圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)
圆锥曲线―概念方法题型及应试技巧总结

圆锥曲线―概念、方法、题型、及应试技巧总结1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PFD .122221=+PF PF (答:C ); (2)方程8=表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
圆锥曲线解题方法技巧归纳(整理)

圆锥曲线解题方法技巧归纳一、知识储备:1. 直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离0022Ax By C d A B++=+③夹角公式:2121tan 1k k k k α-=+ ④两直线距离公式(3)弦长公式直线y kx b =+与圆锥曲线两交点1122(,),(,)A x y B x y 间的距离:2121AB k x x =+-221212(1)[()4]k x x x x =++-或12211AB y y k =+- (若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
) (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且2、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且 距离式方程:2222()()2x c y x c y a +++-+= 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<参数方程:距离式方程:2222|()()|2x c y x c y a ++--+=(3)、三种圆锥曲线的通径22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义(5)、焦点三角形面积公式:122tan2F PF P b θ∆=在椭圆上时,S 122cot2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==∙=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
圆锥曲线定直线问题解题方法与技巧

圆锥曲线定直线问题解题方法与技巧标题:圆锥曲线定直线问题的解题方法与技巧一、引言在解析几何中,圆锥曲线是重要的研究对象,其中涉及到的定直线问题要求我们找出经过特定点或者满足特定条件的直线方程。
这类问题通常需要综合运用直线与圆锥曲线的位置关系、参数方程、极坐标方程以及代数运算等知识。
以下将详细介绍解决此类问题的一些基本方法和实用技巧。
二、基本解题方法1. 利用位置关系确定直线方程:当已知直线过某定点或与圆锥曲线相切、相交于两点等情况时,可以利用圆锥曲线的标准方程(例如椭圆、双曲线、抛物线)与直线的一般方程联立,通过求解方程组得到交点坐标,进而确定直线方程。
2. 参数法:圆锥曲线的参数方程能直观地反映点与曲线的关系,当直线与圆锥曲线有特殊关系(如切线、法线)时,可先将直线写成参数形式,然后与圆锥曲线的参数方程联立求解参数,从而得出直线的方程。
3. 极坐标法:在某些情况下,若圆锥曲线或直线在极坐标下表达更为简便,可直接在极坐标系中建立方程,求解后转换为直角坐标系下的直线方程。
三、解题技巧1. 明确题目条件:解决定直线问题时,首先要明确直线需要满足的条件,如是否过定点、是否为圆锥曲线的切线、斜率是否存在等,这些信息对于选择合适的解题方法至关重要。
2. 判断直线与圆锥曲线的位置关系:通过计算判别式,可以判断直线与圆锥曲线的位置关系,如相离、相切、相交等,进一步决定如何设定直线方程。
3. 巧妙应用韦达定理:在处理直线与圆锥曲线交点问题时,韦达定理是一个非常有力的工具。
它可以快速给出两交点横坐标的乘积和和关系,帮助简化计算过程。
4. 充分利用对称性:圆锥曲线具有良好的对称性,有时可以根据对称性简化问题,比如已知直线过原点或与坐标轴平行的情况。
总结,解决圆锥曲线定直线问题需灵活运用解析几何的基础理论,结合具体情况选择最适宜的解题策略,同时注重培养观察问题的能力和逻辑推理能力,以提升解题效率与准确性。
圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
<2>若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
高考圆锥曲线大题题型及解题技巧

高考圆锥曲线大题题型及解题技巧x高考圆锥曲线大题题型及解题技巧一、基本概念圆锥曲线是椭圆、双曲线与圆锥体的综合体,它说明物体穿过三种物理媒质,如水、气体和固体物质,以及它们之间的相互转换性。
二、圆锥曲线的基本特点1、圆锥曲线具有规律性:它的主要特征是抛物线的函数形式呈现出以对称中心为中心的规律性,在此基础上拓展形成了螺旋状的曲线;2、圆锥曲线与旋转有关:圆锥曲线的曲线形状可以用某种旋转的路径进行描述;3、圆锥曲线的曲线表示有多种变化:圆锥曲线可以表示为二维图形或三维图形,可以表示为数学方程式,也可以表示为一组矢量。
三、圆锥曲线大题解题技巧1、分析题干:根据题干内容,在解题之前要细致地分析题干,弄清楚问题的范围,是对一组数据进行分析,还是对某种形式的函数进行分析,要把握好范围和类型,以便选择正确的解题方法;2、画出曲线图:如果是需要求曲线的半径、圆心坐标和焦点等信息,可以先画出曲线图,有助于理清思路;3、推导出数学公式:如果是要分析曲线的性质,可以根据曲线的特性,推导出相应的数学公式,以便求解;4、运用矩阵的相关理论:在计算曲线的性质时,可以运用矩阵的相关理论,根据相关的矩阵的乘法,求出所求的值。
五、练习1、(XX年某省某市高考)已知圆锥曲线的参数方程为:$$left{begin{array}{l} x^{2} + y^{2}=a^{2} z^{2} a>0, a eq 1 end{array}ight.$$(1)求出曲线的中心坐标;(2)求出曲线的渐近线方程和焦点坐标。
解:(1)令参数方程中的参数$a=frac{1}{m}$,代入参数方程可得:$$left{begin{array}{l} x^{2} + y^{2}=frac{1}{m^{2}} z^{2} m>0, meq 1 end{array}ight.$$令$z=0$,得到$x^{2} + y^{2}=0$,由此可知曲线的中心坐标为:$(0, 0)$。
圆锥曲线解题技巧和方法综合

〔本文有两套教案,第一套比拟笼统,第二套比拟好〕圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),那么有02020=+k by a x 。
〔2〕)0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)那么有0220=-k b y a x 〔3〕y 2=2px 〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),那么有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
圆锥曲线解题技巧和方法综合

(本文有两套教案,第一套比较笼统,第二套比较好)圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。
过A (2,1)的直线与双曲线交于两点及,求线段的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
(4)圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧」、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法) :设曲线上两点为(x^yj,(x2,y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
2 2如:(1)笃每1(a b 0)与直线相交于A、B,设弦AB中点为M(x o,y o),则有a bX o~~2 a匹kb2k2x(2) 2a2与1(a 0,b 0)与直线I相交于A B,设弦AB中点为M(x o,y o)则有bxoa(3)y2=2px( p>0)与直线l相交于A、B设弦AB中点为M(x o,y o),则有2y o k=2p,即y o k=p.典型例题2给定双曲线X2七1。
过A(2,“的直线与双曲线交于两点p1及p2,求线段P1 P2的中点P的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。
2 2典型例题设P(x,y)为椭圆x y2 21上任一点,只(c,o),F2(c,o)为焦点,PF1F2 PF2F1(2)求|PF 『 PF 2I 3的最值。
(3) 直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想, 通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程y 2 p(x 1) (p 0),直线x y t 与x 轴的交点在抛物线准线的右边。
(1) 求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为 A 、B ,且0A 丄0B,求p 关于t 的函数f(t)的表达式。
(4) 圆锥曲线的相关最值(范围)问题圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
<1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d = ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义你记清楚了吗?如:已知21F F 、是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅)(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22pp x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba 43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。
一旦设直线为y kx b =+,就意味着k 存在。
例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。
第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设B (1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2)设直线BC 方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410kkbx x +-=+,222154805k b x x +-=2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得0541632922=+--k b b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D (x,y ),则1494-=-⨯+xy x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()920()916(222≠=-+y y x 。
4、设而不求法AC所例2、如图,已知梯形ABCD 中CDAB2=,点E 分有向线段成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当4332≤≤λ时,求双曲线离心率e 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。
建立直角坐标系xOy ,如图,若设C ⎪⎭⎫⎝⎛h c , 2,代入12222=-b y a x ,求得h =,进而求得,,E E x y ==再代入12222=-by a x ,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见是难上加难.我们对h 可采取设而不求的解题策略,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简.解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称依题意,记A ()0 ,c -,C ⎪⎭⎫ ⎝⎛h c , 2,E ()00 ,y x ,其中||21AB c =为双曲线的半焦距,h 是梯形的高,由定比分点坐标公式得()()122120+-=++-=λλλλc cc x , λλ+=10h y设双曲线的方程为12222=-by a x ,则离心率a ce =由点C 、E 在双曲线上,将点C 、E 的坐标和ac e =代入双曲线方程得 14222=-b h e , ①11124222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ ②由①式得14222-=e b h , ③将③式代入②式,整理得()λλ214442+=-e ,故 1312+-=e λ由题设4332≤≤λ得,43231322≤+-≤e解得 107≤≤e所以双曲线的离心率的取值范围为[]10, 7分析:考虑,AE AC 为焦半径,可用焦半径公式, ,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略.解法二:建系同解法一,(),E C AE a ex AC a ex =-+=+,()()22121E cc c x λλλλ-+-==++,又1AE AC λλ=+,代入整理1312+-=e λ,由题设4332≤≤λ得,43231322≤+-≤e 解得 107≤≤e所以双曲线的离心率的取值范围为[]10, 75、判别式法 例3已知双曲线122:22=-x yC ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:()10)2(:<<-=k x k y lk k kx y l 2222:'-++=的值解得k解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:简解:设点)2,(2x x M +为双曲线C 上支上任一点,则点M 到直线l 的距离为:212222=+-+-k kx kx()10<<k ()*于是,问题即可转化为如上关于x 的方程.把直线l ’的方程代入双曲线方程,消去y ,令判别式0=∆直线l ’在l 的上方且到直线l 的距离为2由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x ⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k k kx k k k x k由10<<k 可知:方程()()()022)1(22)1(22122222=--++-++-k k x k k k x k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.例4已知椭圆C:x y 2228+=和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程. 分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。