圆锥曲线解答题的策略
高中数学圆锥曲线定点问题解题策略

高中数学圆锥曲线定点问题解题策略1. 确定焦点和直线方程圆锥曲线与定点有关的问题,通常涉及到焦点和直线的方程。
因此,首先需要根据题目所给出的条件,确定该圆锥曲线的焦点和一条经过该焦点的直线方程。
2. 找出几何意义在确定了焦点和直线方程之后,需要进一步分析该问题的几何意义。
通常,圆锥曲线上的点可以表示为动点,而该点所在的直线可以表示为参考直线。
通过分析动点与参考直线的关系,可以找出该点的几何意义。
例如,对于椭圆而言,焦点与直线的位置关系可以说明该椭圆的形状和大小。
如果焦点距离直线较远,那么椭圆的短轴较小、长轴较大;反之,如果焦点距离直线较近,那么椭圆的短轴较大、长轴较小。
因此,通过分析焦点和直线的位置关系,可以找出椭圆的形状和大小。
3. 建立坐标系为了方便计算,需要建立与问题相关的坐标系。
坐标系的选取应该尽量考虑问题的对称性和直观性。
例如,对于双曲线而言,坐标系应该选择在双曲线的对称轴上。
在坐标系中,焦点位于对称轴上的原点处,而双曲线的两个分支分别位于对称轴的两侧。
通过建立合适的坐标系,可以简化问题的分析和计算。
4. 利用焦点的性质圆锥曲线的焦点具有很多特殊的性质。
例如,对于椭圆而言,焦点到椭圆上任意一点的距离和为常数。
而对于双曲线而言,焦点到双曲线上任意一点的距离差为常数。
利用这些性质,可以建立方程式,求出圆锥曲线上的点的坐标。
例如,对于椭圆而言,根据焦点到椭圆上任意一点的距离和为常数,可以列出以下方程:(sqrt((x-a)^2+b^2)+sqrt((x+a)^2+b^2))^2 = c^2其中,a、b、c分别表示椭圆的焦点到对称轴的距离、短半轴长度和长半轴长度。
通过解方程,可以求出椭圆上任意一点的坐标。
5. 求解定点的坐标最后,根据所求的动点的几何意义,可以求出定点的坐标。
例如,对于抛物线而言,抛物线上到焦点距离的平方与到直线的距离的平方成正比,即:y = 2px(x-p)^2 + y^2 = 2py其中,p表示抛物线的焦点到对称轴的距离。
圆锥曲线问题中的改“斜”归正策略

圆锥曲线问题中的改“斜”归正策略
在圆锥曲线问题中,当我们遇到斜的曲线时,我们常常需要将其转化为归正的形式,
以便于进行进一步的计算和分析。
这个过程被称为改“斜”归正策略。
改“斜”归正策略
是圆锥曲线问题中的重要方法之一,在解题过程中需要灵活运用。
改“斜”归正策略的基本思想是利用合适的坐标旋转或平移操作,将斜的曲线变为水
平或垂直的曲线,从而简化问题的求解。
在具体操作中,我们可以采用以下几种常见的改“斜”归正策略。
1. 坐标旋转法
坐标旋转法是将斜的曲线通过坐标系的旋转变换,使得曲线方程变为坐标轴方程。
具
体操作步骤如下:
1) 找到曲线方程中的旋转角度,设为α;
2) 将坐标系逆时针旋转α角度,使得曲线变为水平或垂直的曲线;
3) 利用新的坐标轴方程进行进一步的计算和分析。
改“斜”归正策略在圆锥曲线问题中具有广泛的应用。
通过将斜的曲线变为水平或垂
直的曲线,可以简化问题的求解过程,使得计算更加方便和准确。
需要注意的是,在应用
改“斜”归正策略时,需要遵循一定的变换规则和步骤,以确保转化后的曲线与原曲线相
对应,且变换过程中不引入新的误差。
改“斜”归正策略是圆锥曲线问题中的重要方法,具有很强的实用性和灵活性。
通过
合理运用改“斜”归正策略,我们可以将斜的曲线转化为水平或垂直的曲线,从而更好地
进行问题的求解和分析。
在实际应用中,我们需要根据具体问题的特点选择合适的改“斜”归正策略,并结合数学工具和方法进行求解,以获得正确的结果。
圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧一、圆锥曲线的基本性质圆锥曲线包括椭圆、双曲线和抛物线,它们在平面几何中占有重要地位。
这些曲线具有丰富的几何性质,如对称性、焦点和准线等。
了解和掌握这些性质是解决定值问题的关键。
二、定值问题定义与类型定值问题是指在圆锥曲线问题中,某些量在运动或变化过程中始终保持不变。
定值问题通常涉及到一些特定的性质或条件,需要运用推理、证明和计算来确定这些量。
这类问题常出现在各类数学竞赛和自主招生考试中。
三、坐标系的选取与转换解决圆锥曲线定值问题时,选择合适的坐标系至关重要。
坐标系的选取应便于表达和计算,有时需要将复杂的几何关系转化为代数方程。
此外,坐标转换也是解题的重要技巧,通过坐标变换可将问题化简。
四、参数方程的应用参数方程是解决定值问题的有力工具。
通过引入参数,可以将复杂的几何关系转化为代数方程,从而简化计算过程。
参数的选择应满足题目的特定条件,如焦点位置、对称轴等。
五、代数表达式的简化技巧在解决圆锥曲线定值问题时,需要处理大量的代数表达式。
掌握一些简化技巧,如合并同类项、提取公因式、化简分式等,可以大大提高解题效率。
此外,利用代数恒等式也是简化表达式的有效方法。
六、几何角度与线段长度关系在解决圆锥曲线定值问题时,需要关注几何角度和线段长度之间的关系。
这些关系可以通过几何定理和三角函数进行推导,进而找出定值。
熟练掌握基本几何知识是解决这类问题的关键。
七、运用向量和导数的物理背景向量和导数作为数学中的重要概念,具有丰富的物理背景。
在解决圆锥曲线定值问题时,可以利用向量的数量积、向量积等性质以及导数的几何意义,来揭示某些量之间的内在联系,进而找出定值。
专题13 圆锥曲线压轴解答题常考套路归类(精讲精练)(原卷版)

专题13 圆锥曲线压轴解答题常考套路归类【命题规律】解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题; (3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大核心考点展开.【核心考点目录】核心考点一:轨迹方程核心考点二:向量搭桥进行翻译 核心考点三:弦长、面积背景的条件翻译 核心考点四:斜率之和差商积问题 核心考点五:弦长、面积范围与最值问题 核心考点六:定值问题 核心考点七:定点问题 核心考点八:三点共线问题 核心考点九:中点弦与对称问题 核心考点十:四点共圆问题 核心考点十一:切线问题 核心考点十二:定比点差法 核心考点十三:齐次化 核心考点十四:极点极线问题【真题回归】1.(2022·浙江·统考高考真题)如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求||CD 的最小值.2.(2022·全国·统考高考真题)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.3.(2022·全国·统考高考真题)设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.4.(2022·全国·统考高考真题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.5.(2022·全国·统考高考真题)已知点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【方法技巧与总结】1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.【核心考点】核心考点一:轨迹方程 【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为y =,且一个焦点到渐(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程.例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x -=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题. (1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).核心考点二:向量搭桥进行翻译 【规律方法】把几何语言转化翻译为向量语言,然后用向量知识来解决. 【典型例题】例4.(2023·广西南宁·南宁二中校考一模)已知椭圆2222:1(0)x y C a b a b +=>>,倾斜角为30︒的直线过椭圆的左焦点1F 和上顶点B ,且11ABF S =△A 为右顶点). (1)求椭圆C 的标准方程;(2)若过点(0,)M m 的直线l 与椭圆C 交于不同的两点P ,Q ,且2PM MQ =,求实数m 的取值范围.例5.(2023·全国·高三专题练习)已知椭圆C :22221x y a b+=(0a b >>)的离心率e =(),0A a 、()0,B b(1)求椭圆C 的标准方程;(2)若经过点(且斜率为k 的直线l 与椭圆C 有两个不同的交点P 和Q ,则是否存在常数k ,使得OP OQ +与AB 共线?如果存在,求k 的值;如果不存在,请说明理由.例6.(2023·全国·高三专题练习)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(),(A A A x y 第一象限),曲线Γ为1Γ、2Γ上取满足A x x >的部分.(1)若A x b 的值;(2)当b =2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且18PF =,求12F PF ∠;(3)过点20,22b D ⎛⎫+ ⎪⎝⎭斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ⋅,并求OM ON ⋅的取值范围.例7.(2022·全国·高三专题练习)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,且128F F =,()4,6P 是C 上一点. (1)求C 的方程;(2)过点()1,1M 的直线与C 交于两点A ,B ,与直线:312l y x =-交于点N .设NA AM λ=,NB BM μ=,求证:λμ+为定值.核心考点三:弦长、面积背景的条件翻译 【规律方法】首先仍是将题目中的基本信息进行代数化,坐标化,遵循直线与圆锥曲线题目通解中的套路,即设点设线、直由联立、看判别式、韦达定理.将有关弦长、面积背景的问题进行条件翻译时,一般是应用弦长公式、点到直线的距离公式及面积公式(在圆中要用半径、半弦、弦心距组成的直角三角形求弦长)将有关弦长、面积的条件翻译为:(1)关于某个参数的函数,根据要求求出最值;(2)关于某个参数的方程,根据要求得出参数的值或两参数间的关系.【典型例题】例8.(2022春·内蒙古呼和浩特·高三呼市二中阶段练习)已知椭圆222:1(0)8x y C a a +=>的左、右焦点分别为1F ,2F ,P 为C 上一点,且当1PF x ⊥轴时,2103PF =. (1)求C 的方程;(2)设C 在点P 处的切线交x 轴于点Q ,证明:1221PF QF PF QF ⋅=⋅.例9.(2022春·江苏徐州·高三期末)已知椭圆C :()222210x y a b a b +=>>,直线l 过C 的焦点且垂直于x 轴,直线l 被C (1)求C 的方程;(2)若C 与y 轴的正半轴相交于点P ,点A 在x 轴的负半轴上,点B 在C 上,PA PB ⊥,60PAB ∠=︒,求PAB 的面积.例10.(2022春·浙江金华·高三期末)已知双曲线22:143x y C -=上一点()4,3P ,直线()0y x b b =-+<交C于A ,B 点.(1)证明:直线PA 与直线PB 的斜率之和为定值; (2)若PAB 的外接圆经过原点O ,求PAB 的面积.核心考点四:斜率之和差商积问题 【规律方法】在面对有关等角、倍角、共线、垂直等几何特征时,可设法将条件翻译成关于斜率的关系式,然后将斜率公式代入其中,得出参数间的关系式,再根据要求做进一步的推导判断.【典型例题】例11.(2022·浙江·模拟预测)已知曲线C 上的任意一点到点)F和直线x =. (1)求曲线C 的方程;(2)记曲线的左顶点为A ,过()4,0B 的直线l 与曲线C 交于P ,Q 两点,P ,Q 均在y 轴右侧,直线AP ,AQ 与y 轴分别交于M ,N 两点.若直线MB ,NB 的斜率分别为1k ,2k ,判断12k k 是否为定值.若是,求出该定值;若不是,请说明理由.例12.(2022春·云南昆明·高三昆明市第三中学校考期末)如图,已知抛物线C :24y x =,过焦点F 斜率大于零的直线l 交抛物线于A 、B 两点,且与其准线交于点D .(1)若线段AB 的长为5,求直线l 的方程;(2)在C 上是否存在点M ,使得对任意直线l ,直线,,MA MD MB 的斜率始终成等差数列,若存在求点M 的坐标;若不存在,请说明理由.例13.(2022·安徽·校联考二模)已知椭圆2222:1(0)x y C a b a b+=>>经过点12⎫⎪⎭,其右焦点为)F.(1)求椭圆C 的标准方程;(2)椭圆C 的右顶点为A ,若点,P Q 在椭圆C 上,且满足直线AP 与AQ 的斜率之积为120,求APQ △面积的最大值.例14.(2022春·云南·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的离心率为2,H ⎛ ⎝⎭是C 上一点. (1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①12k k 为定值;②点M 在定直线上.核心考点五:弦长、面积范围与最值问题 【规律方法】弦长和面积的最值问题首先需要将弦长和面积表达出来,弦长可用弦长公式求出;面积的表达以直线与椭圆相交得到的OAB 为例,总结一下高考中常见的三角形面积公式.对于OAB ,有以下三种常见的表达式:①1||||2OABSAB OH =⋅(随时随地使用,但是相对比较繁琐,想想弦长公式和点到直线距离)②121||2OABSOM y y =⋅-(横截距已知的条件下使用) ③121||2OABS ON x x =⋅-(纵截距已知的条件下使用) 【典型例题】例15.(2021秋·上海普陀·高三曹杨二中阶段练习)已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C .(1)已知1l 经过椭圆的左焦点,求1l 的方程; (2)证明:直线AC 与直线BD 交于点(0,1)Q ; (3)求线段AC 长的取值范围.例16.(2022·四川达州·统考一模)平面直角坐标系 xOy 中, 已知椭圆22:14x C y +=, 椭圆2:16x E +214y =.设点P 为椭圆C 上任意一点, 过点P 的直线y kx m =+交椭圆E 于A B ,两点, 射线PO 交椭圆E 于点Q .(1)求 OQ OP的值;(2)求 ABQ 面积的最大值.例17.(2022春·吉林通化·高三梅河口市第五中学校考期末)已知椭圆2222:1(0)x y C a b a b +=>>短轴的两个顶点与右焦点的连线构成等边三角形,直线3460x y ++=与圆222()x y b a +-=相切.(1)求椭圆C 的方程;(2)过点)M作两条互相垂直的直线12,l l ,与椭圆C 分别交于,,,A B C D 四点,如图,求四边形ACBD 的面积的取值范围.核心考点六:定值问题 【规律方法】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 【典型例题】例18.(2022春·广东肇庆·高三肇庆市第一中学校考阶段练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率是2,直线l 过双曲线C 的右焦点F ,且与双曲线C 的右支交于,A B 两点.当直线l 垂直于x 轴时,6AB =.(1)求双曲线C 的标准方程.(2)记双曲线C 的左、右顶点分别是,D E ,直线AD 与BE 交于点P ,试问点P 是否恒在某直线上?若是,求出该直线方程;若不是,请说明理由.例19.(2022春·湖南株洲·高三校联考阶段练习)已知椭圆C :()222210x y a b a b +=>>的右焦点为F ,上顶点为1B ,下顶点为2B ,12B FB △为等腰直角三角形,且直线1FB 与圆221x y +=相切. (1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q .证明:点Q 在一条平行于x 轴的直线上.例20.(2022春·北京丰台·高三北京丰台二中校考阶段练习)已知椭圆2222:1(0)x y E a b a b+=>>过点为()()2,0,0,1A B -.(1)求椭圆E 的方程及其焦距;(2)过点()2,1P -的直线与椭圆E 交于不同的两点,C D ,直线,BC BD 分别与x 轴交于点,M N ,求AM AN的值.核心考点七:定点问题 【规律方法】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明. 【典型例题】例21.(2023·河南郑州·高三阶段练习)已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E 的坐标为()3-. (1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.例22.(2023春·甘肃兰州·高三兰化一中校考阶段练习)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,右顶点为A ,上顶点为B ,右焦点为F ,斜率为2的直线经过点A ,且点F (1)求椭圆C 的标准方程;(2)若直线l :y kx m =+与椭圆C 交于E 、F 两点(E 、F 两点与A 、B 两点不重合),且以EF 为直径的圆过椭圆C 的右顶点,证明:直线l 过定点,并求出该定点坐标.例23.(2023·江苏苏州·苏州中学校考模拟预测)已知动圆M 与圆(22:4A x y +=及圆(22:4B x y +=中的一个外切,另一个内切.(1)求动圆圆心M 的轨迹C 的方程;(2)若直线l 与轨迹C 相交于P 、Q 两点,以线段PQ 为直径的圆经过轨迹C 与x 轴正半轴的交点D ,证明直线l 经过一个不在轨迹C 上的定点,并求出该定点的坐标.核心考点八:三点共线问题 【规律方法】证明共线的方法:(1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;(2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;(3)向量法:利用向量共线定理证明三点共线;(4)直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;(5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.(6)面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典型例题】例24.(2023·全国·高三专题练习)已知2222:1(0,0)x y E a b a b -=>>的右焦点为2F ,点2F 到E 的一条渐近线2F 的直线与E 相交于,A B 两点.当AB x ⊥轴时,||AB = (1)求E 的方程.(2)若3,02M ⎛⎫⎪⎝⎭,N 是直线1x =上一点,当,,B M N 三点共线时,判断直线AN 的斜率是否为定值.若是定值,求出该定值;若不是定值,说明理由.例25.(2023·全国·高三专题练习)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,且离心(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =例26.(2023·全国·高三专题练习)已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C O 为坐标原点.(1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线.核心考点九:中点弦与对称问题 【规律方法】对于中点弦问题常用点差法解决. 【典型例题】例27.(2023·全国·高三专题练习)已知椭圆E :()222210x y a b a b+=>>的离心率为12,点A ,B 分别为椭圆E 的左右顶点,点C 在E 上,且ABC 面积的最大值为 (1)求椭圆E 的方程;(2)设F 为E 的左焦点,点D 在直线x =﹣4上,过F 作DF 的垂线交椭圆E 于M ,N 两点.证明:直线OD 平分线段MN .例28.(2023春·江苏南京·高三统考阶段练习)已知O 为坐标原点,点⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上,直线l :=+y x m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为12-.(1)求C 的方程;(2)若=1m ,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.例29.(2023·全国·高三专题练习)已知抛物线C :()220y px p =>的焦点为F ,准线为l ,记准线l 与x 轴的交点为A ,过A 作直线交抛物线C 于()11,M x y ,()22,N x y (21x x >)两点.(1)若122x x p +=,求MF NF +的值;(2)若M 是线段AN 的中点,求直线MN 的方程;(3)若P ,Q 是准线l 上关于x 轴对称的两点,问直线PM 与QN 的交点是否在一条定直线上?请说明理由.核心考点十:四点共圆问题 【规律方法】 证明四点共圆的方法:方法一:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,则可肯定这四点共圆.方法二:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,则可肯定这四点共圆(根据圆的性质一一同弧所对的圆周角相等证).方法三:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其中一个外角等于其内对角时,则可肯定这四点共圆(根据圆的性质一一圆内接四边形的对角和为180︒,并且任何一个外角都等于它的内对角).方法四:证明被证共圆的四点到某一定点的距离都相等,或证明被证四点连成的四边形其中三边中垂线有交点),则可肯定这四点共圆(根据圆的定义:平面内到定点的距离等于定长的点的轨迹为圆).【典型例题】例30.(2022春·山西运城·高三校考阶段练习)已知点(4,4)M 在抛物线2:2x py Γ=上,过动点P 作抛物线的两条切线,切点分别为A 、B ,且直线PA 与直线PB 的斜率之积为2-. (1)证明:直线AB 过定点;(2)过A 、B 分别作抛物线准线的垂线,垂足分别为C 、D ,问:是否存在一点P 使得A 、C 、P 、D 四点共圆?若存在,求所有满足条件的P 点;若不存在,请说明理由.例31.(2022·浙江丽水·高三统考竞赛)如图,已知抛物线24x y =的焦点为F ,直线:l y m =与抛物线交于,D E 两点,过,D E 分别作抛物线的切线12,l l ,12,l l 交于点A .过抛物线上一点M (在l 下方)作切线3l ,交12,l l 于点,B C .(1)当=1m 时,求ABC 面积的最大值; (2)证明A B F C 、、、四点共圆.例32.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,已知()1,1A ,()1,1B -,动点P 满足OP mOA nOB =+,且1mn =.设动点P 形成的轨迹为曲线C .(1)求曲线C 的标准方程;(2)过点()2,2T 的直线l 与曲线C 交于M ,N 两点,试判断是否存在直线l ,使得A ,B ,M ,N 四点共圆.若存在,求出直线l 的方程;若不存在,说明理由.核心考点十一:切线问题 【规律方法】(1)若点()00,P x y 是圆222x y r +=上的点,则过点P 的切线方程为0x x +20y y r =.(2)若点()00,P x y 是圆222x y r +=外的点,由点P 向圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为200x x y y r +=.(3)若点()00,P x y 是椭圆22221x y a b +=上的点,则过点P 的切线方程为00221x x y ya b+=.(4)若点()00,P x y 是椭圆22221x y a b+=外的点,由点P 向椭圆引两条切线,切点分别为A ,B ,则弦AB 所在直线方程为00221x x y ya b+=. 【典型例题】例33.(2023·全国·高三校联考阶段练习)如图,在平面直角坐标系xOy 中,已知椭圆22143x y +=的左、右顶点分别为,A B ,过左焦点1F 的直线与椭圆交于点,P Q (点Q 在点P 的上方).(1)求证:直线,AP AQ 的斜率乘积为定值;(2)过点,P Q 分别作椭圆的切线,设两切线交于点M ,证明:1MF PQ ⊥.例34.(2023·全国·高三专题练习)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点 (1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n +为定值例35.(2023·全国·高三专题练习)已知中心在原点的椭圆1Γ和抛物线2Γ有相同的焦点(1,0),椭圆1Γ的离心率为12,抛物线2Γ的顶点为原点.(1)求椭圆1Γ和抛物线2Γ的方程;(2)设点P 为抛物线2Γ准线上的任意一点,过点P 作抛物线2Γ的两条切线PA ,PB ,其中,A B 为切点.设直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k 为定值.核心考点十二:定比点差法 【典型例题】例36.已知椭圆2222:1x y C a b+=(0a b >>,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k例37.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.例38.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=若2λ=,求μ的值.核心考点十三:齐次化 【典型例题】例39.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.例40.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q(均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.例41.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.核心考点十四:极点极线问题 【典型例题】例42.(2022·全国·高三专题练习)已知椭圆()2222:10x y C a b a b +=>>的离心率为12,短轴长为(1)求椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,若过点()4,0P 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,直线AM 与BN 相交于点Q .证明:点Q 在定直线上.例43.(2022·全国·高三专题练习)已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点.(1)若3CN ND =,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.例44.(2022·全国·高三专题练习)已知椭圆()2222:10,0x y C a b a b +=>>与y 轴的交点,A B (点A 位于点B的上方),F 为左焦点,原点O 到直线FA 2. (1)求椭圆C 的离心率;(2)设2b =,直线4y kx =+与椭圆C 交于不同的两点,M N ,求证:直线BM 与直线AN 的交点G 在定直线上.【新题速递】1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系xOy 中,已知点()1,0F ,直线l :=1x -,P 为平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,分别以PQ ,PF 为直径作圆1C 和圆2C ,且圆1C 和圆2C 交于P ,R 两点,且PQR PFR ∠=∠.(1)求动点P 的轨迹E 的方程;(2)若直线1l :x my a =+交轨迹E 于A ,B 两点,直线2l :1x =与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线2l 两侧,直线1l 与2l 交于点N 且MA BN AN MB ⋅=⋅,求MAB △面积的最大值.2.(2023·北京·高三专题练习)已知椭圆C 中心在原点O 为()0,1F .(1)求椭圆C 的标准方程;(2)过点F 且不与坐标轴垂直的直线l 与椭圆相交于,A B 两点,直线,OA OB 分别与直线2y =相交于,M N 两点,若MON ∠为锐角,求直线l 斜率k 的取值范围.3.(2023·青海海东·统考一模)已知函数()32ln 13x f x x x x =-+-.(1)求曲线()y f x =在1x =处的切线方程;(2)若()y f x =在点A 处的切线为1l ,函数()e e x xg x -=-的图象在点B 处的切线为2l ,12l l ∥,求直线AB 的方程.4.(2023春·重庆·高三统考阶段练习)已知椭圆22122:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,右顶点为A ,上顶点为B ,O 为坐标原点,||2||OA OB =.(1)若12BF F △的面积为1C 的标准方程;(2)如图,过点(1,0)P 作斜率(0)k k >的直线l 交椭圆1C 于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线SN 交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使OM ON OQ +=,记四边形OMQN 的面积为1S ,求21OT OQ S k⋅-的最大值.5.(2023·全国·高三专题练习)已知椭圆C :22221(0)x y a b a b+=>>的右顶点为A ,过左焦点F 的直线1(0)x ty t =-≠交椭圆于M ,N 两点,交y 轴于P 点,PM MF λ=,PN NF μ=,记OMN ,2OMF △,2ONF △(2F 为C 的右焦点)的面积分别为123,,S S S .(1)证明:λμ+为定值;(2)若123S mS S μ=+,42λ-≤≤-,求m 的取值范围.6.(2023·四川成都·统考二模)已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,离心率2e =,22a c=. (1)求椭圆的标准方程;(2)过点1F 的直线l 与该椭圆交于M N 、两点,且222263F M F N +=l 的方程.7.(2023·全国·高三专题练习)设12,F F 分别是椭圆2222:1(0)x y D a b a b +=>>的左、右焦点,过2F 作倾斜角为π3的直线交椭圆D 于,A B 两点,1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4. (1)求椭圆D 的方程;(2)已知点()1,0M -,设E 是椭圆D 上的一点,过,E M 两点的直线l 交y 轴于点C ,若CE EM λ=,求λ的取值范围;(3)作直线1l 与椭圆D 交于不同的两点,P Q ,其中P 点的坐标为()2,0-,若点()0,N t 是线段PQ 垂直平分线上一点,且满足4NP NQ ⋅=,求实数t 的值.8.(2023·全国·高三专题练习)如图所示,,A B 为椭圆2222:1(0)x y E a b a b+=>>的左、右顶点,焦距长为P 在椭圆E 上,直线,PA PB 的斜率之积为14-.(1)求椭圆E 的方程;(2)已知O 为坐标原点,点()2,2C -,直线PC 交椭圆E 于点(,M M P 不重合),直线,BM OC 交于点G .求证:直线,AP AG 的斜率之积为定值,并求出该定值.9.(2023·全国·高三专题练习)已知F ,F '分别是椭圆221:171617C x y +=的上、下焦点,直线1l 过点F '且垂直于椭圆长轴,动直线2l 垂直1l 于点G ,线段GF 的垂直平分线交2l 于点H ,点H 的轨迹为2C . (1)求轨迹2C 的方程;(2)若动点P 在直线:20l x y --=上运动,且过点P 作轨迹2C 的两条切线PA 、PB ,切点为A 、B ,试猜想PFA ∠与PFB ∠的大小关系,并证明你的结论的正确性.10.(2023春·江西·高三校联考阶段练习)已知椭圆22x a +22y b =1(a >b >0),右焦点F (1,0),离心率为F 作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.11.(2023·全国·高三专题练习)如图,椭圆22:12+=x E y ,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ=,22PF F B μ=,若2λ=,求μ的值.13.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为12,且直线1:1x y l a b +=被椭圆1C . (1)求椭圆1C 的方程;(2)以椭圆1C 的长轴为直径作圆2C ,过直线2:4l y =上的动点M 作圆2C 的两条切线,设切点为,A B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||||CD AB ⋅的取值范围.14.(2023·全国·高三专题练习)已知椭圆22122:1(0)x y C a b a b +=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.15.(2023·全国·高三专题练习)已知1F 、2F 分别为椭圆2222:1(0)x yC a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点(P 在椭圆C 上,O 为坐标原点.(1)求椭圆C 的标准方程(2)若过点2F 的直线l 与椭圆C 交于,A B 两点,且||AB =l 的方程;。
圆锥曲线的解题方法

圆锥曲线的解题方法圆锥曲线是解析几何中的重要概念,它涵盖了圆、椭圆、双曲线和抛物线等形态。
在解题时,我们需要了解每种圆锥曲线的特点,并熟悉解析几何中的基本公式和性质。
本文将详细介绍圆锥曲线的解题方法,包括定义、方程形式、基本性质和解题技巧等内容,希望能对读者的学习和应用提供帮助。
一、圆锥曲线的概念和方程形式圆锥曲线是由一个平面与一个固定点(焦点)和一个固定直线(准线)相交所得到的曲线。
它根据平面与准线的位置关系可以分为四种形态:圆、椭圆、双曲线和抛物线。
1.圆:当平面与准线相交于准线上的一个点时,所得到的曲线为圆。
2.椭圆:当平面与准线相交于两个不同点时,所得到的曲线为椭圆。
椭圆的一个特点是焦点到准线上任意一点的距离之和是一个常数,称为椭圆的半长轴;而焦点到准线的垂直距离之和是一个常数,称为椭圆的半短轴。
3.双曲线:当平面与准线相交于两个相异实点或两个虚点时,所得到的曲线为双曲线。
双曲线的一个特点是焦点到准线上任意一点的距离之差是一个常数,称为双曲线的焦距;而焦点到准线的垂直距离之差是一个常数,称为双曲线的准线间距。
4.抛物线:当平面与准线相交于一个点且平行于焦准线时,所得到的曲线为抛物线。
抛物线的一个特点是焦点到准线上任意一点的距离等于焦点到焦准线的垂直距离。
根据圆锥曲线的定义和形态特点,我们可以得到其标准方程形式如下:1.圆的方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。
2.椭圆的方程:(x-h)²/a²+(y-k)²/b²=1,当椭圆的长轴平行于x轴时;(x-h)²/b²+(y-k)²/a²=1,当椭圆的长轴平行于y轴时。
3.双曲线的方程:(x-h)²/a²-(y-k)²/b²=1,当双曲线的准线平行于x轴时;(y-k)²/b²-(x-h)²/a²=1,当双曲线的准线平行于y轴时。
圆锥曲线的解题方法

圆锥曲线的解题方法圆锥曲线是由一个点(焦点)和一条直线(直接rixian)固定的比例关系确定的几何图形。
圆锥曲线包括椭圆、抛物线和双曲线。
解题方法通常包括以下几个步骤:1.通过已知条件确定圆锥曲线的方程形式。
2.根据方程形式求曲线的基本性质。
3.分析曲线在平面内的位置。
4.求解特定问题或条件下的未知量。
下面将详细介绍每个步骤的具体方法。
第一步:通过已知条件确定圆锥曲线的方程形式在解题前,我们需要先了解圆锥曲线的方程形式。
椭圆的方程形式是(x-h)²/a²+(y-k)²/b²=1,抛物线的方程是y=ax²+bx+c,双曲线的方程形式是(x-h)²/a²-(y-k)²/b²=1根据题目所给的已知条件,我们可以通过将已知点代入方程或通过几何性质推导来确定方程形式。
第二步:根据方程形式求曲线的基本性质求解圆锥曲线的基本性质包括确定焦点、准线、顶点、离心率等。
对于任意给定的方程,可以通过系数的比较或将方程化为标准形式来确定这些性质。
例如对于椭圆,我们可以通过比较方程的分子分母系数来找到焦点和准线的位置。
焦点的坐标为(h±ae, k),准线的方程为x=h±a/e。
顶点的位置可以通过移项和配方得到。
离心率可以通过方程中a、b的比值来确定。
类似地,对于抛物线,我们可以通过方程的系数来确定焦点、准线和顶点的位置。
焦点的坐标为(h,k+p/a),准线的方程为y=k-p,顶点的坐标为(h,k)。
对于双曲线,我们可以通过方程中a、b的比值来确定焦点、准线和顶点的位置。
焦点的坐标为(h±ae,k),准线的方程为y=k±a/e,顶点的位置可以通过移项和配方得到。
离心率可以通过方程中a、b的比值来确定。
第三步:分析曲线在平面内的位置确定了曲线的基本性质后,我们可以进一步分析曲线在平面内的位置关系。
例析圆锥曲线中直线过定点问题的解题策略

认知、情感、技能等方面发生系统的变化,学科核心素 养和关键能力得到整体提升,就是深度学习.我们的 教学追求知识习得后学生的学科能力、学科思想、学 科经验以及核心素养得到改变,产生积极的学习方式 改变、价值观念改变、行为方式乃至整个生活方式的 改变.本题貌似很难,有人采取了放弃的态度,有人进 行了深度研究,结果是明显的,久而久之学生的差异 就出现了.我们倡导真实的深度学习.5.2关于一题多解再认识一题多解有利于激发学生的学习兴趣;有利于促进学生的学习积极性和主动性;可以充分提高学生学 习的参与度;有利于学生对知识本质的掌握;还有利 于开阔学生的思维,提高思维的品质,培养学生的高 阶思维•因此,我们在教学中,应当提倡一题多解,搭 建适当的研究平台,把握提升学生素养的机会.参考文献:[1 ]任志鸿.十年高考数学[M ].北京:知识出版社,2019. [2]蔡勇全.简单?不简单!一多视角解析一道市统测解三角形问题[J ].中学生理科应试,2019(02) :15 - 16.(收稿曰期:2021 -02 - 01)例柝圆锥曲绔中直蟆过走点阿题的鮮题茉略李宁吴良英贺航飞(海南中学海南571158)摘要:本文系统总结了解决圆锥曲线中直线过定点问题的常见策略:设出含参直线方程,寻找参数之间的关系得 到定点坐标;用参数将两动点坐标表示出来,算出直线方程得定点;由图形的对称性发现定点在坐标轴,验证定点或者 算出定点;基于等式对参数恒成立得定点.关键词:圆锥曲线;定点问题;设参消参;解题策略探究动直线过定点问题是圆锥曲线解答题的常 考题型.有两种常见形式,一种是题设给出的动直线 满足一些条件,然后探究此动直线所过定点;一种是 题设给出两个点,探究此两点所构成的动直线过定 点.很多时候,根据构图,这两种形式可以相互转化. 下面结合具体问题总结圆锥曲线动直线过定点问题 的解题策略.1设直线方程,找参数关系例题1已知点£(-2,0),M ,/V 是曲线c :f +/=1上的动点,满足丄£/V ,证明:直线M /V 经过定 点,并求出此定点.证明当直线A//V 丄y 轴时,£见与£#显然不垂 直,不符合题意.设直线iWV 方程为a : = my + t ,代人x 2 +4/ =4,整理,得 (m * + 4) y 2 + 2mty + <2 - 4 = 0. 设财(W J ,州W2),则T i +y 2 =-2mt m 2 +4^172 =t 2 -4m 2 +4由题意,有前• ^=o .即(my , + f + + 2,y 2) =0•整理,得(m 2 +l )yiy 2 ++2) (yl +72) + (t + 2)2 =0.BP (m 2 + 1 )—f + 2)2mt2)2 =0•整理,得(t +2)(5t +6) =0•解得t =-2或-y .又直线Myv 不经过点£(-2,0),g h # -2,从而t基金项目:海南省教育科学“十三五”规划立项课题“基于学科核心素养的高中数学写作教学实践研究”(项目编号:QJY 20191034);海南省教育科学“十三五”规划立项课题“基于智慧课堂的理科资优生培养校本课程体系构建”(项目编号: QJY 20191035).作者简介:李宁( 1989 -),男,海南文昌人,硕士,中学一级教师,研究方向:高中数学教学研究;吴良英(1970 -),女,海南海口人,本科,中学高级教师,研究方向:高中数学教学研究;贺航飞(1982 -),男,湖南衡南人,本科,中学高级教师,研究方向:高中数学教学研究.=-1故直线A/j V方程为A t= my-故直线MTV过定点(-|~,0).评注由于直线与y轴不垂直,故可以设其 方程为x = 下面只需要根据题设条件寻找参数的关系,即可判断直线所过定点.当然,也可以 设直线M/V方程为y = f e e + n,类似可整理得12P - \6kn-\-5n2 =0,§.\\(2k- n)(6k- 5n) =0.当2/c = n时,直线A//V过点E(-2,0),不符合 题意;当6f c=5n时,直线ywv过定点(-|~,0).再验证当直线M/V斜率不存在的情形即可.2由两点坐标算直线方程得定点例题2已知椭圆+ f= 1,左、右顶点分别为4,R若?(%山)(7。
圆锥曲线问题解题方法 -完整获奖版

圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。
熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题灵活运用定义,方法往往直接又明了。
例1. 已知点A (3,2),F (2,0),双曲线x y 2231-=,P 为双曲线上一点。
求||||P A P F +12的最小值。
三. 数形结合,直观显示将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。
熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知x y R,∈,且满足方程x y y 2230+=≥(),又m y x =++33,求m 范围。
四. 应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。
例4. 已知圆()x y -+=3422和直线y m x=的交点为P 、Q ,则||||O P O Q ⋅的值为________。
五. 应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。
例5. 已知椭圆:x y 2224161+=,直线l :x y 1281+=,P 是l 上一点,射线OP 交椭圆于一点R ,点Q 在OP 上且满足||||||O Q O P O R ⋅=2,当点P 在l 上移动时,求点Q 的轨迹方程。
分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。
六. 应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功倍之效。
所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。
例 6. 求经过两圆x y x 22640++-=和x y y 226280++-=的交点,且圆心在直线x y --=40上的圆的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
攻克圆锥曲线解答题的策略1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d = ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-=或12AB y y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==∙=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p px x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题)设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有 1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元〃〃〃〃〃〃,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。
一旦设直线为y kx b =+,就意味着k 存在。
例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。
第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x 两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2)设直线BC 方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410k kb x x +-=+,222154805k b x x +-=2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得 0541632922=+--k b b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D (x,y ),则1494-=-⨯+xy x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()920()916(222≠=-+y y x 。
4、设而不求法例2、如图,已知梯形ABCD 中CD AB 2=,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当4332≤≤λ时,求双曲线离心率e 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。
建立直角坐标系xOy ,如图,若设C ⎪⎭⎫⎝⎛h c , 2,代入12222=-b y a x ,求得h =,进而求得,,E E x y ==再代入12222=-by a x ,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见是难上加难.我们对h 可采取设而不求的解题策略,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简.解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y轴因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称依题意,记A ()0 ,c -,C ⎪⎭⎫⎝⎛h c , 2,E ()00 ,y x ,其中||21AB c =为双曲线的半焦距,h 是梯形的高,由定比分点坐标公式得()()122120+-=++-=λλλλc c c x , λλ+=10h y 设双曲线的方程为12222=-b y a x ,则离心率ace =由点C 、E 在双曲线上,将点C 、E 的坐标和ace =代入双曲线方程得 14222=-bh e , ①11124222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-b h e λλλλ ② 由①式得 14222-=e bh , ③将③式代入②式,整理得()λλ214442+=-e ,故 1312+-=e λ由题设4332≤≤λ得,43231322≤+-≤e 解得 107≤≤e所以双曲线的离心率的取值范围为[]10 , 7分析:考虑,AE AC 为焦半径,可用焦半径公式, ,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略.解法二:建系同解法一,(),E C AE a ex AC a ex =-+=+,()()22121E cc c x λλλλ-+-==++,又1AE AC λλ=+,代入整理1312+-=e λ,由题设4332≤≤λ得,43231322≤+-≤e解得 107≤≤e所以双曲线的离心率的取值范围为[]10 , 7 5、判别式法例3已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:212222=+-+-k kx kx()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*y ,令判别式0=∆l 的距离为2⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x ⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k k kx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k k x k的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性. 例4已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。
其实,应该想到轨迹问题可以通过参数法求解. 因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点),(y x Q 的变化是由直线AB 的变化引起的,自然可选择直线AB 的斜率k 作为参数,如何将y x ,与k 联系起来?一方面利用点Q 在直线AB 上;另一方面就是运用题目条件:AP PB AQQB=-来转化.由A 、B 、P 、Q 四点共线,不难得到)(82)(4B A B A B A x x x x x x x +--+=,要建立x 与k 的关系,只需将直线AB的方程代入椭圆C 的方程,利用韦达定理即可.通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决本题,已经做到心中有数.在得到()k f x =之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于y x ,的方程(不含k ),则可由1)4(+-=x k y 解得41--=x y k ,直接代入()k f x =即可得到轨迹方程。