出的光束转动的速度是a°/秒,灯B射出的光束转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假设钱塘江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a,b的值;(2)若灯B射出的光束先转动30秒,灯A射出的光束才开始转动,在灯B射出的光束到达BQ之前,灯A射出的光束转动几秒,两灯射出的光束互相平行?(3)两灯射出的光束同时转动,在灯A射出的光束到达AN之前,若与灯B射出的光束交于点C,过点C作CD⊥AC交PQ于点D,则两灯射出的光束在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.答案一、1.D2.C3.B4.B5.D6.C7.B8.A点拨:因为CG⊥AB,∠ACG=36°,所以∠A=90°-∠ACG=54°.所以∠ABC +∠ACB =180°-∠A =126°.因为CD 和BE 是△ABC 的角平分线,所以∠BCD =12∠ACB ,∠CBE =12∠ABC ,所以∠BCD +∠CBE =12(∠ACB +∠ABC )=63°.所以∠BFC =180°-(∠BCD +∠CBE )=117°.又因为∠DFE =∠BFC ,所以∠DFE =117°.9.B 点拨:因为BD ,CD 分别为∠ABC ,∠ACE 的平分线, 所以∠DBC =∠ABD ,∠DCE =∠ACD .因为∠ACE =∠A +∠ABC ,所以∠DCE +∠ACD =∠DBC +∠ABD +∠A .所以2∠DCE =2∠DBC +∠A .因为∠DCE =∠DBC +∠D ,所以2∠DBC +2∠D =2∠DBC +∠A .所以∠D =12∠A =12×30°=15°. 10.B 点拨:如图,连接AC 并延长,交EF 于点M .因为AB ∥CF ,所以∠3=∠1.因为AD ∥CE ,所以∠2=∠4. 所以∠BAD =∠3+∠4=∠1+∠2=∠FCE .因为∠FCE =180°-∠E -∠F =180°-80°-50°=50°.所以∠BAD =50°.故选B .11.A点拨:因为∠B=45°,∠C=73°,所以∠BAC=180°-∠B-∠C=62°.因为AE平分∠BAC,所以∠CAE=12∠BAC=31°.因为AD是BC边上的高,所以∠ADC=90°,所以∠CAD=180°-∠ADC-∠C=17°,所以∠DAE=∠CAE-∠CAD=31°-17°=14°.12.B点拨:设∠FBE=∠FEB=α,则∠AFE=∠FBE+∠FEB=2α.因为EG平分∠FEH,所以∠GEH=∠GEF.设∠GEH=∠GEF=β,则∠AEF=180°-∠GEF-∠GEH=180°-2β.因为AD∥BC,所以∠ABC+∠BAD=180°.又因为∠D=∠ABC,所以∠D+∠BAD=180°,所以AB∥CD,所以∠CEH=∠F AE.因为∠DEH=100°,所以∠CEH=180°-∠DEH=80°.所以∠F AE=80°.因为∠F AE+∠AFE+∠AEF=180°,所以80°+2α+180°-2β=180°,所以β-α=40°,所以∠BEG=∠GEF-∠FEB=β-α=40°.二、13.如果两个角相等,那么它们的余角相等14.1515.2;3(答案不唯一)16.28°17.25点拨:因为EF∥BC,所以∠EGB=∠CBG.因为BD平分∠ABC,所以∠EBG=∠CBG,所以∠EBG=∠EGB.因为∠BEG=130°,所以∠EGB=180°-130°2=25°,所以∠DGF=∠EGB=25°.18.45°或30°点拨:当A′D∥BC时,∠A′DA=∠C=90°.由折叠的性质得∠ADE=∠A′DE,所以∠ADE=12∠A′DA=45°;当A′E∥BC时,∠A′EF=∠ABC.因为∠C=90°,∠A=30°,所以∠A′EF=∠ABC=180°-∠C-∠A=60°. 所以∠A′EA=180°-∠A′EF=120°.由折叠的性质得∠A′ED=∠AED,所以∠AED=12(360°-∠A′EA)=120°.所以∠ADE=180°-∠A-∠AED=30°.综上所述,∠ADE的度数为45°或30°.三、19.解:因为∠BAC=90°,∠C=30°,所以∠B=180°-∠BAC-∠C=60°.因为∠EDF=90°,∠E=45°,所以∠F=180°-∠EDF-∠E=45°.因为BC∥EF,所以∠MDB=∠F=45°,所以∠BMD=180°-∠B-∠MDB=75°. 20.(1)解:因为AB∥CD,所以∠DCE=∠1=32°.因为CE平分∠ACD,所以∠ACE=∠DCE=32°.(2)证明:因为CF⊥CE,所以∠FCE=90°.又因为∠ACE=32°,所以∠FCH=∠FCE-∠ACE=58°.因为∠2=58°,所以∠FCH=∠2,所以CF∥AG.四、21.解:(1)∠1=∠2,理由如下:因为∠D是由∠A翻折得到的,所以∠D=∠A.因为DE∥AC,所以∠1=∠A,∠2=∠D,所以∠1=∠2.(2)因为∠A+∠B+∠C=180°,∠A+∠AEF+∠AFE=180°,所以∠AEF+∠AFE=∠B+∠C=130°.因为△DEF是由△AEF翻折得到的,所以∠AEF=∠DEF,∠AFE=∠DFE,所以∠AED=2∠AEF,∠AFD=2∠AFE,所以∠AED+∠AFD=2(∠AEF+∠AFE)=260°.因为∠1+∠AED+∠2+∠AFD=360°,所以∠1+∠2=100°.22.解:(1)②;③;①理由:如图,在AD上取一点T,使得AT=AB,连接TC.因为AC平分∠DAB,所以∠TAC=∠CAB.在△TAC 和△BAC 中,⎩⎨⎧AT =AB ,∠CAT =∠CAB ,AC =AC ,所以△TAC ≌△BAC ,所以CB =CT ,∠ABC =∠ATC .因为∠ABC +∠D =180°,∠ATC +∠CTD =180°,所以∠D =∠CTD ,易得CT =CD ,所以CB =CD .(答案不唯一)(2)由(1)可知,CT =CD ,因为CE ⊥DT ,所以DE =TE .因为△TAC ≌△BAC ,所以AB =AT =AD -2DE =8-4=4,所以S △ABC =S △ACT =12AT •CE =12×4×3=6.五、23.解:(1)∠3=∠1+∠2,理由如下:过点P 作PE ∥a 交CD 于点E ,如图.因为PE ∥a ,a ∥b ,所以PE ∥a ∥b ,所以∠1=∠CPE,∠2=∠DPE.因为∠3=∠CPE+∠DPE,所以∠3=∠1+∠2.(2)∠1=∠2+∠3(3)∠3=∠2-∠124.解:(1)因为|a-3b|+(a+b-4)2=0,|a-3b|≥0,(a+b-4)2≥0,所以a=3b,a+b=4,所以a=3,b=1.(2)设灯A射出的光束转动t秒,两灯射出的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t-3×60+(30+t)×1=180,解得t=82.5;③当120<t<150时,3t-180×2=(30+t)×1,解得t=195(不合题意,舍去).综上所述,灯A射出的光束转动15秒或82.5秒,两灯射出的光束互相平行.(3)不发生变化.设灯A射出的光束转动时间为x秒,因为∠CAN=180°-3°•x,所以∠BAC=45°-(180°-3°•x)=3°•x-135°.又因为PQ∥MN,所以易得∠BCA=∠CBD+∠CAN=1°•x+180°-3°•x=180°-2°•x.因为∠ACD=90°,所以∠BCD=90°-∠BCA=90°-(180°-2°•x)=2°•x-90°,2所以∠BCD=3∠BAC.。
(常考题)北师大版初中数学八年级数学上册第七单元《平行线的证明》检测题(答案解析)

一、选择题1.下列命题中,为真命题的是( )A .13是13的算术平方根B .三角形的一个外角大于任何一个内角C .13是最简二次根式 D .两条直线被第三条直线所截,内错角相等 2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b = 3.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 5.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 6.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 7.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 9.如图,直线a ∥b ,点B 在a 上,且AB ⊥BC ,若∠1=35°,那么∠2等于( )A .45°B .50°C .55°D .60° 10.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒ 12.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,一个直角三角形纸片ABC ,90BAC ∠=,D 是边BC 上一点,沿线段AD 折叠,使点B 落在点E 处(E B 、在直线AC 的两侧),当50EAC ∠=时,则CAD ∠=__________°.16.某机器零件的横截面如图所示,按要求线段AB 和DC 的延长线相交成直角才算合格.一工人测得23A ∠=︒,31D ∠=︒,143AED ∠=∠︒,请你帮他判断该零件是否合格_______(填“合格”或“不合格”).17.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.18.下列命题中,其逆命题成立的是_____.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.19.如图,已知△ABC 的∠ABC 和∠ACB 的平分线BE ,CF 交于点G ,若∠BGC =115°,则∠A =______.20.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;其中结论正确的有______________三、解答题21.推理填空:如图,AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠,可得AD 平分BAC ∠.理由如下:∵AD BC ⊥于D ,EG BC ⊥于G ,(已知)∴90ADC EGC ∠=∠=︒,(____________________)∴//AD EG ,(____________________)∴1∠=__________,(____________________)3E ∠=∠,(____________________)又∵1E ∠=∠,(____________________)∴3∠=___________,(____________________)∴AD 平分BAC ∠.(____________________)22.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.23.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==. (1)求()187h ,()693h 的值. (2)若A ,B 为两个“西西数”,且()()35h A h B =,求B A 的最大值. 24.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.25.如图,直线AB ∥CD ,EF ⊥CD ,F 为垂足,∠GEF=30°,求∠1的度数.26.已知:如图,180BAE AED ∠+∠=︒,12∠=∠,那么M N ∠=∠.下面是推理过程,请你填空:解:180BAE AED ∠+∠=︒(已知),∴______//______.( )BAE ∴∠=______(两直线平行内错角相等)又12∠=∠(已知)1BAE ∴∠-∠=______2-∠,即MAE ∠=______.∴______//______( ).M N ∴∠=∠( )【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据算术平方根、三角形外角定理、最简二次根式定义、平行线性质逐项判断即可求解.【详解】解:13的算术平方根”,判断正确,符合题意;B. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于和它不相邻的任意一个内角”,判断错误,不合题意;”,不是最简二次根式,判断错误,不合题意;D. “两条直线被第三条直线所截,内错角相等”,两条直线不一定平行,判断错误,不合题意.故选:A【点睛】本题考查了命题、算术平方根、三角形外角定理、最简二次根式定义、平行线性质等知识,熟练掌握相关知识是解题的关键,注意:题设成立,结论一定成立的命题是真命题;题设成立,结论不一定成立的命题是假命题.2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.4.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∴∠ABD=∠CBD=1∠ABC=30°,2DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.5.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA=60︒,∠BAE=45︒,∴∠ADE= 180︒−∠CEA−∠BAE=75︒,∴∠BDC=∠ADE=75 ,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.6.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A、正确,符合不等式的性质;B、正确,符合不等式的性质.C、正确,符合不等式的性质;D、错误,例如a=2,b=0;故选D.【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.8.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.C解析:C【分析】先根据直线平行的性质得到∠BAC=∠1=35°,再由三角形内角和定理求出55BCA ∠=︒,再根据对顶角的性质即可得到答案.【详解】解:∵直线a ∥b ,∴∠BAC=∠1=35°(两直线平行,内错角相等),又∵AB ⊥BC ,∴∠ABC=90°,∴180903555BCA ∠=︒-︒-︒=︒ (三角形内角和定理),∴255BCA ∠=∠=︒(对顶角相等),故选:C .【点睛】本题主要考查了直线平行的性质、三角形内角和定理、对顶角的性质,掌握对顶角相等以及两直线平行内错角相等是解题的关键.10.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B .两直线平行,内错角相等,该项为假命题;C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C .【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80°【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论.【详解】在△ABC 中,不妨设∠A=60︒,①若∠A=2∠C ,则∠C=30︒,∴∠B=180603090︒-︒-︒=︒;②若∠C=2∠A,则∠C=120︒,︒-︒-︒=︒(不合题意,舍去);∴∠B=180601200=︒-︒=120︒,③若∠B=2∠C,则3∠C18060∴∠C4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒.【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD再根据∠CAB=90°即可求出答案【详解】解:由翻折可得∠EAD=∠BAD又∠CAB=90°∠EAC=50°∴∠EAC+∠CAD=90°-∠解析:20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°,∴∠EAC+∠CAD=90°-∠CAD,∴50°+∠CAD=90°-∠CAD,∴∠CAD=20°.故答案为:20.【点睛】本题考查的是图形翻折变换的性质及四边形内角和定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.16.不合格【解析】试题分析:延长ABDC相交F连接FE并延长至G根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠解析:不合格【解析】试题分析:延长AB、DC相交F,连接F、E并延长至G.根据三角形的外角的性质可得(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG,再根据∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D即可作出判断.延长AB、DC相交F,连接F、E并延长至G.则有(∠A+∠AFG)+(∠D+∠DFG)=∠AEG+∠DEG=∠AED=143°;∵∠A=23°,∠D=31°,∴∠AFD=∠AFG+∠DFG=∠AED-∠A-∠D=143°-23°-31°=89°≠90°.所以零件不合格.考点:三角形的外角的性质点评:解题的关键是熟练掌握三角形的外角的性质:三角形的任何一个外角等于和它不相邻的两个内角的和.17.5【分析】设∠BCE=4x∠CBF=5x设∠ADE=∠EDC=y构建方程组求出xy证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x则∠CBF=5x解析:5【分析】设∠BCE=4x,∠CBF=5x,设∠ADE=∠EDC=y,构建方程组求出x,y,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去), ∴CE=2m =5,故答案为5.【点睛】 本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.18.①④【分析】分别写出原命题的逆命题然后判断正误即可【详解】①同旁内角互补两直线平行的逆命题是两直线平行同旁内角互补成立符合题意;②如果两个角是直角那么它们相等的逆命题为相等的两个角都是直角不成立不符 解析:①④【分析】分别写出原命题的逆命题,然后判断正误即可.【详解】①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意; ②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意; 成立的有①④,故答案为:①④.【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.19.50°【分析】根据三角形内角和定理求出∠GBC+∠GCB根据角平分线的定义求出∠ABC+∠ACB根据三角形内角和定理计算即可【详解】解:∵∠BGC=115°∴∠GBC+∠GCB=180°﹣115°=解析:50°【分析】根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB,根据三角形内角和定理计算即可.【详解】解:∵∠BGC=115°,∴∠GBC+∠GCB=180°﹣115°=65°,∵BE,CF是△ABC的∠ABC和∠ACB的平分线,∴∠GBC=12∠ABC,∠GCB=12∠ACB,∴∠ABC+∠ACB=130°,∴∠A=180°﹣130°=50°,故答案为50°.20.①③【分析】先根据AB⊥BCAE平分∠BAD交BC于点EAE⊥DE∠1+∠2=90°∠EAM和∠EDN的平分线交于点F由三角形内角和定理以及平行线的性质即可得出结论【详解】解:∵AB⊥BCAE⊥DE解析:①③【分析】先根据AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确,故答案为:①③.【点睛】本题考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解题的关键.三、解答题21.垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【分析】根据证明的前后联系填写理由或结论即可.【详解】解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直的定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠3=∠2(等量代换)∴AD平分∠BAC(角平分线的定义).故答案为:垂直的定义;同位角相等,两直线平行;∠2;两直线平行,内错角相等;两直线平行,同位角相等;已知;∠2;等量代换;角平分线的定义.【点睛】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角,明确每步说理的原因是正确答题的关键.22.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF ,GF 的同侧,并且在第三条直线BC 的同旁, ∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF ,DE 两条直线之间,并且在第三条直线AC 的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.23.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h ,()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去, BA的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.24.证明见解析【分析】由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB ∥CD ,∴∠BEF+∠DFE=180°.又∵∠BEF 的平分线与∠DFE 的平分线相交于点P ,∴∠PEF=12∠BEF ,∠PFE=12∠DFE , ∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.25.120°【分析】由EF⊥CD,∠GEF=30°,根据直角三角形中两个锐角互余,即可求得∠EGF的度数,根据邻补角的定义得到∠CGE的度数,又由两直线平行,同位角相等,即可求得∠1的度数.【详解】∵EF⊥CD于点F,∴∠EFG=90°,∴∠EGF=90°﹣∠GEF=90°﹣30°=60°,∵∠CGE+∠EGF=180°,∴∠CGE=180°﹣60°=120°,∵AB∥CD,∴∠1=∠CGE=120°(两直线平行,同位角相等).【点睛】此题考查了平行线的性质与直角三角形的性质.此题比较简单,注意掌握两直线平行,同位角相等定理的应用.26.见解析【分析】先根据平行线的判定,得到AB∥CD,再根据平行线的性质,得出∠MAE=∠NEA,进而得出AM∥NE,最后根据平行线的性质即可得到结论.【详解】解:∵∠BAE+∠AED=180°,(已知)∴AB∥CD,(同旁内角互补,两直线平行)∴∠BAE=∠CEA,(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA,∴AM∥NE,(内错角相等,两直线平行)∴∠M=∠N.(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章达标测试卷
一、选择题(每题3分,共30分)
1.“在同一平面内,不相交的两条直线叫做平行线”这个句子是( ) A.定义B.命题C.公理D.定理
2.下列命题中,是真命题的是( )
A.在同一平面内,垂直于同一条直线的两条直线平行
B.三角形的一个外角大于它的任何一个内角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
3.下列四个图形中∠1=∠2,能够判定AB∥CD的是( )
4.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为( )
A.40°B.60°C.80°D.100°
(第4题) (第6题)
(第8题) (第9题)
(第10题)
5.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为( ) A.30°B.70°C.30°或70°D.100°
6.如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°,在射线OB上有一点P,从点P射出的一束光线经OA上的Q点反射后,反射光线QR恰好与OB 平行,则∠QPB的度数是( )
A.60°B.80°C.100°D.120°
7.用点A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东方向,小红家在学校北偏东35°,则∠ACB等于( )
A.35°B.55°C.60°D.65°
8.如图,∠1,∠2,∠3,∠4一定满足关系( )
A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3
C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3
9.如图,AB∥CD∥EF,下列式子中,等于180°的是( )
A.α+β+γB.α+β-γ
C.-α+β+γD.α-β+γ
10.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC 上,将△ABC沿着DE折叠压平,若∠A=75°,则∠1+∠2等于( )
A.150°B.210°C.105°D.75°
二、填空题(每题3分,共24分)
11.证明“互补的两个角,一定一个是锐角,一个是钝角”是假命题,可举出反例:_________________________________________________.
12.将命题“平行于同一条直线的两条直线互相平行”改写成“如果……那么……”的形式:__________________________________.
13.如图,一把长方形直尺沿直线断开并错位,点E,D,B,F在同一条直线上,若∠ADE=126°,则∠DBC=________.
(第13题)
(第14题) (第15题)
14.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位长度后,得到△A′B′C′,连接A′C,则△A′B′C的周长为________.
15.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=
________.
16.将一副三角尺按如图所示放置,使点A在DE上,BC∥DE,则∠AFC=________.
(第16题) (第18题)
17.足球比赛中,球员越接近球门,射门角度(射球点与两门柱的夹角)就越大,你认为这样说____________(填“合理”或“不合理”).
18.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A n-1BC的平分线与∠A n CD的平分线交于点A n.设∠A=θ,则有:
-1
(1)∠A1=________;(2)∠A n=________.
三、解答题(19题9分,23题12分,24题15分,其余每题10分,共66分)
19.将下列命题写成“如果……那么……”的形式:
(1)有一个角是钝角的三角形叫钝角三角形;
(2)平面内,不相交的两条直线平行.
20.如图,在△ABC中,点D在边BC上,∠B=∠BAD=∠C,∠CAD=∠CDA,求△ABC各内角的度数.
(第20题)
21.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数.
(第21题)
22.如图,一条铁路修到一个村子边时,需拐弯绕道而过,如果第一次的拐角∠A是105°,第二次的拐角∠ABC是135°,第三次的拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?
(第22题)
23.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:CE ∥BF .
(第23题)
24.如图,在△ABC 中,∠B <∠ACB ,AD 平分∠BAC ,P 为线段AD 上的一个动点,
PE ⊥AD 交直线BC 于点E .
(1)若∠B =35°,∠ACB =85°,求∠E 的度数;
(2)当P 点在线段AD 上运动时,求证:∠E =1
2
(∠ACB -∠B ).
(第24题)
答案
一、1.A 2.A 3.B 4.D 5.C 6.B 7.B 8.D 9.B 10.A 二、11.两个角的度数都为90°
12.如果两条直线都与第三条直线平行,那么这两条直线互相平行 13.54° 14.12 15.115° 16.75° 17.合理 18.(1) θ2 (2) θ
2
n
三、19.解:(1)如果一个三角形有一个角是钝角,那么这个三角形是钝角三角形.
(2)平面内,如果两条直线不相交,那么它们平行.
20.解:设∠B =∠BAD =∠C =x ,则在△ADC 中,∠CAD =1
2
(180°-x ).
在△ABC 中,由三角形内角和定理得 3x +1
2(180°-x )=180°,
解得x =36°.
∴∠B =∠C =36°,∠BAC =180°-∠B -∠C =108°.
21.解:∵∠1+∠2=180°,
∠1+∠DFE =180°, ∴∠2=∠DFE. ∴AB ∥EF . ∴∠BDE =∠DEF . 又∵∠DEF =∠A , ∴∠BDE =∠A . ∴DE ∥AC .
∴∠ACB =∠DEB =60°.
22.解:过点B 作BE ∥AF.
∵AF ∥CD ,∴BE ∥CD .
∵BE ∥AF ,∴∠ABE =∠A =105°. ∴∠EBC =30°.
∵BE∥CD,∴∠EBC+∠C=180°.
∴∠C =150°.
23.证明:∵∠3=∠4,∴BC ∥DF .
∴∠5=∠BAF .
∵∠5=∠6,∴∠6=∠BAF . ∴AB ∥CD.∴∠2=∠BGC . ∵∠1=∠2,∴∠1=∠BGC . ∴CE ∥BF .
24.(1)解:∵∠B =35°,∠ACB =85°,∴∠BAC =60°.
∵AD 平分∠BAC ,∴∠DAC =30°. ∴∠ADC =65°.
又∵∠DPE =90°,∴∠E =25°.
(2)证明:∵∠B +∠BAC +∠ACB =180°,
∴∠BAC =180°-(∠B +∠ACB ). ∵AD 平分∠BAC ,
∴∠BAD =12∠BAC =90°-1
2(∠B +∠ACB ).
∴∠ADC =∠B +∠BAD =90°-1
2(∠ACB -∠B ).
∵PE ⊥AD ,∴∠DPE =90°. ∴∠AD C +∠E =90°. ∴∠E =90°-∠ADC , 即∠E =1
2
(∠ACB -∠B ).
如有侵权请联系告知删除,感谢你们的配合!。