七年级上册数学第一章知识点归纳

合集下载

(完整版)人教版七年级数学上册一至四章知识点归纳

(完整版)人教版七年级数学上册一至四章知识点归纳

第一章有理数(一)正数和负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点. 一、正数与负.. 1.在实际中表示意义相反的.上升5米记为5米.-8米则表示下降8米.. 2.正数:大于0的数.. 3.负数:在正数的前面加上“-〞.. 4.0的含义.. ①既不是正数也不是负数.. ②0在计数时表示没有,比如0元.. ③0表示某种量的基准,比如0℃表示温度的基.. 5.有理数的分.. 分数概.. (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数.. (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001.... “非〞的概.. 非负数:正数和.非正分数:负分.. 非正数:负数和.非负分数:正分.. 非负整数:正整数和.. 非正整数:负整数和..二、数.. 1.三要素:原点、正方向、单位长度。

通常原点用“O〞表示,向右的方向为正方向,单位长度为1.. 2.如何画数.. ①画直线(一般画成水平的),定原点,标出原点“O〞.. ②取原点向右的方向为正方向,并标出箭头.. ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点.. 3.数轴上的点与有理数.. (1)数轴上的点与有理数一一对.(2)左边的数右边的.. 三、相反.. ①只有符号不同的两个数,叫做互为相反数。

0的相反数是0.. ②a的相反数-.. ③a与b互为相反数:a+b=.. ④a-b的相反数是:-a+b或b-.. ⑤a+b的相反数是:-a-.. ⑥求一个数的相反数方法:在这个数的前面加“-〞号.. ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等..四、绝对.. 1.几何意义:从数轴上表示a的点到原点的距离即为|a.. 2.①一个正数的绝对值等于它本身.当a是正数时,|a|=a.. ②一个负数的绝对值等于它的相反数.当a是负数时,|a|=-a.. ③0的绝对值等于0.当a=0时,|a|=0.. 3.互为相反数的两个数的绝对值相等.. 五、有理数的大小比.. 1.正数0负数.. 2.两个负数比.. ①右边的点表示的数比左边的点表示的数大.. ②绝对值大的反而小.. 六、有理数的运.. 1.有理数的加法.. 加法一般步骤.. ①确定符号:同号取相同的符号.. 异号取绝对值大的加数的符号.. ②确定绝对值:同号将绝对值相加.. 异号用较大的绝对值减去较小的绝对值.. 互为相反数的两个数相加得0。

七年级上册数学第一章知识点归纳

七年级上册数学第一章知识点归纳

第一章:有理数★重点★有理数的有关概念及性质,有理数的运算一、重要概念1、数的分类及概念:学会区分正数、负数、整数、分数正整数(>0)自然数整数0负整数(<0)有理数正分数分数负分数例:有理数是()和()的统称。

【正数】大于0的数【负数】小于0的数【0 】既不是正数,也不是负数如果一个问题中出现相反意义的量,我们就可以用正数和负数表示。

例:记海平面为0米,那么-375米表示;+375米表示。

2、【数轴】用一条直线上的点表示数,这条直线就叫做数轴。

一般地,正方向向右时,数轴左边的数小于右边的数。

【数轴的三要素】原点、正方向/负方向、单位长度【数轴的作用】直观地比较实数的大小;明确体现绝对值意义;建立点与实数的一一对应关系。

负数<0<正数;两个负数绝对值大的数反而小一般地,设a 为一个正数,则数轴上表示a 的点在原点右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离也是a 个单位长度。

3、【相反数】①定义:只有符号不同的两个数叫做互为相反数;0的相反数是0; ②性质: a ≠0时,a ≠-aa 与-a 在数轴上的位置(关于原点对称,即原点两侧到原点距离相等的点)和为0,商为-1。

例:想一想,设a 为一个数,-a 一定是负数吗?4、【绝对值】①定义(两种):代数定义:几何定义:数a 所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉它一个正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5、【非负数】正数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

6、【乘方】求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,a(a≥-a(a<0│a │=在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作:a的n次幂。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a>⇔= ; 0a 1a a <⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教版七年级数学上册知识点总结1-4章

人教版七年级数学上册知识点总结1-4章

第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

(完整版)人教版七年级数学上册知识点归纳

(完整版)人教版七年级数学上册知识点归纳

第一章 有理数1.1 正数和负数(1 )正数:大于 0 的数;负数:小于 0 的数; (2 )0 既不是正数,也不是负数; (3) 在同一个问题中,分别用正数和负数表示的量具有相反的意义; (4)-a 不一定是负数, +a 也不一定是正数;(5 )自然数: 0 和正整数统称为自然数; (6) a>0 a 是正数;a >0 a 是正数或0 a 是非负数;a < 0 a 是负数; a < 0 a 是负数或0 a 是非正数.1.2 有理数(1) 正整数、 0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数; (2)正整数、 0、负整数统称为整数;( 3 )有理数的分类:正有理数正整数 正分数整数正整数 零 有理数 零有理数负整数 负有理数负整数 分数正分数负分数负分(4) 数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5) 一般地,当 a 是正数时,则数轴上表示数 a 的点在原点的右边,距离原点 a 个单位长度;表示数- a 的 点在原点的左边,距离原点 a 个单位长度;(6) 两点关于原点对称:一般地,设 a 是正数,则在数轴上与原点的距离为 a 的点有两个,它们分别在原点 的左右,表示- a 和 a ,我们称这两个点关于原点对称; (7) 相反数:只有符号不同的两个数称为互为相反数;(8) 一般地, a 的相反数是- a ;特别地, 0 的相反数是 0; (9) 相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a、b互为相反数a+b=0 ;(即相反数之和为0)a,b ,(11)a、b互为相反数—1或一1;(即相反数之商为—1)b a(12)a、b互为相反数|a|=|b|;(即相反数的绝对值相等)(13) 绝对值:一般地,在数轴上表示数a的点到原点的距离叫做a的绝对值;(|a| X))(14) 一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;a(a0)(15)绝对值可表示为: a 0(a0)1 1a(a0)a(16) 1 a 0 ;a 上a1 a 0;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数大于的数叫做正数。

在正数前面加上负号“-”的数叫做负数。

数既不是正数,也不是负数,是正数与负数的分界。

在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3、数轴【重点】用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:1.在直线上任取一个点表示数,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…数轴的三要素:原点、正方向、单位长度。

画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4、相反数只有符号不同的两个数叫做互为相反数。

a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

3、相反数的概念a和-a互为相反数。

一个数的相反数是指,正数的相反数是负数,负数的相反数是正数。

每个数都有它自己的相反数。

4、相反数的运用在任意一个数前面添加“-”号,这个新的数就表示原数的相反数。

如果两个数a和b互为相反数,那么a+b=0;反之,如果a+b=0,则a和b互为相反数。

七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数,例如1,0, - 5等;分数包括有限小数和无限循环小数,如0.5=(1)/(2),0.3̇=(1)/(3)等。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 按性质符号分类:有理数可分为正有理数(正整数和正分数)、0、负有理数(负整数和负分数)。

3. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可能表示无理数)。

- 利用数轴可以比较有理数的大小,数轴上右边的数总比左边的数大。

4. 相反数。

- 只有符号不同的两个数叫做互为相反数。

0的相反数是0。

- 若a与b互为相反数,则a + b=0;反之,若a + b = 0,则a与b互为相反数。

- 在数轴上,表示互为相反数的两个点位于原点两侧,且到原点的距离相等。

5. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a > 0) 0(a = 0) - a(a < 0)- 两个负数比较大小,绝对值大的反而小。

二、有理数的运算。

1. 有理数的加法。

- 法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如3+5 = 8,(-3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

如5+(-3)=+(5 - 3)=2,3+(-5)=-(5 - 3)=-2。

- 一个数同0相加,仍得这个数。

- 运算律:- 加法交换律:a + b=b + a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学第一章
知识点归纳
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
第一章:有理数★重点★有理数的有关概念及性质,有理数的运算
一、重要概念
1、数的分类及概念:学会区分正数、负数、整数、分数
正整数(>0)
自然数
整数 0
负整数(<0)
有理数
正分数
分数
负分数
例:有理数是()和()的统称。

【正数】大于0的数
【负数】小于0的数
【 0 】既不是正数,也不是负数
如果一个问题中出现相反意义的量,我们就可以用正数和负数表示。

例:记海平面为0米,那么-375米表示;+375米表示。

2、【数轴】用一条直线上的点表示数,这条直线就叫做数轴。

一般地,正方向向右时,数轴左边的数小于右边的数。

【数轴的三要素】原点、正方向/负方向、单位长度
【数轴的作用】直观地比较实数的大小;明确体现绝对值意义;建立点与实数的一一对应关系。

负数<0<正数;两个负数绝对值大的数反而小
一般地,设a为一个正数,则数轴上表示a的点在原点右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离也是a个单位长度。

3、【相反数】①定义:只有符号不同的两个数叫做互为相反数;0的相反数是0;
②性质: a≠0时,a≠-a
a 与-a 在数轴上的位置(关于原点对称,即原点两侧到原点距离相等的点)
和为0,商为-1。

例:想一想,设a 为一个数,-a 一定是负数
吗?
4、【绝对值】①定义(两种):代数定义:几何定
义:数a 所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;
③数a 的绝对值只有一个;
④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉它
一个正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5、【非负数】正数与零的统称。

(表为:x ≥0) 常见的非负数
有: 性质:若干个非负数的和为0,则每个非负担数均为0。

6、【乘方】求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,
在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作:a 的n 次幂。

负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何次幂都是0.
7、【科学记法】把一个大于10的数表示成a×10n 的形式(其中a 大于或等于1且小于10,n 是正整数)
8、【近似数】接近准确数,但与准确数之间有差别,(近似数与准确数的接近程度,可以用精确度表示。


注意如何取近似数,看要精确位的后面一位,比如精确到十分位就要看百分位上的数。

a(a≥0-a(a<0) │a │=
二、有理数的运算
1、有理数加、减、乘、除、幂及其混合运算的运算法则
(1)有理数加法法则:
➢同号两数相加,取________的符号,并把__________相加;
➢绝对值不相等的异号两数相加,取______________的符号,并用_____________。

互为相反数的两个数相加得____。

➢一个数同0相加,__________________。

(2)有理数减法法则:减去一个数,等于加上____________。

(3)有理数乘法法则:
➢两数相乘,同号_____ ,异号_____,并把_________。

任何数同0相乘,都得________。

➢几个不等于0的数相乘,积的符号由_________决定。

当___________,积为负,当__________,积为正。

➢几个数相乘,有一个因数为0,积就为_________.
(4)有理数除法法则:
➢除以一个数,等于不能作除数。

➢两数相除,同号_____,异号_____,并把_________。

0除以任何一个________________的数,都得0
(5)幂的运算法则:正数的任何次幂都是___________;负数的__________是负数,负数的__________是正数
(6)有理数混合运算法则:
先算________,再算__________,最后算___________。

如果有括号,就_______________________________。

2.运算顺序:实数的运算顺序:在同一个算式里,先,然后,最后.
有括号时,先算、、,再算括号外。

同级运算,按进行。

3.五大运算律
(1)加法交换律:____________________
(2)加法结合律:____________________
(3)乘法交换律:____________________
(4)乘法结合律:____________________
(5)乘法分配律:_________________________。

相关文档
最新文档