七年级上册数学第一章测试题及答案
七年级上册数学第一章测试题及答案

七年级上册数学第一章测试题及答案一、双基回顾1、正数、负数及0的意义由于生产和生活的需要产生了数——正数、负数和0.(1)大于的数叫做正数,正数前面的“+”号通常省略不写.(2)在正数前面加上的数叫做负数.(3)0既不是,也不是 ;0除表示“没有”外,还可表示,如海平面的海拔高度为0.注意:正数和负数都是由符号和绝对值组成的.〔1〕已知数-7,2.1,0,-1/3,13中,正数有;负数有;不是负数的数是;不是正数的数是.注意:不是负数的数叫非负数;不是正数的数叫非正数.2、用正负数表示具有相反意义的量正负数用来表示具有相反意义的量,如+2元表示股票上升2元,-3元表示 .在一个数的前面加上“-”号,所得的数表示的意义与原数表示的意义 .〔2〕下列说法中错误的是.①零上6℃的相反意义只有零下6℃;②收入和支出是一对相反意义的量;③运出5吨与收入5元是一对具有相反意义的量.相反意义的量包含两个要素:一是它们的意义,二是它们都具有,而且必须是 .〔3〕如果零上5℃记作+5℃,那么零下5℃记作( )A、-5B、-10C、-10℃D、-5℃3、有理数及其相关概念(1) 统称为整数;(2) 统称为分数;(3) 统称为有理数.注意:有限小数和无限循环小数都可以化为分数.4、有理数的分类(1)按定义分: (2)按性质分:注意:分类要按同一个标准,做到不重复不遗漏.二、例题导引例1 下列语句:①所有整数都是正数;②所有正数都是整数;③小学学过的数都是正数;④分数是有理数;⑤在有理数中除了负数就是正数.其中正确的语句的个数是( )A、0个B、1个C、3个D、4个例2 把下列各数填入相应的大括号中:7,-9.25,-9/10,-301,4/27,-3.5,0,2,11/2,-7,1.25,-7/3,-3,-3/4.正数{ …}负数{ …}负整数{ …}正分数{ …}非负整数{ …}非正分数{ …}例3 某校对七年级男生进行俯卧撑测试,有8名男生的.成绩如下表所示:学生编号 1 2 3 4 5 6 7 8成绩(个) 7 8 5 2 3 7 4 6请规定一个有意义的量为正,并用正、负数重新列表表示这8名同学的成绩.三、练习提高夯实基础1、若存款为正,某储蓄所在1小时内接待了4笔业务:存款2000元,取款1200元,存款400元,取款800元,用正数、负数分别表示为.2、下列说法:①零的意义仅仅是表示没有;②0是最小的正整数;③0既不是正数,也不是负数;④0是偶数,也是自然数.其中正确的是( )A、①③④B、①②③④C、③④D、②④3、下列各组量中,具有相反意义的量是( )A、起重机上升5米与右移3米B、向前走与向后走C、收入玉米40公斤与借走玉米40公斤D、存入3万元与取出2万元4、如果节约16度电记作+16,那么浪费6度电记作度.5、钟表上的指针顺时针旋转30度记作+30度,则-20度表示的意义是.6、如果水位下降3米记作-3米,那么水位上升4米记作( )A、1米B、7米C、+4米D、-7米7、如果-4米表示物体向西运行4米,那么+2米表示,物体原地不动记为.8、既是负数,又是整数的9、下列说法中错误的是( )A、正整数一定是自然数B、自然数一定是正整数C、0既是整数,也是有理数D、有限小数也是分数10、某食品包装上标有“净含量385±5克”,这袋食品的合格率含量范围是克至克.11、向西走-100米,可以说成( )A、向西走100米B、向东走100米C、向西走200米D、向东走200米12、-7所在的数集有(写出三个数集的名称).13、按某种规律在横线上填上适当的数:-23,-18,-13,.14、把下列各数填到相应的大括号内:-4,5,,- ,0,-21 , ,-0.03003.负整数{ …}分数{ …}非负数{ …}非正分数{ …}15、学校对初一男生进行立定跳远测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.第一组10名男生成绩如下(单位cm):+2 -4 0 +5 +8 -7 0 +2 +10 -3(1)跳得最远的距离和最近的距离分别是多少?(2)第一组有几名学生达标?达标率是多少?能力提高16、一潜水艇所在高度是-80米,它下潜10米的高度记为.17、小明比小刚的身高高-5�M的意义是.18、下列说法中正确的是( )A、有最小的自然数,也有最小的整数B、没有最小的正数,但有最小的正整数C、没有最小的负数,但有最大的负数D、0是有理数中最小的数.19、有公共部分的两个数集是( )A、正整数集合与负整数集合B、整数集合与分数集合C、负数集合与整数集合D、负分数集合与正分数集合20、某班数学平均分为80分,80分以上如85分记作+5分,某同学的数学成绩为78分,应记作( )A、+2分B、-7分C、-2分D、+7分21、巴黎与北京的时差为-7时(正数表示同一时刻比北京时间早的小时数)如果北京时间是7月2日14:00,那么巴黎的时间是( )A、7月2日21时B、7月2日17时C、7月2日5时D、7月2日7时22、按某种规律在横线上填上适当的数:1,-4,9,-16,25,,.23、将下列有理数填在对应的圈中:-0.3,0,-100,3.7,99.9,-15/2,10,,2/3.24、如果课桌的高度比标准高度高2�L记作+2�L,那么比标准高度低3�L记作什么?现有5张课桌,量得它们的尺寸与标准高度比较分别是+1�L,-1�M,0�L,+3�L和-1.5�L,若规定课桌的高度比标准的高度最高不能超过2�L,最低不能低于2�L才算合格,那么上述5张课桌有几张合格?探索创新25、某种商品的标准价格是400元,但随着季节的变化,商品的价格可浮动±5%.(1)±5%的含义分别是什么?(2)请你算出商品的最高价和最低价;(3)某商家将该商品的零售价格定在450元,受到物价部门的处罚,请分析处罚原因.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
七年级数学上册第一章单元测试题及答案

第一章《丰富的图形世界》单元测试题单元测试卷班级姓名学号得分一、选择题(每小题4分,共40分,请将答案填写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C)4个(D)5个2. 下面几何体截面一定是圆的是()( A)圆柱 (B) 圆锥(C)球 (D) 圆台3.如图绕虚线旋转得到的几何体是().4. 某物体的三视图是如图所示的三个图形,那么该物体的形状是()(A)长方体( B)圆锥体(C)立方体(D)圆柱体5.如图,其主视图是()(D)(B)(C)(A)第10题图6.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是()7. 下列各个平面图形中,属于圆锥的表面展开图的是( )(A )(B )(C )(D )8.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是().A .5B . 6C .7D .89.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是()A B C D10.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是()(A )235、、(B)235、、(C )、、235 (D)235、、二、填空题(每小题3分,共18分)11.正方体与长方体的相同点是_________________,不同点是_______________。
12.点动成_____,线动成_____,_____动成体。
比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明_________。
(2)冬天环卫工人使用下部是长方形的木锨推雪时,木锨过处,雪就没了,这种现象说明________。
(3)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明______________。
人教版七年级上册数学 第一章 有理数 单元检测试卷(含答案解析)

人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)人教版七年级上册数学第一章有理数单元检测试卷(含答案解析)第一部分:选择题(每小题3分,共30分)1. 下列数中能表示自然数的是()。
A. -3B. 0C. -2D. 22. 判断下列各式的真假()。
① -5 > -10 ② -6 < 3 ③ -2 > -1 ④ 0 > -1A. √√×√B. ×√×√C. ××√×D. √××√3. 若a > b,b > 0,则下列各式中一定成立的是()。
① a^2 > b^2 ② a - b > 0 ③ a^2 - b^2 > 0A. √√√B. √√×C. ×√√D. ××√4. 若x > -2,y < 0,则下列哪个不正确()。
A. x^2 > 4B. xy < 0C. x - y > 0D. x^2 + y < 05. 若a > b,则不正确的是()。
A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 26. 若x > 1,则不等式2x - 3 > 1的解集是()。
A. (0, 2)B. (2, +∞)C. (-∞, 0)D. (1, +∞)7. 若x < 0,y > 2,则不等式3x + 1 < 5y - 7的解集是()。
A. (-∞, -3)B. (3, +∞)C. (-∞, 3)D. (-3, +∞)8. 若x + y > 0,y < 0,则x的取值范围是()。
A. (0, +∞)B. (-∞, 0)C. (0, -∞)D. (-∞, +∞)9. 若a < 0,b < 0,则不等式a^2 - b^2 < 0的解集是()。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
最新人教版七年级数学上册第一章测试题及答案

最新人教版七年级数学上册第一章测试题及答案人教版七年级数学上册第一章测试题及答案班级:___________ 姓名:___________ 成绩:_______ 一.选择题(每小题3分,共24分)1.-2的相反数是()。
A。
2 B。
-2 C。
0 D。
12.│3.14 - π│的值是()。
A。
B。
3.14 - π C。
π - 3.14 D。
3.14 + π3.一个数和它的倒数相等,则这个数是()。
A。
1 B。
-1 C。
±1 D。
±1和4.如果|a| = -a,下列成立的是()。
A。
a。
0 B。
a < 0 C。
a ≥ 0 D。
a ≤ 05.用四舍五入法按要求对0.分别取近似值,其中错误的是()。
A。
0.1(精确到0.1) B。
0.05(精确到百分位) C。
0.05(保留两个有效数字) D。
0.0502(精确到0.0001)6.计算1110(-2)+(-2)的值是()。
A。
-2 B。
(-2) C。
0 D。
-227.有理数a、b在数轴上的对应的位置如图所示:a: -1 b: 1则()。
A。
a + b。
0 C。
a - b = 0 D。
a - b。
08.下列各式中正确的是()。
A。
2 = (-2) B。
3 = (-3) C。
-2 = | -2 | D。
-3 = |3|二.填空(每题3分,共24分)9.在数+8.3、-4、-0.8、-1、53/2233、-34、-| -24 |中,________是正数,________不是整数。
10.+2与-2是一对相反数,请赋予它实际的意义:_________。
11.-5的倒数的绝对值是___________。
12.-(-2) + 4 = ________。
13.用科学记数法表示13 040 000,应记作_______________。
14.若a、b互为相反数,c、d互为倒数,则(a+b)3.(cd)4=__________。
15.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
七年级上册数学第一章《分数》测试题(含答案)

七年级上册数学第一章《分数》测试题(含答案)一、选择题1. 下面哪个数是一个真分数?A. 0B. -1C. 1D. 2/3- 答案:D2. 列出下面数中最大的一个数?A. 1/2B. 3/4C. 2/3D. 4/5- 答案:D3. 下面哪一个数不是奇数?A. 1/5B. 3/2C. 5/7D. 2/3- 答案:B二、填空题1. 把1/3化成百分数是___%。
- 答案:33.33%2. 小明买了1.5kg的葡萄,他吃了2/5,还剩下___kg。
- 答案:0.9kg3. 一块蛋糕被小明吃了3/4,剩下___。
- 答案:1/4三、解答题1. 小华用一杯水倒了1/5到另一杯中,还剩下3/5。
原来的水有多少?- 答案:原来的水为4/5。
2. 小明家250kg的柿子,卖了2/5,小明卖掉了___kg。
- 答案:100kg3. 汤姆每年能存储收入的1/9,假设他每年存储10,000元,那么10年后他存储多少钱?- 答案:10年后存储accumulation *年的,所以是100,000元。
四、应用题1. 苏珊有102个玻璃珠子,她用4/17个玻璃珠子做了一条项链,还剩下多少个玻璃珠子没有用?- 答案:还剩下88个玻璃珠子。
2. 一束花由7朵玫瑰花和12朵百合花组成,其中3朵玫瑰花舍不得摘,那么一束花舍不得摘的有___朵。
- 答案:一束花舍不得摘的有12朵。
3. 一辆车在1小时内行驶了45km,这是它全程的1/4,那么这辆车全程行驶了多少千米?- 答案:这辆车全程行驶了180km。
初中数学七年级上册第一章:有理数测试题(含答案)

《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三一文库()/初中一年级
〔七年级上册数学第一章测试题及答案
[1]〕
以下是初一为大家提供的《七年级上册数学第一章测试题及答案》,供大家参考!
:
第一章第一阶段复习(1.1-1.2.1)
一、双基回顾
1、正数、负数及0的意义
由于生产和生活的需要产生了数——正数、负数和0. (1)大于的数叫做正数,正数前面的“+”号通常省略不写.
(2)在正数前面加上的数叫做负数.
(3)0既不是,也不是;0除表示“没有”外,还可表示,如海平面的海拔高度为0.
注意:正数和负数都是由符号和绝对值组成的.
〔1〕已知数-7,2.1,0,-1/3,13中,正数有;负数有;不是负数的数是;不是正数的数是.
注意:不是负数的数叫非负数;不是正数的数叫非正数.
2、用正负数表示具有相反意义的量
正负数用来表示具有相反意义的量,如+2元表示股票上升2元,-3元表示 .
在一个数的前面加上“-”号,所得的数表示的意义与原数表示的意义 .
〔2〕下列说法中错误的是.
①零上6℃的相反意义只有零下6℃;②收入和支出是一对相反意义的量;③运出5吨与收入5元是一对具有相反意义的量.
相反意义的量包含两个要素:一是它们的意义,二是它们都具有,而且必须是 .
〔3〕如果零上5℃记作+5℃,那么零下5℃记作()
A、-5
B、-10
C、-10℃
D、-5℃
3、有理数及其相关概念
(1)统称为整数;
(2)统称为分数;
(3)统称为有理数.
注意:有限小数和无限循环小数都可以化为分数.
4、有理数的分类
(1)按定义分:(2)按性质分:
注意:分类要按同一个标准,做到不重复不遗漏.
二、例题导引
例1 下列语句:①所有整数都是正数;②所有正数都是整数;③小学学过的数都是正数;④分数是有理数;⑤在有理数中除了负数就是正数.其中正确的语句的个数是()
A、0个
B、1个
C、3个
D、4个
例2 把下列各数填入相应的大括号中:7,-9.25,-9/10,-301,
4/27,-3.5,0,2,11/2,-7,1.25,-7/3,-3,-3/4.
正数{…}
负数{…}
负整数{…}
正分数{…}
非负整数{…}
非正分数{…}
例3 某校对七年级男生进行俯卧撑测试,有8名男生的成绩如下表所示:
学生编号 1 2 3 4 5 6 7 8
成绩(个) 7 8 5 2 3 7 4 6
请规定一个有意义的量为正,并用正、负数重新列表表示这8名同学的成绩.
三、练习提高
夯实基础
1、若存款为正,某储蓄所在1小时内接待了4笔业务:存款2000元,取款1200元,存款400元
元,取款800元,用正数、负数分别表示为
.
2、下列说法:①零的意义仅仅是表示没有;②0是最小的正整数;③0既不是正数,也不是负数;④0是偶数,也是自
然数.其中正确的是()
A、①③④
B、①②③④
C、③④
D、②④
3、下列各组量中,具有相反意义的量是()
A、起重机上升5米与右移3米
B、向前走与向后走
C、收入玉米40公斤与借走玉米40公斤
D、存入3万元与取出2万元
4、如果节约16度电记作+16,那么浪费6度电记作
度.
5、钟表上的指针顺时针旋转30度记作+30度,则-20度表示的意义是
.
6、如果水位下降3米记作-3米,那么水位上升4米记作()
A、1米
B、7米
C、+4米
D、-7米
7、如果-4米表示物体向西运行4米,那么+2米表
示,物体原地不动记为.
8、既是负数,又是整数的数是( )
A、0分
B、1分
C、-2分
D、3.5分
9、下列说法中错误的是()
A、正整数一定是自然数
B、自然数一定是正整数
C、0既是整数,也是有理数
D、有限小数也是分数
10、某食品包装上标有“净含量385±5克”,这袋食品的合
格率含量范围是克至克.
11、向西走-100米,可以说成( )
A、向西走100米
B、向东走100米
C、向西走200米
D、向东走200米
12、-7所在的数集有(写出三个数集的名称).
13、按某种规律在横线上填上适当的数:-23,-18,-13,.
14、把下列各数填到相应的大括号内:
-4,5,,- ,0,-21 , ,-0.03003.
负整数{…}
分数{…}
非负数{…}
非正分数{…}
15、学校对初一男生进行立定跳远测试,以能跳1.7m及以上为达标,超过1.7m的厘米数用正数表示,不足l.7m的厘米数用负数表示.
第一组10名男生成绩如下(单位cm):
+2 -4 0 +5 +8 -7 0 +2 +10 -3
(1)跳得最远的距离和最近的距离分别是多少?
(2)第一组有几名学生达标?达标率是多少?
能力提高
16、一潜水艇所在高度是-80米,它下潜10米的高度记为.
17、小明比小刚的身高高-5㎝的意义
是.
18、下列说法中正确的是()
A、有最小的自然数,也有最小的整数
B、没有最小的正数,但有最小的正整数
C、没有最小的负数,但有的负数
D、0是有理数中最小的数.
19、有公共部分的两个数集是()
A、正整数集合与负整数集合
B、整数集合与分数集合
C、负数集合与整数集合
D、负分数集合与正分数集合
20、某班数学平均分为80分,80分以上如85分记作+5分,
某同学的数学成绩为78分,应记作( )
A、+2分
B、-7分
C、-2分
D、+7分
21、巴黎与北京的时差为-7时(正数表示同一时刻比北京时间早的小时数)如果北京时间是7月2日14:00,那么巴黎的时间是()
A、7月2日21时
B、7月2日17时
C、7月2日5时
D、7月2日7时
22、按某种规律在横线上填上适当的数:1,-4,9,-16,
25,
,.
23、将下列有理数填在对应的圈中:
-0.3,0,-100,3.7,99.9,-15/2,10,,2/3.
24、如果课桌的高度比标准高度高2㎜记作+2㎜,那么比标准高度低3㎜记作什么?现有5张课桌,量得它们的尺寸与标准高度比较分别是+1㎜,-1㎝,0㎜,+3㎜和-1.5㎜,若规定课桌的高度比标准的高度不能超过2㎜,最低不能低于2㎜才算合格,那么上述5张课
桌有几张合格?
探索创新
25、某种商品的标准价格是400元,但随着季节的变化,商品的价格可浮动±5%.
(1)±5%的含义分别是什么?
(2)请你算出商品的价和;
(3)某商家将该商品的零售价格定在450元,受到物价部门的处罚,请分析处罚原因.。