《解二元一次方程组》典型例题代入

合集下载

代入法解二元一次方程组(二)专题训练

代入法解二元一次方程组(二)专题训练

0是关 于

C. 4
D. 6
3 . 已知 +3 y=0 . 贝 4
A.1 C.一— 1 —

Y的二 元一 次方程 , 则 2 a +b=

— 一

1 3 . 女 口 果( —Y+3 ) +I 2 x+Y l =0 , 习 I j 么 3 x一
2 y=
2 y=
f + y 一 3
f 2 x=- y
B f + y 一 3 . {

9 . 若 一 3 a x 一
3 —3
和 2 7

是 同类 项 , 则 2 8+ ≯
t x一2 y= 1
3 b=
C .{

5 — — 一 —— v= : 1 3 6 D
一 一
3 一 f = 一2, f = 2,
1 0 . 如果 { 的 ’ 和{
【 =4
l v— = -3



【 y= 1
都是方程 y =似 +
+9 y= 一 4
6 y的解 , 则 0 —2 b=
+3 y =0.
2 . 已知方程组 {
7 . 方程 + =4有



组解 , 有



A ma l l i s n e v e r s o o n t r i a l a s i n t h e ma me n t o f e X C e S s i v e g o o d f o r t u n e
f Y=3 x一 1 .
( 1 ) { I
A. {
/ y=2

二元一次方程组的解法(一)代入法

二元一次方程组的解法(一)代入法

二元一次方程组的解法(一)——代入法一、知识互动1、消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数。

这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想。

2、代入法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

3、用代入法解二元一次方程组的一般步骤:(1)从方程组中选一个系数较简单的方程,将这个方程中一个未知数用含有另一个未知数的代数式表示出来;(2)把变形后的方程代入另一个方程,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)把求得的未知数的值代入变形后的方程,求出另一个未知数的值;(5)写出方程组的解。

4、热身:把方程872=-y x (1)写成用含x 的代数式表示y 的形式; 7872-=x y (2)写成用含y 的代数式表示x 的形式。

427+=y x二、例题讲解例1 用代入法解二元一次方程组(1)⎩⎨⎧=+=+1341632y x y x (2)⎪⎩⎪⎨⎧=+=-142732y x y x 解:⎩⎨⎧==25y x ⎩⎨⎧-==610y x例2 用整体代入法解二元一次方程组⎪⎩⎪⎨⎧=-+=+11)1(2231y x y x 解:⎩⎨⎧==15y x例3 甲、乙两人同求方程7=-by ax 的整数解,甲求出的一组解为⎩⎨⎧==43y x ,而乙把7=-by ax 中的7错看成1,求出一组解为⎩⎨⎧==21y x ,求a 、b 的值。

解:将解代入得⎩⎨⎧=-=-12743b a b a ,解得⎩⎨⎧==25b a三、课堂检测 1、用代入法解方程组⎩⎨⎧=--=421y x x y 代入正确的是( C ) A 、42=--x x B 、422=--x xC 、422=+-x xD 、42=+-x x2、用代入法解方程组⎩⎨⎧=-=+)2(,52)1(,243y x y x 下列变形中,化简较容易的是( D )A 、由(1),得342yx -= B 、由(1),得432xy -=C 、由(2),得25+=y x D 、由(2),得52-=x y2、若关于x 、y 的方程组⎩⎨⎧=+=-n my x my x 2的解是⎩⎨⎧==12y x ,则n m -为( D)A 、1B 、3C 、5D 、24、用代入法解二元一次方程组:(1)⎩⎨⎧+==+173x y y x (2)⎩⎨⎧=-=+3252y x y x (3)⎩⎨⎧=+=+743725y x y x解:⎩⎨⎧==21y x ⎩⎨⎧==11y x ⎩⎨⎧==11y x5、用整体代入法解二元一次方程组⎪⎩⎪⎨⎧=--=--yx y x 211)3(2032)3( 解:⎪⎪⎩⎪⎪⎨⎧==1011548y x6、如果573+n m b a 与m n b a 4218--是同类项,求n m -的值。

专题 解二元一次方程组(计算题50题)(原卷版)

专题 解二元一次方程组(计算题50题)(原卷版)

七年级下册数学《第八章二元一次方程组》专题解二元一次方程组(计算题50题)1.用代入法解下列方程组:(1)x−y=4,3x+y=16;(2)x−y=2,3x+5y=14.2.用代入法解下列方程组:(1)2x−y=33x+2y=8;(2)u+v=103u−2v=5.3.用代入法解下列方程组:(1)3x−y=2,9x+8y=17;(2)3x−4y=10x+3y=12.4.用代入法解下列方程组.(1)x+2y=4y=2x−3;(2)x−y=44x+2y=−2.5.用代入法解下列方程组:(1)5x+4y=−1.52x−3y=4(2)4x−3y−10=03x−2y=06.用代入法解下列方程组:(1)x−y=42x+y=5;(2)3x−y=29x+8y=17;(3)3x+2y=−8 6x−3y=−9.7.用代入法解下列方程组:(1)3x+2y=11,①x=y+3,②(2)4x−3y=36,①y+5x=7,②(3)2x−3y=1,①3x+2y=8,②8.用代入法解下列方程组:(1)5x+2y=15①8x+3y=−1②;(2)3(y−2)=x−172(x−1)=5y−8.9.用代入法解下列方程组:(1)x=6−5y3x−6y=4(2)5x+2y=15x+y=6(3)3x+4y=22x−y=5(4)2x+3y=73x−5y=110.用代入法解下列方程组:(1)2x+y=3x+2y=−6;(2)x+5y=43x−6y=5;(3)2x−y=63x+2y=2;(4)5x+2y=113y−x=−9;1.用加减法解下列方程组:(1)4x−y =143x +y =7 (2x−2y =7x−3y =−82.用加减法解下列方程组:(1)2m +7n =53m +n =−2(2)2u−5v =124u +3v =−2(3y 7=12+y 7=133.用加减法解下列方程组:(1)x−y =52x +y =4;(2)x−2y =33x +4y =−1.4.用加减法解下列方程组:(1)4x−3y =11,2x +y =13;(2)x−y =3,2y +3(x−y)=115.用加减法解下列方程组:(1)3μ+2t =76μ−2t =11 (2)2a +b =33a +b =4.6.(2023•市北区校级开学)用加减法解下列方程组:(1)3y−4x =04x +y =8; (2+y =3x−32y =−1.7.(2022秋•陕西期末)用加减法解下列方程组:(1)x−y =33x−8y =14; (2+2y =10=1+y 13.8.用加减法解下列方程组:(1)x +3=y ,2(x +1)−y =6; (2)x +y =2800,96%x +64%y =2800×92%.9.用加减法解下列方程组:(1)x−y =5,①2x +y =4;②(2)x−2y =1,①x +3y =6;②(3)2x−y =5,①x−1=12(2y−1).②10.用加减法解下列方程组:(1)x +3y =62x−3y =3 (2)7x +8y =−57x−y =4(3)y−1=3(x−2)y+4=2(x+1)(4+y4=1−y3=−1.1.(2022春•新田县期中)用指定的方法解下列方程组:(1)2x−5y=14①y=−x②(代入法);(2)2x+3y=9①3x+5y=16②(加减法).2.(2022春•安岳县校级月考)解下列方程组:(1)3x−y=75x+2y=8(用代入法);(2+n3=10−n4=5(用加减法).3.(2022春•大连期中)用指定的方法解下列方程组:(1)x−3y=42x+y=13(代入法);(2)5x+2y=4x+4y=−6(加减法).4.(2022春•宁远县月考)请用指定的方法解下列方程组(1)5a−b=113a+b=7(代入消元法);(2)2x−5y=245x+2y=31(加减消元法).5.(2021秋•蒲城县期末)请用指定的方法解下列方程组:(1)2x+3y=11①x=y+3②(代入消元法);(2)3x−2y=2①4x+y=10②(加减消元法).6.(2022秋•历下区期中)请用指定的方法解下列方程组:(1)m−n2=22m+3n=12(代入法);(2)6s−5t=36s+t=−15(加减法).7.(2022春•泰安期中)用指定的方法解下列方程组(1)3x+4y=19x−y=4(代入消元法);(2)2x+3y=−53x−2y=12(加减消元法);(35(x−9)=6(y−2)−y13=2.8.(2021秋•历下区期中)请用指定的方法解下列方程组:(1)3x+2y=14x=y+3;(代入法)(2)2x+3y=123x+4y=17.(加减法)9.(2021春•沙河口区期末)用指定的方法解下列方程组:(1)y=2x−33x+2y=8(代入法);(2)3x+4y=165x−6y=33(加减法).10.用指定的方法解下列方程组:(1)3x+4y=19x−y=4(代入法);(2)2x+3y=−53x−2y=12(加减法).1.(2022•苏州模拟)用适当的方法解下列方程组.(1)x+2y=9y−3x=1;(2x−34y=1=4.2.(2022秋•锦江区校级期末)用适当的方法解下列方程组.(1)x=2y−14x+3y=7;(2)3x+2y=22x+3y=28,.3.用适当的方法解下列方程组:(1)x+2y=0,3x+4y=6;(2=2y1)−y=11(3)x+0.4y=40,0.5x+0.7y=35;(4+n−m4=−14,5(n1)12=2.4.(2022•天津模拟)用适当的方法解下列方程组:(1)x +y =52x−y =4; (2=y 24−y−33=112.5.(2021•越城区校级开学)用适当的方法解下列方程组:(1)2x−3y =7x−3y =7. (2)0.3p +0.4q =40.2p +2=0.9q .6.(2022春•东城区校级月考)用适当的方法解下列方程组(1)x +y =52x +y =8; (2)2x +3y =73x−2y =4.7.(2021春•哈尔滨期末)用适当的方法解下列方程组(1)x +2y =93x−2y =−1 (2)2x−y =53x +4y =28.(2022春•椒江区校级期中)用适当的方法解下列方程组:(1)2x +3y =16①x +4y =13②; (2)2s t 3=3s−2t 8=3.9.(2022春•诸暨市期中)用适当的方法解下列方程组:(1)y=2x−1x+2y=−7(2+y3=7+y2=810.(2021春•南湖区校级期中)用适当的方法解下列方程组:(1)3x+2y=9x−y=8;(2=x y2=7.1.先阅读材料,然后解方程组:材料:解方程组x+y=4①3(x+y)+y=14②在本题中,先将x+y看作一个整体,将①整体代入②,得3×4+y=14,解得y=2.把y=2代入①得x=2,所以x=2 y=2这种解法称为“整体代入法”,你若留心观察,有很多方程组可采用此法解答,请用这种方法解方程组x−y−1=0①4(x−y)−y=5②.2.(2021秋•乐平市期末)解方程组3x−2y=8⋯⋯⋯①3(3x−2y)+4y=20⋯.②时,可把①代入②得:3×8+4y=20,求得y=﹣1,从而进一步求得x=2y=−1这种解法为“整体代入法“,请用这样的方法解下列方程组2x−3y=123(2x−3y)+5y=26.3.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1.③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0y=−1这种方法被称为“整体代入法”,请用这样的方法解下列方程组:=0=2y+1.4.(2022春•太和县期末)先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x=0①y=−1②这种方法被称为“整体代入法”,+2y=9.5.先阅读,然后解方程组.解方程组x−y−1=0①4(x−y)−y=5②时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得x这种方法被称为“整体代入法”,请用这样的方法解下列方程组:2x−3y−2=03(2x−3y)+y=7.1.用换元法解下列方程组+2y=12−1y=342.用换元法解下列方程组:(1)3(x+y)+2(x−y)=36(x+y)−4(x−y)=−16(2+x5y3=2−(x+5y)=5.3.(2022春•云阳县期中)阅读探索:解方程组(a−1)+2(b+2)=62(a−1)+(b+2)=6解:设a﹣1=x,b+2=y原方程组可以化为x+2y=62x+y=6,解得x=2y=2,即:a−1=2b+2=2∴a=3b=0,此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组(a4−1)+2(b5+2)=102(a4−1)+(b5+2)=11;(2)能力运用已知关于x,y的方程组a1x+b1y=c1a2x+b2y=c2的解为x=6y=7,求关于m、n的方程组a1(m−2)+b1(n+3)=c1a2(m−2)+b2(n+3)=c2的解.4+x−y10=3①−x−y10=−1②,你会解这个方程组吗?小明、小刚、小芳争论了一会儿,他们分别写出了一种方法:小明:把原方程组整理得8x+2y=90③2x+8y=−30④④×4﹣③得30y=﹣210,所以y=﹣7把y=﹣7代入③得8x=104,所以x=13,即x=13y=−7小刚:设x y6=m,x−y10=n,则m+n=3③m−n=−1④③+④得m=1,③﹣④得m=2,=1=2,所以x+y=6x−y=20,所以x=13y=−7.小芳:①+②得2(x y)6=2,即x+y=6.③①﹣②得2(x−y)10=4,即x﹣y=20.④③④组成方程组得x=13③﹣④得y =﹣7,即x =13y =−7.老师看过后,非常高兴,特别是小刚的方法独特,像小刚的这种方法叫做换元法,你能用换元法解下列方程组吗?+2x 3y 7=1−2x 3y 7=5.5.(2022春•卧龙区校级月考)阅读探索(1)知识积累解方程组(a−1)+2(b +2)=62(a−1)+(b +2)=6.解:设a ﹣1=x ,b +2=y .原方程组可变为x +2y =62x +y =6,解这个方程组得x =2y =2,即a−1=2b +2=2,所以a =3b =0,这种解方程组的方法叫换元法.(2)拓展提高运用上述方法解下列方程组:(m 3−1)+2(n 5+2)=43(m 3−1)−(n 5+2)=5.(3)能力运用已知关于x ,y 的方程组a 1x +b 1y =c 1a 2x +b 2y =c 2的解为x =3y =4,请直接写出关于m 、n 的方程组a 1(m +2)−b 1n =c 1a 2(m +2)−b 2n =c 2的解是 .。

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析

初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。

代入消元法解二元一次方程组练习题

代入消元法解二元一次方程组练习题

(A)无解(B)无数(C)丿"=3. (D):y = -2.y = _x +25•以方程组丿丫’的解为坐标的点(x, y)在平面直角坐标系中的位置是(A)第一象(B)第6•下列方程组中和方程组丿x =3y_4,同解的是().Nx+3y = 7(A)x=11, ?x +3y =7. y =5,2x 3y=7.(C)丿x =3y -4, §x_8+3y =7.x=1, x =3y学习要求会用代入消元法解二元一次方程组.课堂学习检测一、填空题1.已知方程6x— 3y= 5,用含x的式子表示y,则y = _______________ .x =1 x =22.若』,和彳,是关于x, y的方程y = kx + b的两个解,则k= _______________________ ,b =y = —1 y = 33.在方程 3x+ 5y = 10 中,若 3x = 6,贝V x = _________ , y = ________、选择题x = 5 + v4.方程组丿¥,的解是()3x+4y =1测试消元(一)三、用代入消元法解下列方程7.小",_3x 十y = 5.8. R2b=°, Qa +4b=6.综合、运用、诊断(A) y 二x -13 (B) x 二(C) y =2x -5 3(D) y 二2和8,则b 、c 的值是一、填空题9 •小明用36元买了两种邮票共40枚,其中一种面值1元,一种面值0.8元,则小明买了面值1元的邮票 _________ 张,面值0.8元的邮票 ____________ 张.x =1x . =210 .已知』’和丿’都是方程ax — by = 1的解,则a= _________ , b= _________ •)=-2.y=0.11 •若丨 x — y — 1 |+ (2x — 3y + 4) = 0,贝y x = _______ , y = _________ . 、选择题3x+4v=2 ①12 .用代入消元法解方程组彳’ 使得代入后化简比较容易的变形是 ().〔2x_y=5②(A)由①得x = 2丝(B)由①得y =耳空34(C)由②得x 二上5(D)由②得y = 2x — 5213 .已知x = 3t + 1, y = 2t — 1,用含x 的式子表示y ,其结果是().14 .把x = 1和x =— 1分别代入式子x 2 + bx + c 中,值分别为 ()b =3,b =3,b = -3,b = -3,(A)(B)(C)丿(D)丿=4jc = 一4c = -4© = 416.」2x —y =5,& : y = 4: 3三、用代入消元法解下列方程组仔』3x-2y=4,15.丿、4y —3x = -2.拓展、探究、思考'4x — 3y = 7,17 •如果关于x , y 的方程组 k 1的解中,x 与y 互为相反数,求k 的x - y = k -3 2值.。

代入消元法解二元一次方程组练习题

代入消元法解二元一次方程组练习题

测试 消元(一)学习要求会用代入消元法解二元一次方程组.课堂学习检测一、填空题1.已知方程6x -3y =5,用含x 的式子表示y ,则y =______.2.若和是关于x ,y 的方程y =kx +b 的两个解,则k =______,b =______.3.在方程3x +5y =10中,若3x =6,则x =______,y =______.二、选择题4.方程组的解是( ). (A)无解 (B)无数解 (C) (D) 5.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ). (A)第一象限(B)第二象限 (C)第三象限 (D)第四象限 6.下列方程组中和方程组同解的是( ). (A) (B) (C) (D) 三、用代入消元法解下列方程7.8. ⎩⎨⎧-==1,1y x ⎩⎨⎧==3,2y x ⎩⎨⎧=++=143,5y x y x ⎩⎨⎧=-=.3,2y x ⎩⎨⎧-==.2,3y x ⎩⎨⎧-=+-=1,2x y x y ⎩⎨⎧=+-=732,43y x y x ⎩⎨⎧=+=.732,11y x x ⎩⎨⎧=+=.732,5y x y ⎩⎨⎧=+--=.7386,43y x y x ⎩⎨⎧-==.43,1y x x ⎩⎨⎧=+=+.53,1y x y x ⎩⎨⎧=+=+.643,02b a b a综合、运用、诊断一、填空题9.小明用36元买了两种邮票共40枚,其中一种面值1元,一种面值0.8元,则小明买了面值1元的邮票______张,面值0.8元的邮票______张.10.已知和都是方程ax -by =1的解,则a =______,b =______. 11.若|x -y -1|+(2x -3y +4)2=0,则x =______,y =______.二、选择题12.用代入消元法解方程组使得代入后化简比较容易的变形是( ). (A)由①得 (B)由①得 (C)由②得 (D)由②得y =2x -513.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A) (B) (C) (D) 14.把x =1和x =-1分别代入式子x 2+bx +c 中,值分别为2和8,则b 、c 的值是( ).(A) (B) (C) (D) 三、用代入消元法解下列方程组15. 16.⎩⎨⎧-==.2,1y x ⎩⎨⎧==.0,2.y x ⎩⎨⎧=-=+②①52,243y x y x 342y x -=432x y -=25+=y x 31-=x y 21+=y x 352-=x y 312--=x y ⎩⎨⎧==4,3c b ⎩⎨⎧-==4,3c b ⎩⎨⎧-=-=4,3c b ⎩⎨⎧=-=4,3c b ⎩⎨⎧-=-=-.234,423x y y x ⎩⎨⎧==-.3:4:,52y x y x拓展、探究、思考17.如果关于x,y的方程组的解中,x与y互为相反数,求k的值.⎪⎩⎪⎨⎧-=-+=-3 21,734kyxkyx。

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题

代入消元法解二元一次方程组专题习题1.已知$x-y=1$,用含有$x$的代数式表示$y$为:$y=x-1$;用含有$y$的代数式表示$x$为:$x=y+1$。

2.已知$x-2y=1$,用含有$x$的代数式表示$y$为:$y=\frac{x-1}{2}$;用含有$y$的代数式表示$x$为:$x=2y+1$。

3.已知$4x+5y=3$,用含有$x$的代数式表示$y$为:$y=\frac{3-4x}{5}$;用含有$y$的代数式表示$x$为:$x=\frac{3-5y}{4}$。

4.用代入法解下列方程组:1)$\begin{cases}y=4x\\2x+y=5\end{cases}$解:将$y=4x$代入$2x+y=5$得:2x+4x=5$,解方程得:$x=\frac{5}{6}$,将$x=\frac{5}{6}$代入$y=4x$得:$y=2\frac{2}{3}$,所以,原方程组的解为:$(x,y)=(\frac{5}{6},2\frac{2}{3})$。

2)$\begin{cases}x-y=4\\2x+y=5\end{cases}$解:将$x-y=4$解出$y$得:$y=x-4$,将$y=x-4$代入$2x+y=5$得:2x+x-4=5$,解方程得:$x=3$,将$x=3$代入$y=x-4$得:$y=-1$,所以,原方程组的解为:$(x,y)=(3,-1)$。

3)$\begin{cases}3m+2n=6\\4m-3n=1\end{cases}$解:将$3m+2n=6$解出$3m$得:$3m=6-2n$,即$m=2-\frac{2}{3}n$,将$m=2-\frac{2}{3}n$代入$4m-3n=1$得:4(2-\frac{2}{3}n)-3n=1$,解方程得:$n=-\frac{5}{2}$,将$n=-\frac{5}{2}$代入$m=2-\frac{2}{3}n$得:$m=4$,所以,原方程组的解为:$(m,n)=(4,-\frac{5}{2})$。

二元一次方程组解法(一)--代入法(基础)巩固练

二元一次方程组解法(一)--代入法(基础)巩固练

【巩固练习】一、选择题1.用代入消元法解方程组代入消元法正确的是( ).323211x y x y -=⎧⎨+=⎩①②A .由①②得y =3x+2,代入②,得3x =11-2(3x+2)B .由②得,代入①,得1123y x -=11231123y y -=-A C .由①得,代入②,得2-y =11-2y 23y x -=D .由②得3x =11-2y ,代入①,得11-2y -y =22.(2015春•苏州期末)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( )A .4和6B .6和4C .2和8D .8和﹣23.对于方程3x -2y -1=0,用含y 的代数式表示x ,应是( ).A .B .C .D . 1(31)2y x =-312x y +=1(21)3x y =-213y x +=4.已知x+3y =0,则的值为( ).3232y x y x +- A . B . C .3 D .-31313-5.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设, ,则可得到方程组为( ) .A. B. C. D.6.已知是二元一次方程组的解.则a -b 的值为( ).21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩ A .-1B .1C .2D .3二、填空题7.解方程组若用代入法解,最好是对方程________变形,用含_______523,61,x y x y +=⎧⎨-=⎩①②的代数式表示________.8.如果-x+3y =5,那么7+x -3y =________.9.方程组的解满足方程x+y -a =0,那么a 的值是________.525x y x y =+⎧⎨-=⎩10.若方程3x -13y =12的解也是x -3y =2的解,则x =________,y =_______.11. (2015•泉州)方程组的解是 .12.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,则父亲现在的年龄是________岁,儿子现在的年龄是________岁.三、解答题13.用代入法解下列方程组:(1) (2)52233x y x y -=-⎧⎨+=⎩①②233511x y x y +=⎧⎨-=⎩①②14.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.解方程组123761x y x y -=⎧⎨+=⎩①②解:由②,得y =1-6x ③将③代入②,得6x+(1-6x )=1(由于x 消元,无法继续)15.(2015•黄冈模拟)若关于x ,y 的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k 的值.【答案与解析】一、选择题1. 【答案】D ;2.【答案】D .【解析】∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选D .3. 【答案】D ;【解析】移项,得,系数化1得.321x y =+213y x +=4. 【答案】B ;【解析】由x+3y =0得3y =﹣x ,代入.32213223y x x x y x x x +-+==----5. 【答案】D ;6. 【答案】A ;【解析】将代入得,解得.21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩2721a b a b +=⎧⎨-=⎩23a b =⎧⎨=⎩二、填空题7. 【答案】②; x , y ;8. 【答案】2;【解析】由-x+3y =5得x -3y =﹣5,代入7+x -3y=7+(﹣5)=2.9. 【答案】-5;【解析】由解得,代入 x+y -a =0,得a =-5.525x y x y =+⎧⎨-=⎩05x y =⎧⎨=-⎩10.【答案】﹣2.5,﹣1.5;【解析】联立方程组,解得.3131232x y x y -=⎧⎨-=⎩ 2.51.5x y =-⎧⎨=-⎩11.【答案】.12.【答案】51,15;【解析】设父亲现在的年龄是岁,儿子现在的年龄是.由题意得:x y ,解得.34(3)33(3)x y x y -=-⎧⎨+=+⎩5115x y =⎧⎨=⎩三、解答题13.【解析】解: (1)由②得x =3-3y ③,将③代入①得,5(3-3y )-2y =-2,解得y =1,将y =1代入③得x =0,故.01x y =⎧⎨=⎩(2)由①得y =3-2x ③,将③代入②得,3x -5(3-2x )=11,解得x =2,将x =2代入③得y =-1,故.21x y =⎧⎨=-⎩14.【解析】解:无法继续的原因是变形所得的③应该代入①,不可代入②.由②,得y =1-6x ③,将③代入①,得12x -3(1-6x )=7.解得,将代入③,得y =-1.所以原方程组的解为.13x =13x =131x y ⎧=⎪⎨⎪=-⎩15.【解析】解:由方程组得:∵此方程组的解也是方程2x+3y=6的解∴2×7k+3×(﹣2k)=6k=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解二元一次方程组》典型例题
例1 解方程组⎩⎨⎧=++=++)2( .0765 (1)
,0432y x y x
例2 解方程组 ⎪⎩⎪
⎨⎧-=-++=-+)2(52
25123)1(0
223x y x y x
例3 解方程组⎩⎨⎧=--=)2(123)
1(12y x x y
例4 用代入法解方程组⎩⎨⎧≠=-+-=+).3()2(2)2(,
5a x y a x y x
例5 解下列方程组:(1)⎩⎨⎧=-++=--+6)(4)(22)(3)(5y x y x y x y x (2)⎪⎪⎩⎪⎪⎨
⎧-=-
=+197
543
2
y
x
y
x
例6 解方程组⎩⎨⎧=-+--=-)()(2 .5)1()2(21
),1(22y x y x
例7 若⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧
=+=+531
2
1ny mx ny mx 的解,求n m 2-的值.
例8 解方程组⎪⎪⎩⎪⎪⎨⎧=-=+)()(2 .2
3 431 ,2
13
32y x y x
例9 用代入法解二元一次方程组⎩⎨⎧=+=-)
2(825)
1(73y x y x
参考答案
例 1 分析: 先从方程组中选出一个方程,如方程(1),用含有一个未知数的代数式表示另一个未知数,把它代入另一个方程中,得到一个一元一次方程,解这个方程求出一个未知数的值,再代入求另一个未知数的值.
解: 由(1),得2
4
3--=
y x , (3) 把(3)代入(2)中,得0762
4
35=++--⋅y y ,解得2-=y
把2-=y 代入(3)中,得24
)2(3--⨯-=x ,∴ 1=x
∴ ⎩
⎨⎧-==.2,1y x 是原方程组的解.
例2 解:由(1)得 223=+y x (3)
把(3)代入(2),得
522512-=-+x ,解得 2
1
=x . 把21=x 代入(3),得 22213=+⨯y ,解得 41=y .
∴ 方程组的解为 ⎪⎪⎩

⎪⎨

==.4
1,21
y y 说明: 将y x 23+作为一个整体代入消元,这种方法称为整体代入法,本题把y x 23+看作一个整体代入消元比把(1)变形为2
32x
y -=再代入(2)简单得多.
例3 分析:由于方程(1)和(2)中同一字母(未知数)表示同一个数,因此将(1)中y 的值代入(2)中就可消去y ,从而转化为关于x 的一元一次方程.
解:将(1)代入(2),得 1)12(23=--x x ,解得,1=x .
把1=x 代入(1)得 1112=-⨯=y ,
∴ 方程组的解为 ⎩
⎨⎧==.1,
1y x
例4 分析:首先观察方程组,发现方程x y a x =-+-)2(2)2(的形式不是很好,
将其整理成)2(22)1(+=+-a y x a ,再由5=+y x 得y x -=5或x y -=5代入其中进行求解;也可由5=+y x 得x y -=-32代入原式第二个方程先求x ,再求y .
解法一:化原方程组为⎩⎨⎧+=+-=+)()(2 )2(22)1(1
5a y x a y x
由(1)得x y -=5. (3)
把(3)代入(2),得 ).2(2)5(2)1(+=-+-a x x a 即)3(2)3(-=-a x a . 又 3≠a ,可得2=x . 将2=x 代入(3),得3=y .
所以⎩
⎨⎧==.3,
2y x
解法二:由5=+y x 得x y -=-32. 将x y -=-32代入x y a x =-+-)2(2)2(, 得x x a x =-+-)3(2)2(. 即).3(2)3(-=-a x a 又3≠a ,∴2=x .
将2=x 代入5=+y x ,得.3=y
∴⎩
⎨⎧==.3,2y x
说明:用代入法解方程组,一种是一般代入;另一种是整体代入,这需要结合方程组的形式加以分析,此题用第一种方法解时,不能直接由
)2(22)1(+=+-a y x a 得1
2)2(2--+=
a y
a x (为什么?).
例5 分析:(1)小题可以先去括号,把方程组整理为一般形式⎩⎨⎧=+=+2221
11c y b x a c y b x a 后
再解;也可以把)(y x +、)(y x -看成一个整体,令m y x =+、n y x =-,把原方
程组变形为⎩⎨⎧=+=-6
422
35n m n m 求解.
(2)小题可以设
s x =1
,t y =1,将原方程组化为⎩⎨
⎧-=-=+19
75432t s t s 来解. 解:(1)设n y x m y x =-=+,则原方程组可化为:⎩
⎨⎧=+=-6422
35n m n m
解这个方程组得 ⎩⎨⎧==11n m 则有⎩⎨⎧=-=+11
y x y x
解这个方程组得 ⎩⎨⎧==01
y x ∴ 原方程组的解为

⎨⎧==01
y x (2)设
s x =1
,t y =1则原方程组可化为⎩⎨
⎧-=-=+19
75432t s t s 解这个方程组得 ⎩⎨⎧=-=21t s 则有⎪⎪⎩⎪⎪⎨⎧=-=2111
y
x
解得
⎪⎩
⎪⎨⎧=-=211
y x 把⎪⎩⎪⎨⎧=-=211
y x 代入原方程组检验,是原方程组的解.
∴ 原方程组的解为 ⎪⎩

⎨⎧=-=211
y x
例6 解:把(1)代入(2),得.5)1()1(22=-+-⋅y y
解得.2=y 把.2=y 代入(1),得)12(22-=-x ,
∴.4=x ∴⎩⎨⎧==.
2,
4y x
说明:本题考查用整体代入法解二元一次方程组,解题时应观察方程组的结构特征,找出其中技巧.
例7 分析:把⎩⎨⎧-==2
3y x 代入方程组就可以得到关于的二元一次方程,解之即可
求出n ,m 的值.
解:把⎩⎨⎧-==2
3
y x 代入方程组得⎩⎨⎧=-=-)2(529)1(13n m n m
由(1)得13-=m n (3), 把(3)代入(2)得51329=--)m (m , 解得1=m . 把1=m
代入(3)得2=n ,
∴ 32-=-n m
说明:本题考查方程的解的性质,当一对数值是方程组的解时,它必能使
方程组中每一个方程都成立.
例8 解:原方程化简,得⎩⎨⎧=-=+)()(4
.18343
,3923y x y x
由(3)得 .2339x y -=
(5) 把(5)代入(4),得.182
33934=-⨯-x
x
解得.9=x 把.9=x 代入(5),得6=y . ∴原方程组的解为⎩⎨⎧==.6,
9y x
说明:本题考查较复杂的二元一次方程组的用代入法求解,关键是先对方程组进行化简,再选取系数简单的方程进行变形.
例9 分析:方程中y 的系数的绝对值为1,可选取对它进行变形,用含x 的代数式表示y .比较下面三种解法,看哪一种解法最简单.
解法1:由(1)得.73-=x y (3)
把(3)代入(2)得.8)73(25=-+x x 即.2,2211==x x
把2=x 代入(3),得723-⨯=y ,即.1-=y ∴⎩⎨⎧-==12
y x 是原方程组的解.
解法2:由(2)得.2
58x
y -=(3) 把(3)代入(1)得.72583=-=x
x 化简,得.2,2211==x x 把2=x 代入方程(3),得.1,22
58-=⨯-=
y y ∴⎩⎨⎧-==1
2y x 是方程组的解.
解法3:由(2),得.528y x -=
(3) 把(3)代入(1),得.75
283=--⨯y y
355624=--y y , ∴ .1-=y 把.1-=y 代入(3)
,得5
2
)1(8⨯--=x , ∴.2=x ∴⎩
⎨⎧-==1,
2y x 是方程组的解.
说明:本题考查用代入法解二元一次方程组,从上面三种解法可以看出,选择适当的方程变形可使计算简便.。

相关文档
最新文档