上海黄浦区初三数学二模卷 带答案
2024届上海市黄浦区初三二模数学试卷(含答案)

图1型号1型号2型号3型号42024届上海市黄浦区初三二模数学试卷(考试时间 100 分钟,满分 150 分)一、选择题:(本大题共6题,每题4分,满分24分)1.多项式的因式分解与整式乘法是互逆的.在整式乘法中,“单项式乘以多项式”所对应的互逆因式分解方法是().A提取公因式法;.B公式法;.C十字相乘法;.D分组分解法.2.已知第二象限内点P到x轴的距离为2,到y轴的距离为3,那么点P的坐标是().A2,3;.B3,2;.C2,3 ;.D3,2 .3.如图1,一个35的网格,其中的12个单位正方形已经被2张“L”型和1张“田字”型纸片互不重叠地占据了.下列有4个均由4个单位正方形所组成的纸片,依次记为型号1、型号2、型号3和型号4.将这4个型号的纸片做平移、旋转,恰能将图1中3个未被占据的单位正方形占据,并且与已有的3张纸片不重叠的是().A型号1;.B型号2;.C型号3;.D型号4.4.对于数据:2、2、2、4、5、6、8、8、9、100,能较好反映这组数据平均水平的是().A这组数据的平均数;.B这组数据的中位数;.C这组数据的众数;.D这组数据的标准差.5.反比例函数1yx的图像有下述特征:图像与x轴没有公共点且与x轴无限接近.下列说明这一特征的理由中,正确的是().A自变量0x 且x的值可以无限接近0;.B自变量0x 且函数值y可以无限接近0;.C函数值0y 且x的值可以无限接近0;.D函数值0y 且函数值y可以无限接近0.6.小明在研究梯形的相似分割问题,即如何用一条直线将一个梯形分割成两个相似的图形.他先从等腰梯形开始进行探究,得到下面两个结论.结论1:存在与上、下底边相交的直线,能将等腰梯形分割成两个相似的图形;结论2:不存在与两腰相交的直线,能将等腰梯形分割成两个相似的图形.对这两个结论,你认为().A结论1、结论2都正确;.B结论1正确、结论2不正确;.C结论1不正确、结论2正确;.D结论1、结论2都不正确.二、填空题:(本大题共12题,每题4分,满分48分)7.100的平方根是.图3图28.计算:23a.9.方程x的解是.10.已知关于x 的方程210x mx ,判断该方程的根的情况是.11.将直线2y x 向上平移2个单位,所得直线与x 轴、y 轴所围成的三角形面积是.12.一副52张的扑克牌(无大、小王)被任意打乱后背面朝上放在桌上,小华先从中抽取1张,取得的是黑桃A .然后小王从剩下的牌中再任意抽取1张,他恰好抽到A 的概率是.13.小黄对学校提供午餐中的主食、荤菜、蔬菜和汤,开展了一次满意度调查.他利用中午休息时间,随机对学校中50名学生做了问卷调查,汇总数据如下表.如果学校共有1400名学生,那么全校对午餐中主食满意的学生约有名.14.现有一张矩形纸片,其周长为36厘米,将纸片的四个角各剪下一个边长为2厘米的正方形,然后沿虚线(如图2所示)将纸片折成一个无盖的长方体.如果所得的长方体的体积是48立方厘米,设原矩形纸片的长是x 厘米,那么可列出方程为.15.如图3,D 、E 分别是ABC 边AB 、AC 上点,满足2AD BD ,ADE ABC .记BA a ,BC b,那么向量BE.(用向量a 、b表示)16.如图4,正六边形MNPQRS 位于正方形ABCD 内,它们的中心重合于点O ,且//MN BC .已知正方形ABCD 的边长为a ,正六边形MNPQRS 的边长为b ,那么点P 到边CD 的距离为.(用a 、b的代数式表示)17.如图5,由4个全等的直角三角形拼成一个大正方形ABCD ,内部形成一个小正方形MNPQ .如果正方形MNPQ 的面积是正方形ABCD 面积的一半,那么ABM 的正切值是.18.如图6,D 是等边ABC 边BC 上点,:2:3BD CD ,作AD 的垂线交AB 、AC 分别于点E 、F ,那么:AE AF .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算: 01tan602024.20.(本题满分10分)解不等式组:250,41223xx x.图4图5图6图721.(本题满分10分,第(1)小题5分,第(2)小题5分)如图7,D 是ABC 边AB 上点,已知BCD A ,5AD ,4BD (1)求边BC 的长;(2)如果ACD CBD ∽(点A 、C 、D 对应点C 、B 、D ),求ACB 的度数.22.(本题满分10分)网络平台上有一款代金券,主打的广告语是“满80团1张”.规则如下:在平台可以花75元团购一张80元代金券,一张代金券在平台商城内可以抵80元消费额,每笔消费可用于抵扣的代金券数量不限,但不找零.(1)在平台商城一笔375元的消费,如果使用4张代金券,实际共支付了多少元?(2)在充分使用代金券的情况下,在平台商城一笔x 元的消费与实际总支付y 元间存在着依赖关系,当320375x 时,写出y 关于x 的函数关系式;(3)广告语是“满80团1张”.如果在平台商城一笔消费未满80元,那么是不是就一定没必要“团”哪?说说你的理由.图8图9如图8,M 、N 分别是平行四边形ABCD 边AD 、BC 的中点,对角线BD 交AN 、CM 分别于点P 、Q .(1)求证:13PQ BD;(2)当四边形ANCM 是正方形时,试从内角大小和邻边的数量关系的角度探究平行四边形ABCD 的形状特征.24.(本题满分12分)问题:已知抛物线2:2L y x x .抛物线W 的顶点在抛物线L 上(非抛物线L 的顶点)且经过抛物线L 的顶点,请求出一个满足条件的抛物线W 的表达式.(1)解这个问题的思路如下:先在抛物线L 上任取一点(非顶点),你所取的点是①;再将该点作为抛物线W 的顶点,可设抛物线W 的表达式是②;然后求出抛物线L 的顶点是③_;再将抛物线L 的顶点代入所设抛物线W 的表达式,求得其中待定系数的值为④;最后写出抛物线W 的表达式是⑤;(2)用同样的方法,你还可以获得其他满足条件的抛物线W ,请再写出一个抛物线W 的表达式;(3)如果问题中抛物线L 和W 在x 轴上所截得的线段长相等,求抛物线W 的表达式.图10备用图已知:如图10,ABC 是圆O 的内接三角形,AB AC ,弧AB 、 AC 的中点分别为M 、N ,MN 与AB 、OA 、AC 分别交于点P 、T 、Q .(1)求证:OA MN ;(2)当ABC 是等边三角形时,求ATOT的值;(3)如果圆心O 到弦BC 、MN 的距离分别为7和15,求线段PQ 的长.参考答案。
2022年上海市黄浦区中考数学二模试卷及答案解析

2022年上海市黄浦区中考数学二模试卷一、选择题(本大题共6小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列二次根式中,最简二次根式是( ) A. √8B. √12C. √6D. √0.22. 将抛物线y =(x −2)2+1向上平移3个单位,得到的新抛物线的顶点坐标是( ) A. (2,−2)B. (2,4)C. (5,1)D. (−1,1)3. 关于x 的一元二次方程kx 2−4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A. k >4B. k <4C. k <4且k ≠0D. k ≤4且k ≠04. 下列各统计量中,表示一组数据波动程度的量是( ) A. 方差B. 众数C. 平均数D. 频数5. 已知三角形两边的长分别是4和9,则此三角形第三边的长可以是( ) A. 4B. 5C. 10D. 156. 已知⊙O 的半径OA 长为3,点B 在线段OA 上,且OB =2,如果⊙B 与⊙O 有公共点,那么⊙B 的半径r 的取值范围是( )A. r ≥1B. r ≤5C. 1<r <5D. 1≤r ≤5二、填空题(本大题共12小题,共48.0分)7. 计算:a(a +1)=______.8. 函数:y =√x −2的自变量的取值范围是______. 9. 方程组{x +2y =3x 2−y 2=0的解是______ .10. 一个正多边形的一个外角等于30°,则这个正多边形的边数为______.11. 如果抛物线y =(m +1)x 2的最高点是坐标轴的原点,那么m 的取值范围是______ . 12. 观察反比例函数y =2x 的图象,当0<x <1时,y 的取值范围是______ . 13. 从29,√2,π这三个数中任选一个数,选出的这个数是有理数的概率为______ . 14. 某传送带与地面所成斜坡的坡度i =1:2.4,如果它把物体从地面送到离地面10米高的地方,那么物体所经过的路程为______米.15. 如图,点G 是△ABC 的重心,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BG ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量DC ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______ .16. 如图,在半径为2的⊙O中,弦AB与弦CD相交于点M,如果AB=CD=2√3,∠AMC= 120°,那么OM的长为______ .17. 在△ABC中,∠C=90°,AC=3,将△ABC绕着点A旋转,点C恰好落在AB的中点上,设点B旋转后的对应点为点D,则CD的长为______ .18. 如图,在△ABC中,AD是BC边上的中线,∠ADC=60°,BC=3AD.将△ABD沿直线AD翻折,点B落在平面上的B′处,联结AB′交BC于点E,那么CEBE的值为______ .三、解答题(本大题共7小题,共78.0分。
上海市2018~2019学年黄浦区九年级二模数学试卷及参考答案

上海市2018~2019学年黄浦区九年级二模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分) 1. 下列自然数中,素数( )(A )1;(B )2;(C )4;(D )9.2. 下列运算正确的是( )(A )532)(a a =; (B )532a a a =⋅;(C )a a 4)2(2=;(D )236a a a =÷.3. 反比例函数xmy =的图像在第二、四象限内,则点)1,(-m 在( ) (A )第一象限; (B )第二象限; (C )第三象限 (D )第四象限. 4. 为了了解某校九年级400学生的体重情况,从中抽取50名学生的体重进行分析.在这项调查中,样本指( )(A )400名学生; (B )被抽取的50名学生; (C )400名学生的体重; (D )被抽取的50名学生的体重. 5. 下列等式成立的是( )(A ))(--;(B )0)(=-+;(C )-=-;(D )=-.6. 半径分别为1和5的两个圆相交,它们的圆心距可以是( ) (A )3; (B )4; (C )5;(D )6.二、填空题(本大题共12题,每题4分,满分48分) 7. 化简:=4 .8. 因式分解:=-92a . 9. 方程31=+x 的解是=x . 10. 直线32-=x y 的截距是 .11. 不等式组⎩⎨⎧<->.03,52x x 的解是 .12. 如果关于x 的方程0)12(22=+--m x m x 没有实根,那么m 的取值范围是 .13. 掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是 .14. 秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机抽取了部分学生的成绩,整理并制作成了不完整的图表(如表1所示). 图表中=c .15. 正九边形的中心角等于 .16. 如图,点O 是ABC △的重心,过点O 作AB DE //,分别交AC 、BC 于点D 、E ,如果a AB =,那么=DO (结果用a 表示). 17. 如图,函数)0(12>=x xy 的图像经过OAB △的顶点B 和边AB 的中点C ,如果点B 的横坐标为3,则点C 的坐标为 .18. 如图,在ABC △中,︒=∠90ACB ,53sin =B ,将ABC △绕顶点C 顺时针旋转,得到C B A 11△,点A 、B 分别与点1A 、1B 对应,边11B A 分别交边AB 、BC 于点D 、E ,如果点E 是边11B A 的中点,那么=CB BD1 .第16题图 第17题图 第18题图 三、解答题(本大题共7题,满分78分) 19. (本题满分10分)计算:031)2019(31)27(30cos 60tan 3--+-︒-︒.20. (本题满分10分)解方程:21416222+=---+x x x x .21. (本题满分10分)如图,已知⊙O 是ABC △的外接圆,圆心O 在ABC △的外部,4==AC AB ,34=BC ,求⊙O 的半径.22. (本题满分10分)A 、B 两地相距30千米,已知甲、乙两人分别骑自行车和摩托车从A 地出发前往B 地,途中乙因修车耽误了些时间,然后又继续赶路.图中的线段OM 和折线OCDE 分别反映了甲、乙两人所行的路程y (千米)与时间x (分)的函数关系,根据图像提供的信息回答下列问题:(1)甲骑自行车的速度是 千米/分钟; (2)两人第二次相遇时距离A 地 千米;(3)线段DE 反映了乙修好车后所行的路程y (千米)与时间x (分)的函数关系,请求出线段DE 的表达式及定义域.23. (本题满分12分)如图,已知平行四边形ABCD ,BC AD //,对角线AC 、BD 交于点O ,OB DO =,过点C 作AC CE ⊥,交BD 的延长线于点E ,交AD 的延长线于点F ,且满足ACB DCE ∠=∠.(1)求证:四边形ABCD 是矩形; (2)求证:CDADEF DE =.24. (本题满分12分)如图,已知抛物线c bx ax y ++=2经过原点)0,0(O ,)0,2(A ,直线x y 2=经过抛物线的顶点B ,点C 是抛物线上一点,且位于对称轴的右侧,联结BC 、OC 、AB ,过点C 作x CE //轴,分别交线段OB 、AB 于点E 、F .(1)求抛物线的表达式;(2)当CE BC =时,求证:BCE △∽ABO △; (3)当BOC CBA ∠=∠时,求点C 的坐标.25. (本题满分14分)已知四边形ABCD 中,BC AD //,C ABC ∠=∠2,点E 是射线AD 上一点,点F 是射线DC 上一点,且满足A BEF ∠=∠.(1)如图1,当点E 在线段AD 上时,若AD AB =,在线段AB 上截取AE AG =,联结GE . 求证:DF GE =;(2)如图2,当点E 在线段AD 的延长线上时,若3=AB ,4=AD ,31cos =A ,设x AE =,y DF =,求y 关于x 的函数关系式及其定义域;(3)记BE 与CD 交于点M ,在(2)的条件下,若EMF △与ABE △相似,求线段AE 的长.图1图2参考答案一、选择题1 2 3 4 5 6 BBCDAC7 891011122 )3)(3(-+a a8=x3-325<<x 41>m 1314 15 161718 21 940a 31 (6,2)53三、解答题19. 031)2019(31)27(30cos 60tan 3--+-︒-︒.解:原式33311332---=33-.20. 21416222+=---+x x x x . 解:2(2)162x x +-=-23100x x +-= (5)(2)0x x -+= 解得:15x =,22x =-. 经检验22x =-是原方程的增根.所以,原方程的解为5x =.21. 解:联结AO ,交BC 于点D ,联结BO .∵AB AC =,∴»»AB AC =, 又∵AO 是半径,∴AO BC ⊥,BD CD =. ∵43BC =23BD =. ∵AO BC ⊥,∴90ADB ∠=︒. ∴在Rt ABD ∆中,222BD AD AB +=. 又∵4AB =,∴2AD =.设⊙O 的半径为r ,则2OD OA AD r =-=-. 在Rt BDO ∆中,∵222BD DO BO +=, ∴(()22223+2r r -=.解得:4r =.∴⊙O 的半径为4.22. (1)0.25;(2)20;(3)设线段DE 的表达式为()0y kx b k =+≠.∵线段DE 经过点()50,10D 和()80,20, ∴5010,8020.k b k b +=⎧⎨+=⎩ 解得:1,320.3k b ⎧=⎪⎪⎨⎪=-⎪⎩∴线段DE 的表达式为()1205011033y x x =-≤≤.23. 证明:(1)∵AD ∥BC ,∴AD DOBC BO=. ∵DO BO =,∴AD BC =. ∴四边形ABCD 是平行四边形.∵CE AC ⊥,∴90ACD DCE ∠+∠=︒.∵DCE ACB ∠=∠,∴90ACB ACD ∠+∠=︒,即90BCD ∠=︒. ∴四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴AC BD =,90ADC ∠=︒. ∵AD ∥BC ,∴DE EFBD FC=, ∴DE EF AC FC =,∴DE ACEF FC=. ∵90ADC ACF ∠=∠=︒, ∴cot AC ADDAC FC CD∠==, ∴DE ADEF CD=. 24. 解:(1)∵抛物线2y ax bx c =++经过原点()0,0O 、()2,0A ,∴对称轴为1x =,∵直线2y x =经过抛物线的顶点B ,∴()1,2B . 设抛物线的表达式为:()212y a x =-+. ∵抛物线经过原点()0,0O ,∴2a =-,∴()2221224y x x x =--+=-+. ∴抛物线的表达式为x x y 422+-=.(2)∵BC CE =,∴BEF CBE ∠=∠, ∵CE ∥x 轴,∴BEF BOA ∠=∠,∵()1,2B ,()2,0A ,∴5OB AB ==,∴BOA BAO ∠=∠, ∴CBE BEF BOA BAO ∠=∠=∠=∠, ∴BCE △∽ABO △.(3)记CE 与y 轴交于点M ,过点B 作BN CE ⊥,垂足为点N .设()2,24C m m m -+. ∵CE ∥x 轴,∴BE BFBO BA=, ∵(1,2)B ,(2,0)A ,(0,0)O ,∴5BO BA == ∴BE BF =,∴BEF BFE ∠=∠.∵BEF BOC ECO ∠=∠+∠,BFE CBA BCE ∠=∠+∠, 又CBA BOC ∠=∠,BEF BFE ∠=∠,∴ECO BCE ∠=∠,∴tan tan ECO BCE ∠=∠.∵CE ∥x 轴,x 轴⊥y 轴,∴90OMC BNC ∠=∠=︒,∴OM BN CM CN=,∴22242241m m m m m m -++-=-, ∴11m =(舍),232m =,∴33,22C ⎛⎫ ⎪⎝⎭.25. 解:(1)∵AG AE =,∴1802AAGE ︒-∠∠=. ∵AD ∥BC ,∴180A ABC ∠+∠=︒,∴180ABC A ∠=︒-∠. ∵2ABC C ∠=∠,∴1802AC ︒-∠∠=, ∴AGE C ∠=∠.∵AD ∥BC ,∴180D C ∠+∠=︒,又180BGE AGE ∠+∠=︒, ∴BGE D ∠=∠.∵BEF FED A GBE ∠+∠=∠+∠,又BEF A ∠=∠, ∴FED GBE ∠=∠.又AB AD =,AG AE =,∴BG ED =,∴GBE △≌DEF △,∴GE=DF .(2)在射线AB 上截取AH AE =,联结EH .∵HBE A AEB ∠=∠+∠,DEF BEF AEB ∠=∠+∠, 又BEF A ∠=∠,∴HBE DEF ∠=∠.∵AH=AE ,∴1802AH ︒-∠∠=, ∵AD ∥BC ,∴EDC C ∠=∠,180A ABC ∠+∠=︒.又2ABC C ∠=∠,∴1802AC ︒-∠∠=∴H C ∠=∠,∴H EDC ∠=∠,∴BHE △∽EDF △,∴BH EHED DF=.过点H 作HP AE ⊥,垂足为点P . ∵1cos 3A =,AE AH x ==,∴13AP x = ,223PH x = ,23PE x = ,∴23EH =.∵3BH AH AB x =-=-,4DE AE AD x =-=-,DF y =,∴23334xx x y -=-,∴)223834x x y x -=>. (3)记EH 与BC 相交于点N . ∵EMF △∽ABE △,BEF A ∠=∠,∴AEB EMF ∠=∠,或AEB EFM ∠=∠. ①若AEB EMF ∠=∠,∵=+EMF AEB EDM ∠∠∠,∴AEB EMF ∠<∠, 与条件矛盾, ∴此情况不存在. ②若AEB EFM ∠=∠,∵BHE △∽EDF △,∴BEH EFM ∠=∠, ∴AEB BEH ∠=∠.∵AD ∥BC ,∴AEB EBC ∠=∠, ∴BEH EBC ∠=∠,∴BN EN =, ∵AD ∥BC ,∴AEH BNH ∠=∠, 又AE AH =,∴AEH H ∠=∠, ∴BNH H ∠=∠,∴BN BH =, ∴3BN EN BH x ===-. ∵AD ∥BC ,∴AB ENAH EH=, ∴323x x=233x =+. 综上所述,当EMF △与ABE △相似,线段AE 的长为233.。
2020届黄浦区初三数学二模含答案

⎨x - 2 < 0 黄浦区 2019 学年度第二学期九年级学业水平阶段性调研数学试卷一、选择题1. 下列正整数中,属于素数的是( ) A . 2 B . 4C . 6D . 82. 下列方程没有实数根的是( )A. x 2= 0B. x 2+ x = 0C . x 2+ x +1 = 0 D . x 2+ x -1 = 03. 一次函数 y = -2x +1的图像不经过( )A. 第一象限 B . 第二象限 C . 第三象限 D . 第四象限4. 某班在统计全班 33 人的体重时,算出中位数与平均数都是 54 千克,但后来发现在计算时,将其中一名学生的体重 50 千克错写成了 5 千克,经重新计算后,正确的中位数为a 千克,正确的平均数为 b 千克, 那么( ) A. a < bB. a = bC. a > bD. 无法判断5. 已知 O 1 与 O 2 的直径长 4 厘米与 8 厘米,圆心距为 2 厘米,那么这两圆的位置关系是( )A. 内含B . 内切C . 相交D . 外切6. 在平面直角坐标系xOy 中,点 A (-3, 0), B (2, 0),C (-1, 2), E (4, 2) ,如果 ABC 与 EFB 全等,那么点 F 的坐标可以是( ) A .(6,0)B .(4,0)C . (4, -2)D . (4, -3)二、填空题7. 计算: 6a 4÷ 2a 2=8. 分解因式: 4x 2-1 =9. 不等式组: ⎧2x -1 > 0 的整数解是⎩10. 已知函数那么11. 某校为了解学生收看“空中课堂”的方式,对该校 500 名学生进行了调查,并把结果绘制成如图 1 所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是C 3 2 -1⎨x 2+ 3xy + y 2 = 5 212. 木盒中有一个红球与一个黄球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回摇匀后,再摸出一个球,两次都摸到黄球的概率是 13. 如果一个矩形的一边长是某个正方形边长的 2 倍,另一边长比该正方形边长少 1 厘米,且矩形的面积比该正方形的面积大 8 平方厘米,那么该正方形的边长是 厘米 14. 正五边形一个内角的度数是15. 如果一个梯形的上底与下底之比等于 1:2,那么这个梯形的中位线把梯形分成两部分的面积之比是16. 如图 2,点 M 是 ABC 的边 AB 上的中点,设 AC = a , AB = b ,那么CM 用 a , b 表示为17. 已知等边 ABC 的重心为 G , DEF 与 ABC 关于点 G 成中心对称,将它们重叠部分的面积记作 S 1 ,ABC 的面积记作 S ,那么 S 1 的值是S 218. 已知 O 的直径 AB =4, D 与半径为 1 的那么 D 的半径是外切,且 与 D 均与直径AB 相切、与 O 内切,三、解答题11 19. 计算: 8 +2 - -- 3220. 解方程组: ⎧x + y = 3①⎩② C21.如图3,在平面直角坐标系xOy中,已知点A 坐标(2,3),过点A 作AH ⊥x 轴,垂足为点H,AH 交AB反比例函数在第一象限的图像于点B,且满足= 2 .BH(1)求该反比例函数的解析式;(2)点C 在x 正半轴上,点D 在该反比例函数的图像上,且四边形ABCD 是平行四边形,求点D 坐标.22.如图4,有一直径为100 米的摩天轮,其最高点距离地面高度为110 米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24 分钟.(1)如图5,某游客所在吊舱从最低点P 出发,3 分钟后到达A 处,此时该游客离地面高度约为多少米?(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85 米?(参考数据:≈1.41,≈1.73)23OCH 23. 已知:如图 6,圆 O 是 ABC 的外接圆,AO 平分∠BAC . (1)求证: ABC 是等腰三角形; (2)当 OA =4,AB =6,求边 BC 的长.24. 在平面直角坐标系xOy 中,已知抛物线 y = 1x 2 + bx + c 经过点 A (-4, 0)和 B (2,6),其顶点为 D . 2(1)求此抛物线的表达式;(2)求 ABD 的面积;(3)设 C 为该抛物线上一点,且位于第二象限,过点 C 作CH ⊥ x 轴,垂足为点 H ,如果 与相似,求点 C 的坐标.ABD25.在边长为2 的菱形ABCD 中,E 是边AD 的中点,点F、G、H 分别在边AB、BC、CD 上,且FG ⊥EF, EH ⊥EF .(1)如图7,当点F 是边AB 中点时,求证:四边形EFGH 是矩形;(2)如图8,当BGGC =1时,求FG值;2 EH(3)当且四边形EFGH 是矩形时(点F 不与AB 中点重合),求AF 的长.参考答案一、选择题1. A2. C3. C4. A5. B6. D二、填空题7. 3a 28. (2x +1)(2x -1) 9. x = 1 10. 12 11. 25 名12. 1413. 4 14. 108°15. 5:716.-a + 1 b217. 2318. 1 或 12三、解答题 19.原式= -120.⎧x 1 = -1,⎧x 2 = 4⎨y = 4 ⎨y = -1 ⎩ 1 ⎩ 2 21.(1) y = 2x(2)D (1,2)22.(1)约 25 米 (2)8 分钟23.(1)证明略(2) 3 24.(1) y =1x 2 + 2x2(2)12(3) C (-10, 30), C ⎛ - 14 , 14 ⎫ 3 9 ⎪ ⎝ ⎭25.(1)证明略2 (2)3(3) 313第 6 页。
2020年上海市黄浦区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共6小题,共24.0分)1.下列正整数中,属于素数的是()A. 2B. 4C. 6D. 82.下列方程没有实数根的是()A. x2=0B. x2+x=0C. x2+x+1=0D. x2+x-1=03.一次函数y=-2x+1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.某班在统计全班33人的体重时,算出中位数与平均数都是54千克,但后来发现在计算时,将其中一名学生的体重50千克错写成了5千克,经重新计算后,正确的中位数为a千克,正确的平均数为b千克,那么()A. a<bB. a=bC. a>bD. 无法判断5.已知⊙O1与⊙O2的直径长4厘米与8厘米,圆心距为2厘米,那么这两圆的位置关系是()A. 内含B. 内切C. 相交D. 外切6.在平面直角坐标系xOy中,点A(-3,0),B(2,0),C(-1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A. (6,0)B. (4,0)C. (4.-2)D. (4,-3)二、填空题(本大题共12小题,共48.0分)7.计算:6a4÷2a2=______.8.分解因式:4x2-1=______.9.不等式组的整数解是______.10.已知函数f(x)=,那么f(-)=______.11.某校为了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是______.12.木盒中有一个红球与一个黄球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回摇匀后,再摸出一个球,两次都摸到黄球的概率是______.13.如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是______厘米.14.正五边形的一个内角的度数是______ .15.如果一个梯形的上底与下底之比等于1:2,那么这个梯形的中位线把梯形分成两部分的面积之比是______.16.如图,点M是△ABC的边AB上的中点,设=,=,那么用,表示为______.17.已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是______18.已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是______.三、解答题(本大题共7小题,共78.0分)19.计算:+|-|--3.20.解方程组:.21.如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.22.如图1,有一直径为100米的摩天轮,其最高点距离地面高度为110米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24分钟.(1)如图2,某游客所在吊舱从最低点P出发,3分钟后到达A处,此时该游客离地面高度约为多少米?(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85米?(参考数据:≈1.41,=1.73)23.已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4,AB=6,求边BC的长.24.在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过点A(-4,0)和B(2,6),其顶点为D.(1)求此抛物线的表达式;(2)求△ABD的面积;(3)设C为该抛物线上一点,且位于第二象限,过点C作CH⊥x轴,垂足为点H,如果△OCH与△ABD相似,求点C的坐标.25.在边长为2的菱形ABCD中,E是边AD的中点,点F、G、H分别在边AB、BC、CD上,且FG⊥EF,EH⊥EF.(1)如图1,当点F是边AB中点时,求证:四边形EFGH是矩形;(2)如图2,当=时,求值;(3)当cos∠D=,且四边形EFGH是矩形时(点F不与AB中点重合),求AF 的长.答案和解析1.【答案】A【解析】解:各选项中,只有2除了1和它本身外,不能被其他自然数整除,故属于素数的是2.故选:A.根据素数的定义,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数,进而得出答案.此题主要考查了有理数,正确把握素数的定义是解题关键.2.【答案】C【解析】解:A.此方程判别式△=02-4×1×0=0,故方程有两个相等的实数根;B.此方程判别式△=12-4×1×0=1>0,故方程有两个不相等的实数根;C.此方程判别式△=12-4×1×1=-3<0,故方程没有实数根;D.此方程判别式△=02-4×1×(-1)=5>0,故方程有两个不相等的实数根;故选:C.分别计算出每个方程判别式的值,再进一步判断即可得出答案.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.【答案】C【解析】解:∵一次函数y=-2x+1中k=-2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.先根据一次函数y=-2x+1中k=-2,b=1判断出函数图象经过的象限,进而可得出结论.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.4.【答案】A【解析】解:原数据中5在中位数54的左边,新数据中50<54,所以中位数a=54,新数据比原数据增加了45,而数据的个数没有变化,所以平均数b>54,则b>a,故选:A.根据中位数和平均数的定义分别判断出a、b与54的大小关系,据此可得答案.此题考查了中位数和平均数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.5.【答案】B【解析】解:由题意可知:r1=2,r2=4,圆心距d=2,∴d=r2-r1,∴两圆相内切,故选:B.根据圆与圆的位置关系即可求出答案.本题考查圆与圆的位置关系,解题的关键是正确运用圆心距与两圆半径的数量关系来判断,本题属于基础题型.6.【答案】D【解析】解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,-3).故选:D.直接利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.此题主要考查了全等三角形的性质以及坐标与图形的性质,正确掌握全等图形的性质是解题关键.7.【答案】3a2【解析】解:6a4÷2a2=3a2.故答案为:3a2.直接利用整式的除法运算法则计算得出答案.此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.8.【答案】(2x+1)(2x-1)【解析】解:4x2-1=(2x+1)(2x-1).故答案为:(2x+1)(2x-1).直接利用平方差公式分解因式即可.平方差公式:a2-b2=(a+b)(a-b).本题主要考查平方差公式分解因式,熟记公式结构是解题的关键.9.【答案】x=1【解析】解:,解①得x>,解②得x<2.综上可得<x<2,∵x为整数,∴x=1.故答案为:x=1.首先解不等式组中的每个不等式,两个不等式组的解集的公共部分就是不等式组的解集,进一步得到不等式组的整数解.此题考查的是一元一次不等式组的解,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答案】【解析】解:当x=-时,f(-)====.故答案为:.把x=3代入函数关系式,计算求值即可.本题考查了求函数值.题目比较简单,已知函数解析式时,求函数值就是求代数式的值.11.【答案】25人【解析】解:∵该校通过手机收看“空中课堂”的学生人数所占百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25(人),故答案为:25人.先根据三部分对应的百分比之和为1求出通过手机收看“空中课堂”的学生人数所占百分比,再乘以总人数即可得.本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.12.【答案】【解析】解:画树状图如下:由树状图知,共有4种等可能结果,其中两次都摸到黄球的只有1种情况,所以两次都摸到黄球的概率为,故答案为:.根据题意画出树状图,据此列出所有等可能结果,再根据概率公式求解可得.此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.13.【答案】4【解析】解:设正方形的边长为x厘米,则矩形的一边长为2x厘米,另一边长为(x-1)厘米,由题意得,2x(x-1)-x2=8,整理得,x2-2x-8=0,解得,x1=-2(舍去),x2=4,故答案为:4.设正方形的边长为x厘米,根据题意用x表示出矩形的两边,根据题意列出方程,解一元二次方程得到答案.本题考查的是一元二次方程的应用,读懂题目的意思、根据题目给出的条件找出合适的等量关系,列出方程是解题的关键.14.【答案】108°【解析】解:∵正多边形的内角和公式为:(n-2)×180°,∴正五边形的内角和是:(5-2)×180°=540°,则每个内角是:540÷5=108°.先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.15.【答案】5:7【解析】解:设梯形的上底为a,则下底为2a,∴梯形的中位线==a,∵梯形的中位线把梯形分成的两个梯形的高h是相等的,∴这个梯形的中位线把梯形分成两部分的面积之比==,故答案为:5:7.设梯形的上底为a,用a表示出下底,根据梯形中位线的概念用a表示出梯形中位线的长,根据梯形的面积公式计算,得到答案.本题考查的是梯形的中位线,掌握梯形中位线的概念、梯形的面积公式是解题的关键.16.【答案】-+【解析】解:∵M是AB的中点,∴AM=AB,∴==,∵=+,∴=-+,故答案为-+,利用三角形法则可知:=+,只要求出即可解决问题.本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】【解析】解:如图,∵点G是等边△ABC的重心,∴AD垂直平分BC,AD是∠BAC的角平分线,∴AG=2GN,设AB=3a,则AN=×3a=a,∵△DEF与△ABC关于点G成中心对称,∴△DEF≌△ABC,AG=DG,EF∥BC,∴∠AQH=∠ABC=∠AHQ=∠ACB=60°,∴△AQH是等边三角形,∴AQ=HQ=AH=AB=a,∴AP=a,∴它们重叠部分为边长=QH的正六边形,∴S1=6×a2,S2=×(3a)2,∴==,故答案为:.如图,根据点G是等边△ABC的重心,得到AD垂直平分BC,AD是∠BAC的角平分线,根据中心对称的性质得到△DEF≌△ABC,AG=DG,EF∥BC,推出△AQH是等边三角形,得到AQ=HQ=AH,求得它们重叠部分为边长=QH的正六边形,设AB=3a,则QH=a,根据等边三角形的面积健康得到结论.本题考查了三角形的重心,等边三角形的性质,中心对称,等边三角形的面积的计算,正确的作出图形是解题的关键.18.【答案】或1【解析】解:当⊙D与⊙C在直径AB的同侧时,作DH⊥OC于H,DN⊥OB于N,连接CD,连接OD并延长交⊙O于G,设⊙D的半径为r,则OD=2-r,CD=1+r,∵⊙O的直径AB=4,⊙C的半径为1,⊙C与⊙O内切,∴⊙C与⊙O内切于点O,∴CO⊥AB,∵CO⊥AB,DH⊥OC,DN⊥OB,∴四边形HOND为矩形,∴OH=DN=r,DH=ON=,∴CH=1-r,在Rt△CDH中,CH2+DH2=CD2,即(1-r)2+(2-r)2-r2=(1+r)2,解得,r=,当⊙D与⊙C在直径AB的两侧时,⊙C与⊙D的半径相等,都是1,故答案为:或1.分⊙D与⊙C在直径AB的同侧、⊙D与⊙C在直径AB的两侧两种情况,根据圆心距与两圆半径的数量关系、勾股定理列方程计算,得到答案.本题考查圆与圆的位置关系,解题的关键是正确运用圆心距与两圆半径的数量关系来判断.=2+---1-=-1.【解析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.此题主要考查了分数指数幂的性质以及二次根式的性质,正确化简各数是解题关键.20.【答案】解:由①得:y=3-x…③,把③代入②得:x2+3x(3-x)+(3-x)2=5,整理得:x2-3x-4=0,解这个方程得,x1=4,x2=-1,把x的值分别代入③,得y1=-1,y2=4.∴原方程组的解为,.【解析】由①得:y=3-x,代入②并整理得:x2-3x-4=0,解这个一元二次方程并代入求值即可.考查了高次方程组,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.21.【答案】解:∵点A坐标(2,3),∴AH=3,∵=2,∴BH=1,AB=2,∴点B(2,1),设反比例函数的解析式为y=(k≠0),∵点B在反比例函数的图象上,∴k=2×1=2,∴反比例函数的解析式为y=;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,∵AB⊥x轴,∴CD⊥x轴,∴点D纵坐标2,∴点D坐标(1,2).【解析】(1)先求出点B坐标,利用待定系数法可求反比例函数解析式;(2)利用平行四边形的性质可得AB∥CD,AB=CD=2,可求点D坐标.本题是反比例函数综合题,考查了反比例函数的性质,平行四边形的性质,熟练运用这些性质进行推理是本题的关键.22.【答案】解:(1)如图2,作AH⊥MN于H,吊舱每分钟转过的角度==15°,∴3分钟转过的角度为45°,在Rt△OAH中,OH=OA•cos∠AOH=50×=25,答:该游客离地面高度约为25米;(2)如图2,线段CD距离地面85米,则OE=85-60=25,在Rt△OEC中,∠OEC=90°,OE=25,OC=50,∴∠OCE=30°,∴∠COE=60°,∴∠COD=120°,∴距离地面不低于85米的时间为:=8(分).【解析】(1)作AH⊥MN于H,求出吊舱每分钟转过的角度,得到∠AOH,根据余弦的定义计算,得到答案;(2)求出OE的长度,根据正弦的定义求出∠OCE=30°,得到∠COD=120°,根据题意计算即可.本题考查的是解直角三角形的应用,正确求出吊舱每分钟转过的角度是解题的关键.23.【答案】解:(1)连接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠OBA=∠OCA=∠BAO=∠CAO,在△OAB和△OAC中,,∴△OAB≌△OAC(AAS),∴AB=AC即△ABC是等腰三角形;(2)延长AO交BC于点H,∵AH平分∠BAC,AB=AC,∴AH⊥BC,BH=CH,设OH=b,BH=CH=a,∵BH2+OH2=OB2,BH2+AH2=AB2,OA=4,AB=6,∴,解得,,∴BC=2a=3.【解析】(1)连接OB、OC,先证明∠OBA=∠OCA=∠BAO=∠CAO,再证明△OAB≌△OAC 得AB=AC,问题得证;(2)延长AO交BC于点H,先证明AH⊥BC,BH=CH,设OH=b,BH=CH=a,根据OA=4,AB=6,由勾股定理列出a、b的方程组,解得a、b,便可得BC.本题是圆的一个综合题,主要考查了圆的性质,等腰三角形的性质,全等三角形的性质与判定,角平分线的性质,第(1)关键在证明三角形全等;第(2)题关键由勾股定理列出方程组.24.【答案】解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+2x;(2)对于y=x2+2x,顶点D(-2,-2),则AD==2,同理AB=6,BD=4,故BD2=AB2+AD2,∴△ABD为直角三角形,∴△ABD的面积=AB×AD=6×2=12;(3)在△ABD中,tan∠ABD==,∵△OCH与△ABD相似,∴tan∠COH=tan∠ABD或tan∠ADB,即tan∠COH=或3,设点C(m,m2+2m),则tan∠COH===或3,解得:m=-10或-(不合题意的值已舍去),故点H的坐标为(-10,30)或(-,).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)BD2=AB2+AD2,则△ABD为直角三角形,△ABD的面积=AB×AD,即可求解;(3)△OCH与△ABD相似,tan∠COH=tan∠ABD或tan∠ADB,即tan∠COH===或3,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、三角形相似等,综合性比较强,难度适中.25.【答案】解:(1)连接AC、BD,∵菱形ABCD中,E是边AD的中点,点F是边AB中点,∴AF=AE=AB,EF∥BD,∵FG⊥EF,EH⊥EF.∴GF∥EH∥AC,∴GF=HE=AC,∴四边形EFGH是平行四边形,∵FG⊥EF,∴∠EFG=90°,∴四边形EFGH是矩形;(2)连接EG,∵菱形ABCD中,AD∥BC,∴∠BGE=∠DEG,∵FG∥EH,∴∠FGE=∠HEG,∴∠BGF=∠DEH,又∵菱形ABCD中,∠B=∠D,∴△BGF∽△DEH,∴=∵=,∴BG=BC,DE=AD=BC,∴==;(3)如图,过点G作GM⊥AB于点M,过点E作EN⊥BA延长线于点N,∵四边形EFGH是矩形,∴GF=EH,∵由(2)可知,△BGF∽△DEH,∴此时△BGF≌△DEH,又∵菱形ABCD边长为2,∴BG=DE=1,∴BG=CG=1,∴cos∠B=cos∠EAN=cos∠D=,∴BM=AN=,∴MG=NE=.设AF=x,则MF=2--x=-x,当四边形EFGH是矩形时,∠GFE=90°,则△GMF与△FNE相似(三垂直模型).①若△GMF∽△FNE,则=,∴=,解得x1=,x2=1(点F不与AB中点重合,舍去);②若△GMF∽△ENF,则=,∴=1,解得x=.综上,AF的长为或.【解析】(1)连接AC、BD,由菱形的性质及三角形的中位线定理证得GF∥EH,GF=EH,从而可知四边形EFGH是平行四边形,再由有一个角为直角的平行四边形是矩形得出结论;(2)连接EG,由菱形的性质及FG∥EH可得∠BGF=∠DEH,及∠B=∠D,从而判定△BGF∽△DEH,结合=及菱形的性质可得答案;(3)如图,过点G作GM⊥AB于点M,过点E作EN⊥BA延长线于点N,根据cos∠D=及菱形的边长可求得BM=AN=,MG=NE=.设AF=x,则MF=-x,当四边形EFGH是矩形时,∠GFE=90°,则△GMF与△FNE相似(三垂直模型),分两种情况列式计算即可:①△GMF∽△FNE,②△GMF∽△ENF.本题属于四边形综合题,考查了矩形的判定、菱形的性质、三角形的中位线定理及相似三角形的判定与性质等知识点,数形结合并明确相关性质及定理是解题的关键.。
2020年上海市黄浦区中考数学二模试卷 (含答案解析)

2020年上海市黄浦区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.下列各数中,正整数是().A. −1B. 2C. 0.5D. 132.下列方程中,没有实数根的是()A. −x2−3x+1=0B. 2x2−3x+1=0C. 4x2+5=4√5xD. 2x2=√3x−13.在平面直角坐标系中,函数y=−6x+2的图象经过()A. 一、二、三象限B. 二、三、四象限C. 一、三、四象限D. 一、二、四象限4.数据0,3,−1,2,1的平均数和中位数分别是()A. 1,2B. 1,1C. 1,0D. 2,15.已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A. 外高B. 外切C. 相交D. 内切6.已知点M(a,1),N(3,1),且MN=2,则a的值为()A. 1B. 5C. 1或5D. 不能确定二、填空题(本大题共12小题,共48.0分)7.计算:16a2b3÷(−2ab2)=______.8.分解因式a2−9的结果是______ .9.满足不等式组{2x−1≤0,的整数解是________.x+1>010.已知函数f(x)=x−2,那么f(3)=______.2x11.如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为______人.12. 在一个不透明的盒子里装有3个分别标有数字1,2,3的小球,它们除数字外其他均相同,充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为______.13. 若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是______cm .14. 正五边形的每个内角度数为_______度.15. 梯形的上底边长为5,下底边长为9,中位线把梯形分成上、下两部分,则这两部分的面积的比为_________.16. 在△ABC 中,点D 在边BC 上,且BD :DC =1:2,如果设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC⃗⃗⃗⃗⃗ =b ⃗ ,那么BD ⃗⃗⃗⃗⃗⃗ 等于______(结果用a ⃗ 、b ⃗ 的线性组合表示).17. 已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA 的长度为______.18. 已知⊙O 1的半径为4,⊙O 2的半径为R ,若⊙O 1与⊙O 2相切,且O 1O 2=10,则R 的值为______.三、解答题(本大题共7小题,共78.0分)19. 计算:√16−|2−√5|+√27320. 解方程组:{x −y =6x 2+3xy −10y 2=021.如图所示,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3.另外两边与反比例函(k≠0)的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作数y=kxFG⊥EH于点G.(1)求该反比例函数的表达式.(2)当四边形AEGF为正方形时,求点F的坐标.22.如图是云梯升降车示意图,其点A位置固定,AC可伸缩且可绕点A转动,已知点A距离地面BD的高度AH为3.4米.当AC长度为9米,张角∠HAC为119°时,求云梯升降车最高点C距离地面的高度.(结果保留一位小数)参考数据:sin29°≈0.49,cos29°≈0.88,tan29°≈0.5523.如图,等腰△ABC中,AB=AC=13cm,BC=10cm,求外接圆的半径.24.如图,已知抛物线y=ax2+c与x轴交于A(−√2,0),B两点,与y轴交于点C(0,−1).(1)求此抛物线的解析式;(2)如图1,点D是抛物线上一点,过点D作DE⊥x轴,连接CE,若∠CED+∠OCD=90°,求点E的纵坐标;(3)如图2,在(2)的条件下,在y轴的右侧的抛物线上是否存在点F,使得△ECF是以BC为斜边的等腰直角三角形?若存在求出点F坐标,若不存在说明理由.25.在四边形ABCD中,点E,F分别是边AB,AD上的点,连接CE,CF并延长,分别交DA,BA的廷长线于点H,G.∠BCD,求证:AC2=AH⋅AG;(1)如图1,若四边形ABCD是菱形,∠ECF=12(2)如图2,若四边形ABCD是正方形,∠ECF=45°,BC=4,设AE=x,AG=y,求y与x的函数关系式;(3)如图3,若四边形ABCD是矩形,AB:AD=1:2,CG=CH,∠GCH=45°,请求tan∠AHG的值.【答案与解析】1.答案:B解析:解析:根据正整数的定义即可解答.四个数中,是正整数的是2.解:−1、2、0.5、13故选B.2.答案:D解析:本题主要考查了一元二次方程根的判别式,解题关键是熟练掌握根的判别式与方程根的个数的情况:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.分别计算四个方程的根的判别式Δ=b2−4ac,然后判断各方程根的情况.解:A、∵a=−1,b=−3,c=1,∴Δ=b2−4ac=(−3)2−4×(−1)×1=13>0,所以原方程有两个不相等的实数根,故A选项不符合题意;B、∵a=2,b=−3,c=1,∴Δ=b2−4ac=(−3)2−4×2×1=1>0,所以原方程有两个不相等的实数根,故B选项不符合题意;C、∵a=4,b=−4√5,c=5,∴Δ=b2−4ac=(−4√5)2−4×4×5=0,所以原方程有两个相等的实数根,故C选项不符合题意;D、∵a=2,b=−√3,c=1,∴Δ=b2−4ac=(−√3)2−4×2×1=−5<0,所以原方程没有实数根,故D选项符合题意;.故选D.3.答案:D解析:解:∵k=−6,b=2,∴一次函数y=−6x+2的图象经过第一、二、四象限,故选:D.本题考查了一次函数图象与系数的关系:对于y=kx+b与y轴交于(0,b),k>0,b>0⇔y=kx+ b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.直接根据k<0,b>0⇔y=kx+b的图象在一、二、四象限进行解答即可.4.答案:B解析:解:这组数据按照从小到大的顺序排列为:−1,0,1,2,3,=1,则平均数为:−1+0+1+2+35中位数为:1.故选B.根据中位数和平均数的概念求解.本题考查了平均数和中位数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.答案:C解析:解:∵⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,又∵2+3=5,3−2=1,1<4<5,∴⊙O1与⊙O2的位置关系是相交.故选:C.由⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2为4cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.6.答案:C解析:解:∵M(a,1),N(3,1),且MN=2,∴|a−3|=2,解得a=1或5,故选:C.本题主要考查了坐标与图形性质.根据M、N两点纵坐标相同,且MN=2即可求得a的值.7.答案:−8ab解析:此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.直接利用整式的除法运算法则计算得出答案.解:16a2b3÷(−2ab2)=−8ab.故答案为−8ab.8.答案:(a+3)(a−3)解析:解:a2−9=(a+3)(a−3).故答案为:(a+3)(a−3).直接运用平方差公式分解即可.本题考查了公式法分解因式,熟练掌握平方差公式的结构特点是解题的关键.9.答案:0解析:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解:{2x−1≤0①x+1>0②由①得,x≤12;由②得,x>−1,不等式组的解集为:−1<x≤12.其整数解为0,故答案为0.10.答案:16解析:解:当x=3时,f(3)=3−22×3=16.故答案为:16.把x=3代入函数关系式,计算求值即可.本题考查求函数值.题目比较简单,已知函数解析式时,求函数值就是求代数式的值.11.答案:50解析:解:∵步行的人数占总人数的百分比为72360×100%=20%,∴骑车人数占总人数的百分比为1−40%−20%=40%,∵骑车人数为20人,∴该班人数为20÷40%=50(人),故答案为:50.由步行所对应的圆心角度数可得其占总人数百分比,根据各项目百分比之和为1得出骑车的百分比,结合骑车人数可得答案.本题主要扇形统计图,掌握用整个圆表示总数、用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键.12.答案:23解析:此题考查的是用列表法或树状图法求概率,注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.用树状图列举出所有可能,进而求出和为奇数的概率;解:如图由树状图可知,一共有6种可能,两个球上的数字之和为奇数的有4种可能,∴这两个球上的数字之和为奇数的概率=46=23,故答案为23.13.答案:3√2解析:本题考查一元二次方程简单应用,以及正方形和矩形的面积公式.根据“正方形的面积等于该矩形的面积”列方程解答.解:设正方形的边长为xcm,那么根据题意得:x2=6×3,解得:x=3√2.所以正方形的边长是3√2cm.14.答案:108解析:本题考查正多边形的基本性质和多边形的内角和定理,解题时应先算出正n边形的内角和再除以n 即可得到答案.因为n边形的内角和是(n−2)⋅180°,因而代入公式就可以求出内角和,再根据正多边形的性质用内角和除以内角的个数就是每个内角的度数.解:正五边形的内角和为(5−2)⋅180=540°,540÷5=108°,所以正五边形的每个内角的度数是108度.故答案为108.15.答案:3:4解析:本题考查了梯形的中位线的定义,梯形的中位线等于上底和下底和的一半,另外考查了梯形的面积公式,梯形的面积等于上底与下底和的一半乘以高.解:设体形的高为2h ,依题意和已知,有:中位线长为:5+92=7 ∴上部分面积为:(5+7)ℎ2=6ℎ, ∴下部分面积为:(7+9)ℎ2=8ℎ. ∴上下两部分的面积比为:6ℎ:8ℎ=6:8=3:4故答案为3:4.16.答案:13b ⃗ −13a ⃗解析:解:如图,∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,∴BC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ ,∵BD =13BC , ∴BD ⃗⃗⃗⃗⃗⃗ =13b ⃗ −13a ⃗ .故答案为13b ⃗ −13a ⃗ . 根据三角形法则求出BC ⃗⃗⃗⃗⃗ 即可解决问题;本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.17.答案:√3 解析:解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =√AB 2−BD 2=3√32, ∴GA =23AD =√3,故答案为:√3.延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍. 18.答案:6或14cm解析:解:当⊙O 1和⊙O 2内切时,⊙O 2的半径为10+4=14cm ;当⊙O 1和⊙O 2外切时,⊙O 2的半径为10−4=6cm ;故答案为:6或14cm .⊙O 1和⊙O 2相切,有两种情况需要考虑:内切和外切.内切时,⊙O 2的半径=圆心距+⊙O 1的半径;外切时,⊙O 2的半径=圆心距−⊙O 1的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.19.答案:解:原式=4−√5+2+3=9−√5.解析:先化成最简二次根式,再根据二次根式的加减法则求出即可.本题考查了二次根式的加减,能灵活运用法则进行计算是解此题的关键.20.答案:解:{x −y =6 ①x 2+3xy −10y 2=0 ②由②得:(x −2y)(x +5y)=0原方程组可化为:{x −y =6x −2y =0或{x −y =6x +5y =0解得:{x 1=12y 1=6,{x 2=5y 2=−1. ∴原方程组的解为{x 1=12y 1=6,{x 2=5y 2=−1.解析:本题考查了解高次方程组,将高次方程化为一次方程是解题的关键.先将二次方程化为两个一次方程,则原方程组化为两个二元一次方程组,解方程组即可. 21.答案:解:(1)∵OD =3,DE =2,∴E(2,3),设反比例函数解析式为y =k x ,由题意点E 坐标(2,3),代入y =k x ,得到k =6,∴反比例函数解析式为y =6x ;(2)设正方形边长为a ,则点F 坐标(2+a,3−a),把F(2+a,3−a)代入y =6x 得(2+a)(3−a)=6,解得a =1或0(舍弃),∴点F 坐标(3,2).解析:本题主要考查反比例函数的应用,掌握反比例函数的性质是解题关键.(1)设反比例函数解析式为y =k x ,把点E 坐标代入即可解决问题;(2)设正方形边长为a ,则点F 坐标(2+a,3−a),代入反比例函数解析式,即可解决问题. 22.答案:解:作CE ⊥BD 于E ,AF ⊥CE 于F ,如图,易得四边形AHEF 为矩形,∴EF =AH =3.4m ,∠HAF =90°,∴∠CAF =∠CAH −∠HAF =119°−90°=29°,在Rt△ACF中,∵sin∠CAF=CF,AC∴CF=9×sin29°≈9×0.49=4.41m,∴CE=CF+EF=4.41+3.4≈7.8m,答:云梯升降车最高点C距离地面的高度约为7.8m.解析:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行计算.作CE⊥BD于E,AF⊥CE于F,如图,易得四边形AHEF为矩形,则EF=AH=3.5m,∠HAF=90°,再计算出∠CAF=29°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.23.答案:解:设O为△ABC外接圆的圆心,连接AO,且延长AO交BC于D,连接OB、OC,∵AB=AC,O为△ABC外接圆的圆心,∴AD⊥BC,BD=DC,BC=5,BD=DC=12设等腰△ABC外接圆的半径为R,则OA=OB=OC=R,在Rt△ABD中,由勾股定理得:AD=12,在Rt△OBD中,由勾股定理得:OB2=OD2+BD2,即R2=(12−R)2+52,R=169.24答:等腰△ABC外接圆的半径为169.24解析:本题考查了三角形的外接圆、勾股定理、等腰三角形的性质、方程的应用,掌握外心的性质、根据勾股定理列出方程是解题的关键.设O为△ABC外接圆的圆心,连接AO,且延长AO交BC于D,连接OB、OC,求出AD⊥BC,BD=DC,根据勾股定理求出AD,设等腰△ABC外接圆的半径,在Rt△OBD中,由勾股定理得出OB2=OD2+ BD2,代入求出即可.24.答案:解:(1)函数与y轴交于点C(0,−1),则c=−1,,将点A的坐标代入抛物线表达式并解得:a=12x2−1;故抛物线的表达式为:y=12(2)过点C作x轴的平行线交ED的延长线于点H,EH交x轴于点F,∵∠CED+∠OCD=90°,而∠ECD+∠DCH=90°,∴∠DCH=∠E,∴△CHD∽△EHC,m2−1),故CH 2=DH⋅EH,设点D(m,12m2(EF+1),故EF=1,即点E的纵坐标为1;则m2=12m2−1),(3)设点F(x,12过点B作y轴的平行线分别交过点E与x轴的平行线、过点C作x轴的平行线于点N、M,∵∠EBN+∠BEN=90°,∠BEN+∠CBM=90°,∴∠CBM=∠BEN,∠CMB=∠BNE=90°,∴△CMB≌△BNE,则CM=NF=x,而NF=1+|12x2−1|=x,解得:x=√5−1(不合题意值已舍去),故点F(√5−1,2−√5).解析:(1)函数与y轴交于点C(0,−1),则c=−1,将点A的坐标代入抛物线表达式,即可求解;(2)证明△CHD∽△EHC,则CH2=DH⋅EH,设点D(m,12m2−1),即m2=12m2(EF+1),即可求解;(3)证明△CMB≌△BNE,则CM=NF=x,而NF=1+|12x2−1|=x,即可求解.本题考查的是二次函数综合运用,本题的关键是:(2)中证明三角形相似和(3)中证明三角形全等.25.答案:证明:(1)∵四边形ABCD是菱形∴∠ACD=∠ACB=12∠BCD,AD//BC,CD//AB∴∠G=∠DCG,∠H=∠BCH∵∠ECF=12∠BCD∴∠ACD=∠ACB=∠ECF ∴∠DCG=∠ACH,∠BCE=∠ACG,∴∠G=∠ACH,∠H=∠ACG∴△ACG∽△AHC∴ACAH=AGAC∴AC2=AH⋅AG (2)连接AC∵四边形ABCD是正方形∴∠ACD=∠ACB=12∠BCD=45°,AD//BC,CD//AB∴∠G=∠DCG,∠H=∠BCH∵∠ECF=45°=12∠BCD∴∠ACD=∠ACB=∠ECF ∴∠DCG=∠ACH,∠BCE=∠ACG,∴∠G=∠ACH,∠H=∠ACG∴△ACG∽△AHC∴ACAH=AGAC∴AC2=AH⋅AG ∵BC=AB=4∴AC=4√2∴y=32 AH∵BC//AD ∴△EAH∽△EBC∴AEBE=AHBC∴x4−x=AH4∴AH=4x 4−x∴y=32−8xx(3)如图,取BC中点M,过点M作MN//BG,交AD于点P,交CG于点N,连接CP,∵MN//BG,∴CMCB =CNCG=MNBG,且M是BC中点∴CMCB=CNCG=MNBG=12∴BC=2CM,CG=2CN,BG=2MN∵CG=CH∴CG=CH=2CN ∵CD//BA,MN//BG∴CD//MN//BG∴MCMB=DPPA=1∴DP=PA∵AB:AD=1:2,∴设AB=a=CD,AD=2a=BC,∴CM=a=DP,且BC//AD∴四边形CDPM是平行四边形,且CD=DP=a,∠D=90°∴四边形CDPM是正方形,∴CP=√2a∵四边形CDPM是正方形,且∠GCH=90°,由(2)可得:△CPN∽△HPC∴PHCP=CPPN=CHCN=2∴PH=2CP=2√2a,PN=12CP=√22a∴MN=a+√22a,AH=PN−PA=2√2a−a ∴BG=2MN=2a+√2a,∴AG=BG−AB=a+√2a,∴tan∠AHG=AGAH=√2a2√2a−a=5+3√27解析:(1)通过证明△ACG∽△AHC,可得ACAH =AGAC,可得结论;(2)通过证明△ACG∽△AHC,可得ACAH =AGAC,可得AC2=AH⋅AG,通过证明△EAH∽△EBC,可得AEBE=AH BC ,即AH=4x4−x,即可求y与x的函数关系式;(3)取BC中点M,过点M作MN//BG,交AD于点P,交CG于点N,连接CP,可证四边形CDPM是正方形,由(2)可知△CPN∽△HPC,由相似三角形的性质可得PH=2CP=2√2a,PN=12CP=√22a,可求AH,AG的长,即可求tan∠AHG的值.本题是相似形综合题,考查了矩形的性质,菱形的性质,正方形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。
2020年上海市黄浦区中考数学二模试卷 (解析版)

2020年中考数学二模试卷一、选择题(本题共6题)1.下列正整数中,属于素数的是()A.2B.4C.6D.82.下列方程没有实数根的是()A.x2=0B.x2+x=0C.x2+x+1=0D.x2+x﹣1=0 3.一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某班在统计全班33人的体重时,算出中位数与平均数都是54千克,但后来发现在计算时,将其中一名学生的体重50千克错写成了5千克,经重新计算后,正确的中位数为a 千克,正确的平均数为b千克,那么()A.a<b B.a=b C.a>b D.无法判断5.已知⊙O1与⊙O2的直径长4厘米与8厘米,圆心距为2厘米,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切6.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)二、填空题:(本大题共12题,每题4分,满分48分)7.计算:6a4÷2a2=.8.分解因式:4x2﹣1=.9.不等式组的整数解是.10.已知函数f(x)=,那么f(﹣)=.11.某校为了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.12.木盒中有一个红球与一个黄球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回摇匀后,再摸出一个球,两次都摸到黄球的概率是.13.如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是厘米.14.正五边形的一个内角的度数是.15.如果一个梯形的上底与下底之比等于1:2,那么这个梯形的中位线把梯形分成两部分的面积之比是.16.如图,点M是△ABC的边AB上的中点,设=,=,那么用,表示为.17.已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是18.已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是.三、解答题:(本大题共7题,满分78分)19.计算:+|﹣|﹣﹣3.20.解方程组:.21.如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.22.如图1,有一直径为100米的摩天轮,其最高点距离地面高度为110米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24分钟.(1)如图2,某游客所在吊舱从最低点P出发,3分钟后到达A处,此时该游客离地面高度约为多少米?(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85米?(参考数据:≈1.41,=1.73)23.已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4,AB=6,求边BC的长.24.在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过点A(﹣4,0)和B(2,6),其顶点为D.(1)求此抛物线的表达式;(2)求△ABD的面积;(3)设C为该抛物线上一点,且位于第二象限,过点C作CH⊥x轴,垂足为点H,如果△OCH与△ABD相似,求点C的坐标.25.在边长为2的菱形ABCD中,E是边AD的中点,点F、G、H分别在边AB、BC、CD 上,且FG⊥EF,EH⊥EF.(1)如图1,当点F是边AB中点时,求证:四边形EFGH是矩形;(2)如图2,当=时,求值;(3)当cos∠D=,且四边形EFGH是矩形时(点F不与AB中点重合),求AF的长.参考答案一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列正整数中,属于素数的是()A.2B.4C.6D.8【分析】根据素数的定义,一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数,进而得出答案.解:各选项中,只有2除了1和它本身外,不能被其他自然数整除,故属于素数的是2.故选:A.2.下列方程没有实数根的是()A.x2=0B.x2+x=0C.x2+x+1=0D.x2+x﹣1=0【分析】分别计算出每个方程判别式的值,再进一步判断即可得出答案.解:A.此方程判别式△=02﹣4×1×0=0,故方程有两个相等的实数根;B.此方程判别式△=12﹣4×1×0=1>0,故方程有两个不相等的实数根;C.此方程判别式△=12﹣4×1×1=﹣3<0,故方程没有实数根;D.此方程判别式△=02﹣4×1×(﹣1)=5>0,故方程有两个不相等的实数根;故选:C.3.一次函数y=﹣2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.4.某班在统计全班33人的体重时,算出中位数与平均数都是54千克,但后来发现在计算时,将其中一名学生的体重50千克错写成了5千克,经重新计算后,正确的中位数为a 千克,正确的平均数为b千克,那么()A.a<b B.a=b C.a>b D.无法判断【分析】根据中位数和平均数的定义分别判断出a、b与54的大小关系,据此可得答案.解:原数据中5在中位数54的左边,新数据中50<54,所以中位数a=54,新数据比原数据增加了45,而数据的个数没有变化,所以平均数b>54,则b>a,故选:A.5.已知⊙O1与⊙O2的直径长4厘米与8厘米,圆心距为2厘米,那么这两圆的位置关系是()A.内含B.内切C.相交D.外切【分析】根据圆与圆的位置关系即可求出答案.解:由题意可知:r1=2,r2=4,圆心距d=2,∴d=r2﹣r1,∴两圆相内切,故选:B.6.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)【分析】直接利用全等三角形的性质以及坐标与图形的性质得出符合题意的答案.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:6a4÷2a2=3a2.【分析】直接利用整式的除法运算法则计算得出答案.解:6a4÷2a2=3a2.故答案为:3a2.8.分解因式:4x2﹣1=(2x+1)(2x﹣1).【分析】直接利用平方差公式分解因式即可.平方差公式:a2﹣b2=(a+b)(a﹣b).解:4x2﹣1=(2x+1)(2x﹣1).故答案为:(2x+1)(2x﹣1).9.不等式组的整数解是x=1.【分析】首先解不等式组中的每个不等式,两个不等式组的解集的公共部分就是不等式组的解集,进一步得到不等式组的整数解.解:,解①得x>,解②得x<2.综上可得<x<2,∵x为整数,∴x=1.故答案为:x=1.10.已知函数f(x)=,那么f(﹣)=.【分析】把x=3代入函数关系式,计算求值即可.解:当x=﹣时,f(﹣)====.故答案为:.11.某校为了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是25人.【分析】先根据三部分对应的百分比之和为1求出通过手机收看“空中课堂”的学生人数所占百分比,再乘以总人数即可得.解:∵该校通过手机收看“空中课堂”的学生人数所占百分比为1﹣(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25(人),故答案为:25人.12.木盒中有一个红球与一个黄球,这两个球除颜色外其他都相同,从盒子里先摸出一个球,放回摇匀后,再摸出一个球,两次都摸到黄球的概率是.【分析】根据题意画出树状图,据此列出所有等可能结果,再根据概率公式求解可得.解:画树状图如下:由树状图知,共有4种等可能结果,其中两次都摸到黄球的只有1种情况,所以两次都摸到黄球的概率为,故答案为:.13.如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是4厘米.【分析】设正方形的边长为x厘米,根据题意用x表示出矩形的两边,根据题意列出方程,解一元二次方程得到答案.解:设正方形的边长为x厘米,则矩形的一边长为2x厘米,另一边长为(x﹣1)厘米,由题意得,2x(x﹣1)﹣x2=8,整理得,x2﹣2x﹣8=0,解得,x1=﹣2(舍去),x2=4,故答案为:4.14.正五边形的一个内角的度数是108°.【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.解:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.15.如果一个梯形的上底与下底之比等于1:2,那么这个梯形的中位线把梯形分成两部分的面积之比是5:7.【分析】设梯形的上底为a,用a表示出下底,根据梯形中位线的概念用a表示出梯形中位线的长,根据梯形的面积公式计算,得到答案.解:设梯形的上底为a,则下底为2a,∴梯形的中位线==a,∵梯形的中位线把梯形分成的两个梯形的高h是相等的,∴这个梯形的中位线把梯形分成两部分的面积之比==,故答案为:5:7.16.如图,点M是△ABC的边AB上的中点,设=,=,那么用,表示为﹣+.【分析】利用三角形法则可知:=+,只要求出即可解决问题.解:∵M是AB的中点,∴AM=AB,∴==,∵=+,∴=﹣+,故答案为﹣+,17.已知等边△ABC的重心为G,△DEF与△ABC关于点G成中心对称,将它们重叠部分的面积记作S1,△ABC的面积记作S2,那么的值是【分析】如图,根据点G是等边△ABC的重心,得到AD垂直平分BC,AD是∠BAC 的角平分线,根据中心对称的性质得到△DEF≌△ABC,AG=DG,EF∥BC,推出△AQH是等边三角形,得到AQ=HQ=AH,求得它们重叠部分为边长=QH的正六边形,设AB=3a,则QH=a,根据等边三角形的面积健康得到结论.解:如图,∵点G是等边△ABC的重心,∴AD垂直平分BC,AD是∠BAC的角平分线,∴AG=2GN,设AB=3a,则AN=×3a=a,∵△DEF与△ABC关于点G成中心对称,∴△DEF≌△ABC,AG=DG,EF∥BC,∴∠AQH=∠ABC=∠AHQ=∠ACB=60°,∴△AQH是等边三角形,∴AQ=HQ=AH=AB=a,∴AP=a,∴它们重叠部分为边长=QH的正六边形,∴S1=6×a2,S2=×(3a)2,∴==,故答案为:.18.已知⊙O的直径AB=4,⊙D与半径为1的⊙C外切,且⊙C与⊙D均与直径AB相切、与⊙O内切,那么⊙D的半径是或1.【分析】分⊙D与⊙C在直径AB的同侧、⊙D与⊙C在直径AB的两侧两种情况,根据圆心距与两圆半径的数量关系、勾股定理列方程计算,得到答案.解:当⊙D与⊙C在直径AB的同侧时,作DH⊥OC于H,DN⊥OB于N,连接CD,连接OD并延长交⊙O于G,设⊙D的半径为r,则OD=2﹣r,CD=1+r,∵⊙O的直径AB=4,⊙C的半径为1,⊙C与⊙O内切,∴⊙C与⊙O内切于点O,∴CO⊥AB,∵CO⊥AB,DH⊥OC,DN⊥OB,∴四边形HOND为矩形,∴OH=DN=r,DH=ON=,∴CH=1﹣r,在Rt△CDH中,CH2+DH2=CD2,即(1﹣r)2+(2﹣r)2﹣r2=(1+r)2,解得,r=,当⊙D与⊙C在直径AB的两侧时,⊙C与⊙D的半径相等,都是1,故答案为:或1.三、解答题:(本大题共7题,满分78分)19.计算:+|﹣|﹣﹣3.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.解:原式=2+﹣﹣(+1)﹣=2+﹣﹣﹣1﹣=﹣1.20.解方程组:.【分析】由①得:y=3﹣x,代入②并整理得:x2﹣3x﹣4=0,解这个一元二次方程并代入求值即可.解:由①得:y=3﹣x…③,把③代入②得:x2+3x(3﹣x)+(3﹣x)2=5,整理得:x2﹣3x﹣4=0,解这个方程得,x1=4,x2=﹣1,把x的值分别代入③,得y1=﹣1,y2=4.∴原方程组的解为,.21.如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.【分析】(1)先求出点B坐标,利用待定系数法可求反比例函数解析式;(2)利用平行四边形的性质可得AB∥CD,AB=CD=2,可求点D坐标.解:∵点A坐标(2,3),∴AH=3,∵=2,∴BH=1,AB=2,∴点B(2,1),设反比例函数的解析式为y=(k≠0),∵点B在反比例函数的图象上,∴k=2×1=2,∴反比例函数的解析式为y=;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,∵AB⊥x轴,∴CD⊥x轴,∴点D纵坐标2,∴点D坐标(1,2).22.如图1,有一直径为100米的摩天轮,其最高点距离地面高度为110米,该摩天轮匀速转动(吊舱每分钟转过的角度相同)一周的时间为24分钟.(1)如图2,某游客所在吊舱从最低点P出发,3分钟后到达A处,此时该游客离地面高度约为多少米?(精确到整数)(2)该游客在摩天轮转动一周的过程中,有多少时间距离地面不低于85米?(参考数据:≈1.41,=1.73)【分析】(1)作AH⊥MN于H,求出吊舱每分钟转过的角度,得到∠AOH,根据余弦的定义计算,得到答案;(2)求出OE的长度,根据正弦的定义求出∠OCE=30°,得到∠COD=120°,根据题意计算即可.解:(1)如图2,作AH⊥MN于H,吊舱每分钟转过的角度==15°,∴3分钟转过的角度为45°,在Rt△OAH中,OH=OA•cos∠AOH=50×=25,∴HM=60﹣25≈25,答:该游客离地面高度约为25米;(2)如图2,线段CD距离地面85米,则OE=85﹣60=25,在Rt△OEC中,∠OEC=90°,OE=25,OC=50,∴∠OCE=30°,∴∠COE=60°,∴∠COD=120°,∴距离地面不低于85米的时间为:=8(分).23.已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4,AB=6,求边BC的长.【分析】(1)连接OB、OC,先证明∠OBA=∠OCA=∠BAO=∠CAO,再证明△OAB ≌△OAC得AB=AC,问题得证;(2)延长AO交BC于点H,先证明AH⊥BC,BH=CH,设OH=b,BH=CH=a,根据OA=4,AB=6,由勾股定理列出a、b的方程组,解得a、b,便可得BC.解:(1)连接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠OBA=∠OCA=∠BAO=∠CAO,在△OAB和△OAC中,,∴△OAB≌△OAC(AAS),∴AB=AC即△ABC是等腰三角形;(2)延长AO交BC于点H,∵AH平分∠BAC,AB=AC,∴AH⊥BC,BH=CH,设OH=b,BH=CH=a,∵BH2+OH2=OB2,BH2+AH2=AB2,OA=4,AB=6,∴,解得,,∴BC=2a=3.24.在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过点A(﹣4,0)和B(2,6),其顶点为D.(1)求此抛物线的表达式;(2)求△ABD的面积;(3)设C为该抛物线上一点,且位于第二象限,过点C作CH⊥x轴,垂足为点H,如果△OCH与△ABD相似,求点C的坐标.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)BD2=AB2+AD2,则△ABD为直角三角形,△ABD的面积=AB×AD,即可求解;(3)△OCH与△ABD相似,tan∠COH=tan∠ABD或tan∠ADB,即tan∠COH===或3,即可求解.解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=x2+2x;(2)对于y=x2+2x,顶点D(﹣2,﹣2),则AD==2,同理AB=6,BD=4,故BD2=AB2+AD2,∴△ABD为直角三角形,∴△ABD的面积=AB×AD=6×2=12;(3)在△ABD中,tan∠ABD==,∵△OCH与△ABD相似,∴tan∠COH=tan∠ABD或tan∠ADB,即tan∠COH=或3,设点C(m,m2+2m),则tan∠COH===或3,解得:m=﹣10或﹣(不合题意的值已舍去),故点H的坐标为(﹣10,30)或(﹣,).25.在边长为2的菱形ABCD中,E是边AD的中点,点F、G、H分别在边AB、BC、CD 上,且FG⊥EF,EH⊥EF.(1)如图1,当点F是边AB中点时,求证:四边形EFGH是矩形;(2)如图2,当=时,求值;(3)当cos∠D=,且四边形EFGH是矩形时(点F不与AB中点重合),求AF的长.【分析】(1)连接AC、BD,由菱形的性质及三角形的中位线定理证得GF∥EH,GF =EH,从而可知四边形EFGH是平行四边形,再由有一个角为直角的平行四边形是矩形得出结论;(2)连接EG,由菱形的性质及FG∥EH可得∠BGF=∠DEH,及∠B=∠D,从而判定△BGF∽△DEH,结合=及菱形的性质可得答案;(3)如图,过点G作GM⊥AB于点M,过点E作EN⊥BA延长线于点N,根据cos∠D=及菱形的边长可求得BM=AN=,MG=NE=.设AF=x,则MF=﹣x,当四边形EFGH是矩形时,∠GFE=90°,则△GMF与△FNE相似(三垂直模型),分两种情况列式计算即可:①△GMF∽△FNE,②△GMF∽△ENF.解:(1)连接AC、BD,∵菱形ABCD中,E是边AD的中点,点F是边AB中点,∴AF=AE=AB,EF∥BD,∵FG⊥EF,EH⊥EF.∴GF∥EH∥AC,∴GF=HE=AC,∴四边形EFGH是平行四边形,∵FG⊥EF,∴∠EFG=90°,∴四边形EFGH是矩形;(2)连接EG,∵菱形ABCD中,AD∥BC,∴∠BGE=∠DEG,∵FG∥EH,∴∠FGE=∠HEG,∴∠BGF=∠DEH,又∵菱形ABCD中,∠B=∠D,∴△BGF∽△DEH,∴=∵=,∴BG=BC,DE=AD=BC,∴==;(3)如图,过点G作GM⊥AB于点M,过点E作EN⊥BA延长线于点N,∵四边形EFGH是矩形,∴GF=EH,∵由(2)可知,△BGF∽△DEH,∴此时△BGF≌△DEH,又∵菱形ABCD边长为2,∴BG=DE=1,∴BG=CG=1,∴cos∠B=cos∠EAN=cos∠D=,∴BM=AN=,∴MG=NE=.设AF=x,则MF=2﹣﹣x=﹣x,当四边形EFGH是矩形时,∠GFE=90°,则△GMF与△FNE相似(三垂直模型).①若△GMF∽△FNE,则=,∴=,解得x1=,x2=1(点F不与AB中点重合,舍去);②若△GMF∽△ENF,则=,∴=1,解得x=.综上,AF的长为或.。
2024上海黄浦区初三二模数学试卷及答案

奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥奥孚培优奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥奥孚培优奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥奥孚培优奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥奥孚培优奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥奥孚培优黄浦区2024年九年级学业水平考试模拟考数学参考答案一、选择题:(本大题共6题,每题4分,满分24分)1.A 2.B 3.D 4.B 5.D 6.B二、填空题:(本大题共12题,每题4分,满分48分)7.10±8.6a9.210.有两个不相等的实根11.112.11713.44814.()()241448x x --=15.1233a b+ 16.12a b -17.2-18.7∶8三、解答题:(本大题共7题,满分78分)19.解:原式=11-+11-.20.解:由 ,得52x ≤.由②,得10x >-,所以不等式组的解集为5102x -<≤.21.解:(1)由∠B =∠B ,∠BCD =∠A ,得△BCD ∽△BAC ,则BC BABD BC=,所以6BC ==.(2)由△ACD ∽△CBD ,得∠ADC =∠CDB ,又∠ADC +∠CDB =180°,∠CDB =90°,由(1)得∠ACB =∠CDB =90°.22.解:(1)375-80×4=55.4×75+55=355(元),答:共支付355元.(2)20y x =-.(3)不是,有必要“团”.当一笔消费为76元时,“团”1张只需支付75元,若不“团”就需要支付76元,“团”1张有必要.23.证:(1)由平行四边形ABCD 及M 为边AD 中点,可得13DQ BD =,同理13BP BD =,奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培所以13PQ BD =.(2)当四边形ANCM 是正方形时,由M 、N 为边AD 、BC 中点,可得△ABN 是等腰直角三角形,则∠ABC=45°,AB =,所以平行四边形ABCD 中,∠ABC =∠ADC =45°,∠DAB =∠DCB=135°,2AB BC =.24.解:(1)①(0,0),②2y ax =,③(1,-1),④1-,⑤2y x =-.(2)244y x x =-+-等.(3)设抛物线L 上点()2,2t t t -.则抛物线W 的表达式可设为()222y a x t t t =-+-.易知抛物线L 在x 轴上交点为(0,0)和(2,0),由题意知抛物线W 在x 轴上交点为(1t +,0)和(1t -,0),又抛物线W 经过抛物线L 的顶点(1,-1),得()()2222112012a t t t a t t t t⎧-=-+-⎪⎨=+-+-⎪⎩,解得11a t =-⎧⎪⎨=±⎪⎩所以抛物线W的表达式为(211y x =--+.25.解:(1)∵AB=AC ,∴弧AB=弧AC .又∵M 、N 为弧AB 、AC 的中点,∴弧AM=12弧AB =12弧AC=弧AN .∴OA ⊥MN .(2)联结OB 、OM .由△ABC 为等边三角形,得∠AOB =120°.又∵M 为弧AB 的中点,所以∠AOM =60°.又∴OA ⊥MN .于是在△MOT 中,∠OTM =90°,∠OMT =30°,所以12OT OM =,于是=1ATOT.(3)令OA 与BC 的交点为H ,过O 作OS ⊥AB ,垂足为S .设圆O 的半径为r .由(1)可得弧MN =弧AB ,于是OS =OT=15,则AS =.易知△AOS ∽△ABH ,得AS AH AO AB =,即r =奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥培优奥孚培优奥孚培优奥孚培优奥孚培解得1225,18r r ==-(舍).于是248BC BH ===,AH =32.由MN ∥BC ,得BC AH =,所以10481532PQ =⨯=.奥孚培优奥孚培优优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培奥孚培优奥孚培优奥孚培优奥孚培优奥孚培优奥孚培。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区二模卷
数学试卷
(时间100分钟,满分150分) 2016.4
考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】
的整数部分是( ▲ )
(A )0; (B )1; (C )2; (D )3.
2. 下列计算中,正确的是( ▲ )
(A )()325a a =; (B )321a a ÷=; (C )224a a a +=; (D )43a a a -=.
3.互为同类二次根式的是( ▲ )
(A
;(B
(C
(D
.
4. 某校从各年级随机抽取50名学生,每人进行10次投篮,投篮进球次数如下表所示:
该投篮进球数据的中位数是(▲ )
(A)2;(B)3;(C)4;(D)5.
5. 如果两圆的半径长分别为2与3,圆心距为3,那么这两个圆的位置关系是(▲ )(A)内含;(B)内切;(C)外切;(D)相交.
6. 如图1,点A是反比例函数k
y
x
(k>0)图像上一点,AB垂直于x轴,垂足为B,AC垂直于y轴,垂足为C,若矩形ABOC的面积为5,则
(A)5;(B)2.5;
(C(D)10.
二、填空题:(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置上】
7. 计算:2-= ▲ .
8. 已知:()421
x f x x -=+,那么()1f = ▲ . 9. 计算:()()22a b a b +-= ▲ .
10. 1x =+的根是 ▲ .
11. 从1到9这9个自然数中任取一个数,是素数的概率是 ▲ .
12. 如果关于x 的方程240x x k ++=有一个解是1x =-那么k = ▲ .
13. 绘制成如图2所示的不完整的统计图.其中捐款10元的人数
占年级总人数的25%,则本次捐款20元的人数为 ▲ 人.
14. 如果抛物线21y x m =++的顶点是坐标轴的原点,那么m = ▲ .
15. 中心角为60°的正多边形有 ▲ 条对称轴.
16. 已知△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且13AD DB =,若AB a =u u u r r ,AC b =u u u r r ,则DE u u u r = ▲ (结果用a r 、b r 表示).
17. 在平行四边形ABCD 中,BC =24,AB =18,∠ABC 和∠BCD 的平分线交AD 于点E 、
F ,则EF =
▲ .
18. 如图3,Rt △ABC 中,∠BAC =90°,将△ABC 绕点C 逆时针旋转,
旋转后的图形是△A ′B ′C ,点A 的对应点A ′落在中线AD 上,且点
A ′是△ABC 的重心,A ′
B ′与B
C 相交于点E ,那么BE :CE = ▲ .
三、解答题:(本大题共7题,满分78分)
19. (本题满分10分)
化简求值: 221412x x x x x x
-+--+g ,其中1x =. 20. (本题满分10分)
解方程组: 222226,450.
x y x xy y ⎧+=⎪⎨--=⎪⎩ 21. (本题满分10分,第(1)满分6分,(2)小题满分4分)
已知一次函数的图像经过点P (3,5),且平行于直线2y x =.
(1)求该一次函数的解析式;
(2)若点Q (x ,y )在该直线上,且在x 轴的下方,求x 的取值范围.
22. (本题满分10分)
如图4,已知AB 是⊙O 的直径,AB =16,点P 是AB 所在直线上一点,OP =10,点C 是⊙O 上一点,PC 交⊙O 于点D ,sin ∠BPC =35,求CD
23. (本题满分12分,第(1),(2)小题满分各6分)
如图5,在△ABC 中,点D 、E
分别是AC 、BC 上的点,AE 与BD 相交于点
O ,且CD =CE ,
∠1=∠2.
(1)求证:四边形ABED 是等腰梯形;
(2)若EC =2,BE =1,∠AOD =2∠1,求AB 的长.
24. (本题满分12分,第(1)小题满分3分,第(2)小题满分3分,第(3)小题满分6分)
如图6,在平面直角坐标系xOy 中,抛物线y ,0)、B (4,0)两点,与y 轴交于点C (0,2).
(1)求抛物线的表达式;
(2)求证:∠CAO =∠BCO ;
(3)若点P 是抛物线上的一点,且∠PCB +∠ACB =∠BCO ,
求直线CP 的表达式.
25. (本题满分14分,第(1)小题满分4分,第(2)满分6分,(3)小题满分4分)
如图7,在Rt △ABC 中,∠ACB =90°,AC =1,BC=7,点D 是边CA 延长线上的一点,AE ⊥BD ,垂足为点E ,AE 的延长线交CA 的平行线BF 于点F ,联结CE 交AB 于点G .
(1)当点E 是BD 中点时,求tan ∠AFB 的值;
(2)CE g AF 的值是否随线段AD 长度的改变而变化,如果不变,求出CE g AF 的值;
如果变化,请说明理由;
(3)当△BGE 与△BAF 相似时,求线段AF 的长. 图7A D B F
E
C G。