第七章 电致发光高分子材料-后来

合集下载

电致发光材料

电致发光材料

电致发光材料电致发光材料,又称为电致冷光材料,指的是能够通过电场或电流激发而发出可见光的材料。

电致发光材料在现代电子技术和光电子技术中具有广泛的应用,例如LED、液晶显示器等。

最常见的电致发光材料是LED(Light Emitting Diode),也就是电致发光二极管。

LED是一种具有电致发光特性的二极管,通过施加正向电压,使得电子和空穴重新组合并释放能量,产生可见光。

LED具有体积小、节能、寿命长等优点,广泛应用于室内外照明、屏幕显示、汽车照明等领域。

另外一种常见的电致发光材料是有机电致发光材料(OLED)。

有机电致发光材料是一种由有机化合物构成的薄膜材料,通过电压激发有机分子的激发态,从而发出光线。

OLED具有发光均匀、色彩鲜艳、可弯曲等特点,因此被广泛应用于手机屏幕、电视屏幕、车载显示器等领域。

除了LED和OLED,还有一些其他的电致发光材料,如电致发光多晶硅材料、电致发光蓝宝石材料等。

这些电致发光材料都具有突出的发光特性,可以通过激励能源(如电场或电流)来产生发光效果。

电致发光材料的运作原理可以简单地描述为电子和空穴在材料中重新组合并释放能量,产生光线。

具体来说,当材料中施加电压时,电子会从高能级跃迁到低能级,而空穴则从低能级跃迁到高能级。

当电子和空穴重新组合时,释放出能量,这些能量以光的形式辐射出来。

电致发光材料的应用广泛,不仅可以用于照明和显示领域,还可以用于传感、通信、医疗等领域。

电致发光材料具有发光效率高、寿命长、响应速度快等优点,因此在现代科技中扮演着重要的角色。

总之,电致发光材料是一类能够通过电场或电流激发而发光的材料,其中LED和OLED是最常见的电致发光材料。

电致发光材料具有广泛的应用前景,推动了现代电子技术和光电子技术的发展。

功能高分子复习资料

功能高分子复习资料

功能高分子—上篇—李晓东篇第一章功能高分子材料总论I 功能高分子材料概述★什么是功能高分子材料?高分子主链上或支链上加上一种或几种具有某些特殊性质的基团,使它能在光、电、磁、阻燃和耐高温等性能方面有特殊的性质,对物质的能量和信息具有传输、转化或贮存的作用。

★功能高分子材料如何分类?①按照性质和功能分为:反应型高分子、光敏高分子、电活性高分子、膜型高分子功能、吸附性高分子、高性能工程材料、高分子智能材料;②按照用途分为:医用高分子、分离用高分子、高分子化学反应试剂、高分子染料。

II功能高分子材料的结构与性能的关系★功能高分子的结构层次如何划分?元素组成、官能团结构、链段结构、微观构象结构、超分子结构和聚集态、宏观结构。

(由微观到宏观)★功能高分子材料的构效关系指什么?结构的变化产生性能变化之间的关系★官能团的性质与聚合物功能之间有什么关系?I.功能高分子的性质主要取决于所含的官能团;II.功能高分子的性质取决于聚合物骨架与官能团的协同作用;III.官能团与聚合物不可区分;IV.官能团在功能高分子中起辅助作用。

(骨架作用越来越大)★聚合物骨架有何作用?I.溶解度下降效应;II.机械支撑作用;III.模板效应;IV.稳定作用;V.其他作用。

★简述聚合物骨架的种类和形态。

主要有线性聚合物、分支聚合物、交联聚合物:I.以聚乙烯、聚苯乙烯、聚苯醚等为代表的饱和碳链型聚合物;II.以聚酯、聚酰胺骨架为代表的聚合物;III.以多糖和肽链为代表的大分子;IV.以聚吡咯、聚乙炔、聚苯等为主链带有线性共轭结构的聚合物;V.以聚芳香内酰胺为主链的梯形聚合物。

★简述高分子材料与功能相关的性质。

①聚合物的溶胀和溶解性质(溶剂分为两性溶剂、溶胀剂和非溶剂。

其交联度和溶胀度成反比主要是因为交联度越大,网隙率越小,溶剂越难渗入)②聚合物的多孔性;③聚合物的渗透性;④功能高分子的稳定性(机械稳定性和化学稳定性)。

III功能高分子材料的制备策略★简述功能高分子材料的制备的常用方法。

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展1.1引言有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。

目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。

和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。

其中,有机电致发光近十几年来受到了人们极大的关注。

有机电致发光主要有两个应用:一是信息显示,二是固体照明。

在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。

但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。

所以人们也迫切需要寻求一种新的显示技术来改变这种局面。

有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。

因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。

但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。

目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。

电致发光及原理

电致发光及原理

电致发光及原理电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。

电致发光EL是一种直接将电能转化为光能的现象。

早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。

电致发光作为一种平面光源引起了人们的极大爱好。

人们企图实现照明光源从点光源、线光源到面光源的革命。

自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。

尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。

人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。

1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。

无机电致发光材料一般为等半导体材料。

有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。

小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。

有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。

其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。

从发光原理角度电致发光可以分为高场电致发光和低场电致发光。

2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。

高场电致发光是一种体内发光效应。

发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状态。

高分子发光材料

高分子发光材料

高分子发光材料有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。

近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。

目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。

2.1高分子光致发光材料2.1.1简介高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。

高分子光致发材料均为含有共轭结构的高聚物材料。

2.1.2发光机理高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。

高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。

2.1.3分类按照引入荧光物质而分为三类2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。

其中广泛应用的是芘的衍生物,如图1。

图1 芘的衍生物2.1.3.2共轭结构的分子内电荷转移化合物有以下几类2.1.3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。

吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。

这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。

图2 共轭结构的衍生物2 .1.3.2 .2香豆素衍生物[10-12]如图3。

在香豆素母体上引入胺基类取代基可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。

但是,香豆索类衍生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。

图3 香豆素衍生物2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。

功能高分子材料复习题

功能高分子材料复习题

1.功能高分子概述功能高分子材料是指那些具有独特物理特性(如光,电,磁灯)或化学特性(如反应,催化等)或生物特性(治疗,相容,生物降解等)的新型高分子材料主要研究目标和内容:新的制备方法研究,物理化学性能表征,结构与性能的关系研究,应用开发研究。

2.构效关系分析官能团的性质与聚合物功能之间的关系,功能高分子中聚合物骨架的作用,聚合物骨架的种类和形态的影响。

3.什么叫反应型高分子?应用特点?反应型功能高分子材料是指具有化学活性,并且应用在化学反应过程中的功能高分子材料,包括高分子试剂和高分子催化剂。

应用特点:具有不溶性,多孔性,高选择性和化学稳定性,大大改进了化学反应的工艺过程,且可回收再用。

4.常用的氧化还原试剂,卤代试剂,酰基化试剂分别有哪些?常用的氧化还原试剂:醌型,硫醇型,吡啶型二茂铁型,多核芳香杂环型。

卤代试剂:二卤化磷型,N-卤代酰亚胺型,三价碘型。

酰基化试剂(分别使氨基,羧基和羟基生成酰胺,酸酐和酯类化合物):高分子活性酯和高分子酸酐。

5.高分子酸碱催化剂的制备及应用阳离子交换树脂:苯乙烯与少量二乙烯基苯共聚,可得到交联聚苯乙烯,将交联聚苯乙烯制成微孔状小球,再在苯环上引入磺酸基、羧基、氨基等,可得到各种阳离子交换树脂。

CH=CH 22CH=CH 2+CH-CH 2-CH-CH 2 CH-CH 2 CH-CH 2nCH-CH 2 CH-CH 2 CH-CH 2CH-CH 2 CH-CH 2 CH-CH 2交联苯乙烯P P SO 3H + H 2SO 4(发烟)+ H 2O交联苯乙烯强酸性阳离子交换树脂水处理剂、酸性催化剂阳离子交换树脂还能代替硫酸作催化剂,产率高,污染少,便于分离阴离子交换树脂:在交联苯乙烯分子中的苯环上引入季铵碱基,则得到阴离子交换树脂水处理剂?P P CH 2Cl 交联苯乙烯强碱性阴离子交换树脂HCHO,HCl 2P CH 2N +(CH 3)3Cl -P CH 2N +(CH 3)3OH -33NaOH阴离子交换树脂还能作为碱催化剂离子交换树脂的用途:水处理——重水软化,污水去重金属离子,海水脱盐,无离子水的制备作为酸碱催化剂的用途:酯化反应,醇醛缩合反应,环氧化反应,水解反应,重排反应6.导电的基本概念材料的导电性能通常是指材料在电场作用下传导载流子的能力,导电能力的评价采用电导(用西门S 表示)或者阻抗(在纯电阻情况下用欧姆R 表示)为物理量纲进行表述。

功能高分子化学课件电致发光材料及器件

功能高分子化学课件电致发光材料及器件
载流于是由某种机理(如交流 电场下的碰撞电离)而产生的电子。 当电子到达绝缘体/半导体的界 面时就被捕获。
这种薄膜式ACEL器件具有非 常好的亮度、稳定性、视角和效 率,因此发展很快。
03.04.2021
典型的三层式的ACEL器件截面图8
发光亮度B和施加的电压V之间的关系为:
其中B0、C为由发光条件、元件结构和磷光材料决定的常数。
对发光器件中的主要成分磷光体的要求是:
亮度高、效率高、颜色纯及其寿命长。
满足这些条件的有II—VI族化合物(ZnS、ZnSe、CaS和SrS)和某些三元硫化 物(CaGa2S4和SrGa2S4)的掺杂半导体。 对于全色显示,除了绿色和红色外,还要求难以得到的发射蓝光的磷光体, 如ZnS:Tm和SrS:Ce。它们大都是在约1000℃高温下用熔融法制备的。 下表列出了一些典型例子。表中L40指阈值电压40V时的发光性能。
进一步考虑LS耦合后还可以得到按光谱支项2S+1LJ表示的更细微的能级分 裂。其能级高低的规律是:当L、S都相同时,对于小于半充满f的电子组态, J值越小的电子组态越稳定;对于大于半充满的电子组态,则J值越大的越 稳定。前图中用光谱支项2S+1LJ(因能级太密,在图中用(2S十1)LJ表示)所标 识的各个Re3+多重态能级图,反映了这些规律,其中谱项的宽度大致表示 不同能级在晶体场中的分裂程度。
03.04.2021
15
三价稀土化合物的4fn组态中共有1639个能级。能级之间的可能跃迁数高达 199177个。电子跃迁时遵守电偶极跃迁选择定则:△L=土1、 △S=0和 |△|<2L(f组态为L=3)。因此f→f跃迁(△J=0)应是字称守恒所禁阻的。但实 际上,由于晶格振动、对称性降低、磁偶极跃迁和f→d跃迁的出现等原因, 还是可以观察到f→f跃迁。因此,稀土化合物是一类很有发展前途的光学材 料,在激光材料、发光材料和陶瓷及玻璃着色剂方面有广泛应用。

功能高分子材料复习资料

功能高分子材料复习资料

功能高分子材料复习资料 第一章.功能高分子材料总论功能高分子的分类方法:P3高分子材料的结构层次:P4功能高分子的制备方法:P11聚苯乙烯的功能化反应:P14聚氯乙烯的功能化反应:P16聚乙烯醇的功能化反应:P16聚环氧氯丙烷的功能化反应:P17缩合型聚合物的功能化反应:P17设计聚合反应需注意:P21第二章.反应型功能高分子高分子试剂与高分子催化剂的优缺点:P29高分子氧化还原试剂高分子氧化还原试剂特点:P30高分子氧化还原试剂制备方法:P31高分子还原试剂:P33高分子酰基化试剂高分子酰基化试剂:P37高分子载体上的固相合成含义:采用不溶于反应体系的低交联度高分子材料作为载体,将反应试剂通过与高分子上活性基的反应固定于其上。

反应过程中中间产物始终与载体相连,从而使有机合成在固相上进行。

反应完成后再将产物从载体上脱下。

高分子载体上的固相合成优势:分离纯化步骤简化;反应总产率高;合成方法可程序化、自动化进行。

固相合成载体选择的要求:P40固相合成连接结构的要求:P41高分子催化剂高分子酸碱催化剂结构:属于离子交换树脂,是具有网状结构的复杂的有机高分子聚合物。

网状结构的骨架部分一段很稳定,不溶于酸、碱和一般溶剂。

在网状结构的骨架上有许多可被交换的活性基团。

根据活性基团的不同、离子交换树脂可分为阳离子交换树脂(高分子酸催化剂)和阴离子交换树脂(高分子碱催化剂)两大类。

高分子酸碱催化剂的特点网状结构难溶(水、酸、碱、有机溶剂)稳定(热、机械、化学)含活性基团(-SO3H、-COOH、-NOH)提供-H或者-OH基团催化反应。

高分子催化剂的使用方法:传统混合搅拌反应床填有催化剂的反应柱阳离子交换树脂(高分子酸催化剂)分类具有酸性基团,化学性质很稳定,具有耐强酸、强碱、氧化剂和还原剂的性质,因此应用非常广泛。

根据活性基团离解出H+能力的大小不同,分为强酸性和弱酸性两种。

强酸性阳离子交换树脂,常用R-SO3H表示(R表示树脂的骨架) 弱酸性阳离子交换树脂,分别用R-COOH和R-OH表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 此曲线能确证聚合物 EL器件是否具有半导体电学性质。
.
2.10. 亮度-电压关系 • 亮度-电压的关系曲线反映的是聚合物 EL 器件
的光电性质,与器件的电流-电压关系有着相似 的曲线,即在低电压下,电流缓慢增加,亮度也 缓慢增加,在高电压驱动时,亮度伴随着电流的 急剧增加而快速增加。 • 从亮度—电压的关系曲线中,还可以得到启动电 压的信息。
.
2.3. 发光效率 • 发光效率是衡量器件性能的一个重要指标,常用能量效率、
量子效率和流明效率来描述。 • 能量效率(功率效率)=输出的光功率/输入的电功率。 • 量子效率分为外量子效率和内量子效率。 • 外量子效率=发射出器件的光子数/注入的电子和空穴数 • 内量子效率=器件内部复合产生辐射的光子数/注入的电子
• 实验中,一般用色度计来测量颜色。
.
2.5.发光寿命 • 寿命定义为亮度降低到初始亮度的 50%所需的时
间。 • 对于投入市场的PLED 器件要求在连续操作下使用
寿命达到10000小时以上,储存寿命要求5 年。
2.6.发光阀值电压 • 发光阀值电压定义为发光亮度为 1 cd/m2时的电压,
PLED器件的发光阀值电压愈低,则器件的驱动电 压愈低。
• 一般来说,功耗大小与器件的结构、器件所用 的材料有关,但器件环境和寿命对它也有很大 影响。
.
2.9.电流密度-电压关系
• 在聚合物 EL 器件中,电流随电压而变化曲线反映了器件 的电学性质,它与二极管的电流-电压的关系类似,具有 整流效应,即只有在正向偏压下有电流通过,在低电压低 于器件导通电压时,电流密度随着电压的增加而缓慢增加, 当电压超过导通电压时,电流密度会急剧上升。
和空穴数 • 流明效率(光度效率)=发射的光通量/输入的电功率
.
2.4. 发光色度
• 由于人眼对不同颜色的感觉会有不同的心理-物 理反应,所以人眼不能用于测量颜色,仅能判断 颜色相等的程度。
• 为了对颜色有客观性的描述和测量, 1931 年国际 照明委员会(CIE)建立了标准色度系统,这种系 统推荐了标准照明物和标准观察者,通过测量物 体颜色的三刺激值(X,Y,Z)或色品坐标(x, y, z)来确定颜色。
.
3.2. 双层器件结构
• 由于大多数聚合物 EL 材料是单极性的,空穴和 电子传输能力有差异,导致载流子传输的不平 衡。如果用这种单极性的材料作为发光层,会 使空穴和电子的复合区自然地靠近某一电极, 当复合区域越靠近这一电极就越容易被该电极 所淬灭,从而导致发光效率的降低。
.
2.7.材料的能级和能隙 • 材料的能级(包括HOMO和 LUMO 能级)对于
平衡载流子的注入和传输非常重要。通过设计 合适能级的聚合物材料使器件的效率能达到显 著的改善。 • 材料的能隙为 HOMO 和 LUMO 能级的差值。

2.8.功耗
• 功耗(电功率)等于驱动电压与电流的乘积。 要想降低功耗提高发光效率,就需降低电流密 度和驱动电压。但功耗愈小,器件的发光亮度 越弱。一般亮度100cd/m2,电压为 10V 时,功 耗约为 10W, 与无机 EL 功耗几乎一致。
.
✓利用聚合物的绕曲性,可在柔韧的衬底上 制作可折叠的显示器
因此,聚合物发光材料被认为是制备质轻、 成本低、可折叠卷曲的柔性显示器的首选材 料。值得注意的是,近年来国外许多大公司 已将研究与开发的重点转向了高分子平板显 示。
2005年,韩国三星和美国 DuPont 公司联合 推出了使用喷墨打印法制备的 14.1 英寸全 彩色 PLED 显示器。
• 电致发光是指发光材料在电场作用下,受到电流
和电场的激发而发光的现象,它是一个将电能直
接转化为光能的一种发光过程。
• 电致发光材料被广泛应用于图象 显示信息处理和通讯等领域。在 过去的相当长的一段时间里,几 乎所有的电致发光器件都是在pn 结无机半导体发光二极管的基 础 上 制 造 的 , 如 磷 化 镓 ( GaP ) 发 光 二 极 管 、 磷 砷 化 镓 ( GaAsP ) 发光二极管、砷铝镓(GaAIAs) 发光二极管 。
.
2.2. 发光亮度
• 电致发光亮度是衡量器件发光强度强弱的指标。
• PLED属电荷注入式发光,其电致发光亮度在低电流范围 内与电流密度成正比,而在高电流密度时逐渐出现亮度饱 和趋势。
• PLED亮度一般采用亮度计测量,亮度计主要是由物镜、 滤光片、硅光电池或光电倍增管以及检流计组成。
• 通常 CRT 电视机的亮度为150坎德拉/平方米(cd/m2)左 右,液晶、等离子体显示器的最大亮度约为500 cd/m2,而 目前PLED最大亮度已超过 10 万 cd/m2 。
.
二、 聚合物电致发光的性能评价
• 一般来讲,聚合物发光材料和器件性能的 优劣可以从发光性能、电化学性能和电学 性能等方面来评价。
• 主要包括:发射光谱、发光亮度、发光效 率、发光色度、器件寿命、材料的能级和 能隙、发光阀值电压、功耗、电流与电压 的关系、发光亮度与电压的关系等。
.
2.1. 发光光谱
.
三 聚合物发光二极管的结构
聚合物发光二极管(PLED)一般采用直流电场 激发模式。根据发光层的构成,PLED 器件有单层 器件、双层器件、三层器件和多层器件之分。
3.1.单层器件结构
典型的单层PLED 的结构是由发光聚合物 薄膜夹在透明导电玻璃(ITO)正极和 金属负极之间组成的三明治夹心结构。 1990 年首次报导的聚合物发光二极管就 是用 PPV 作发光层的单层器件。
.
相比于有机小分子发光材料,聚合物发光 材料具有如下优势: ✓具有良好的机械加工性,其玻璃化温度高, 不易结晶,器件制作简单 ✓可采用旋涂、喷墨打印等简单方式成膜,很 容易实现大面积显示 ✓通过选择不同的聚合物,或通过改变共轭长 度、更换取代基、调整主、侧链结构及组成 等多种途径得到包括红、绿、蓝三基色的各 种颜色的发光
• 在有机/聚合物 EL 中,发射光谱通常有两种:光致发光光 谱和电致发光光谱。光致发光光谱需要光能的激发,电致 发光光谱需要电能的激发。
• 一般说来,光谱分散范围愈窄,其单色性愈好。
• 发射光谱一般用荧光测量仪来测量,具体的测量方法是荧 光通过发射单色器后照射于检测器上,扫描发射单色器并 检测各种波长下相应的荧光强度,然后通过记录仪记录荧 光强度对发射波长的关系曲线,就得到了发射光谱。
相关文档
最新文档