磁学与磁性材料基础知识共75页文档

合集下载

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

(完整word版)磁学基础与磁性材料+严密第一章、三章以及第七章答案

磁性材料的分类第一章磁学基础知识答案:1、磁矩2、磁化强度3、磁场强度H4、磁感应强度 B磁感应感度,用B表示,又称为磁通密度,用来描述空间中的磁场的物理量。

其定义公式为中磁场的强弱使用磁感强度(也叫磁感应强度)来表示,磁感强度大表示磁感强;磁感强度小,表示磁感弱。

5、磁化曲线6、磁滞回线()(6 磁滞回线 (hysteresis loop):在磁场中,铁磁体的磁感应强度与磁场强度的关系可用曲线来表示,当磁化磁场作周期性变化时,铁磁体中的磁感应强度与磁场强度的关系是一条闭合线,这条闭合线叫做磁滞回线。

)7、磁化率磁化率,表征磁介质属性的物理量。

常用符号x表示,等于磁化强度M与磁场强度H之比。

对于各向同性磁介质,x是标量;对于各向异性磁介质,磁化率是一个二阶张量。

8、磁导率磁导率(permeability):又称导磁系数,是衡量物质的导磁性能的一个物理量,可通过测取同一点的B、H值确定。

二矫顽力----内禀矫顽力和磁感矫顽力的区别与联系矫顽力分为磁感矫顽力(Hcb)和内禀矫顽力(Hcj)。

磁体在反向充磁时,使磁感应强度B降为零所需反向磁场强度的值称之为磁感矫顽力。

但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。

(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。

使磁体的磁化强度M降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。

内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。

在磁体使用中,磁体矫顽力越高,温度稳定性越好。

(2)退磁场是怎样产生的?能克服吗?对于实测的材料磁化特性曲线如何进行退磁校正?产生:能否克服:因为退磁场只与材料的尺寸有关,短而粗的样品,退磁场就很大,因此可以将样品做成长而细的形状,退磁场就将会减小。

然而实际工作中,材料的尺寸收到限制,因此不可避免的受到退磁场的影响。

校正:由于受到退磁场的影响,作用在材料中的有效磁场Heff比外加磁场Hex要小。

磁性材料与磁性学基础

磁性材料与磁性学基础

磁性材料与磁性学基础磁性材料是具有磁性的材料,广泛应用于电子、通信、医疗等领域。

了解磁性材料的基本原理和性质对于应用和发展都具有重要意义。

磁性学是研究磁性材料的学科,它主要涉及磁性材料的磁化、磁场等基本概念和原理。

本文将从磁性材料的分类、磁化过程、磁性材料的性质等方面进行阐述。

一、磁性材料的分类磁性材料根据其磁性质可以分为铁磁、顺磁、反磁和带磁等四类。

铁磁材料是指在外加磁场作用下具有明显磁化特性的材料,常见的有铁、钴、镍等。

顺磁材料是指在外加磁场作用下呈现顺磁性质的材料,如银、铂等。

反磁材料则是指在外加磁场下呈现反磁性质的材料,如铜、锌等。

带磁材料是指一些特殊的磁性材料,如软磁材料和硬磁材料。

二、磁化过程与磁场磁化是指磁性材料在磁场作用下产生磁化强度的过程。

磁化过程可分为顺磁和铁磁两种类型。

顺磁磁化是指材料中的磁化强度和外加磁场成正比,而铁磁磁化则是指材料中的磁化强度与外加磁场呈非线性关系。

在实际应用中,通常使用磁性材料的矫顽力来描述材料的磁化性能。

磁场是磁性材料磁化的驱动力,是由磁性体所产生的力线场。

磁场的强弱程度决定了磁性材料磁化的程度。

不同磁性材料对磁场的响应不同,这是由其磁化特性决定的。

三、磁性材料的性质磁性材料的性质包括磁化特性、磁导率、磁致伸缩效应、磁滞回线等。

磁化特性是磁性材料的本质属性,它反映了材料在磁场下的磁化程度。

磁导率是指磁性材料对磁场的响应程度,它是电磁学中的一个重要参数。

磁致伸缩效应是指磁性材料在磁场作用下发生形变的现象,这一现象常应用于磁声技术等领域。

磁滞回线是指铁磁材料在磁场强度发生变化时的磁化曲线,可以用来描述材料的磁化特性和磁场强度的关系。

四、磁性材料的应用磁性材料广泛应用于电子、通信、医疗等领域。

在电子领域,磁性材料被用于制造高性能的磁盘存储器、传感器、扬声器等。

在通信领域,磁性材料被用于制造天线、滤波器等元件。

在医疗领域,磁性材料被用于磁共振成像、磁力治疗等。

磁性材料基础知识

磁性材料基础知识

类 硬(永)磁材料 Hc>1000A/m(12.5Oe)
按化学组成分类: 金属(合金);无机(氧化物);有机化合物
按维度分类: 纳米(零维;一维;二维);微晶;非晶;块体
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
古老而年轻的
• 1954-1957年 RKKY相互作用的建立 • 1958年 Mössbauer效应的发现
功能材料
• 1960年 非晶态物质的理论预言
• 1965年 Mader和Nowick制备了CoP铁磁非晶态合金
• 1994年 CMR庞磁电阻的发现,Jin等LaCaMnO3 • 1995年 隧道磁电阻TMR的发现,T.Miyazaki
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
二、磁学常识-磁性来源
法拉弟效应 在磁场中运动导体产生电流 安培定律 构成电磁学的基础, 开创现代电气工业 P. Weiss的磁畴和分子场假说 海森堡模型,用量子力学解释分子场起源 Bitter在显微镜下直接观察到磁畴 加藤与武井发现含Co的永磁铁氧体 荷兰Snoek发明软磁铁氧体 Landau和Lifshitz考虑退磁场, 理论上预言了磁畴结构
µm=i·A
磁偶极矩和磁矩具有相同的物理意义,存在关系:
jm=µ0µm ,µo=4π×10-7H·m-1 ,真空磁导率

磁性物理第一章磁学基础知识

磁性物理第一章磁学基础知识

2
2
2r
2r
ml 40r 2
1
cos
l2 4r2
cos2
ml 40r 2
cos
jm cos 40r 2
1 4 0
jm r r3
9
H
jm r 4 0r3
1 4 0
1 r3
jm r
1 r3
jm r
1
jm3jmFra bibliotek r4 0 r 3
r 4
32
二、顺磁性
顺磁性物质具有一固有磁矩,但各原子磁矩取向混 乱,对外不显示宏观磁性,在磁场作用下,原子磁矩转 向H方向,感生出与H一致的M。所以, χp>0,但数值 很小(显微弱磁性)。室温下χP:10-3~10-6。 实例:稀土金属和铁族元素的盐。
P
C T
,居里定律
1/ p
O
T
P
C ,居里-外斯定律 T TP
1、退磁场 有限几何尺寸的磁体,在外磁场中被磁化后,
在下述两个条件之一: (1)nM0 (2)divM0
表面将产生磁极,从而使磁体内部存在与磁化强 度M方向相反的一种磁场,起减退磁化的作用,称
为退磁场Hd 。
24
Hd 的大小与磁体形状及磁极强度有关。若磁化均 匀,则Hd 也均匀,且与M成正比,即:
1 Vd
μ m M /deAmmu2/gk(g-C1(SGIS) )
1Am2kg-1 1emu/g
三、磁场强度 H 与磁感应强度 B 均为描述空间任意一点的磁场参量(矢量)
1、H :静磁学定义 H为单位点磁荷在该处所受的磁场
力的大H 小, 方m F 向,F 与 正k 磁荷m 在1 r3 该m 2 处所r ,受其 磁场k力 中 方4 向1 一0致。

磁学基础知识

磁学基础知识

K L M
当施加一个磁场在一个原子上时,平行于磁场的角动量也 是量子化的。l 在磁场方向上的分量由磁量子数ml决定 ml = l, l-1, l-2,……0,…..-( l-1), -l 电子自旋量子数 由 ms 决定 共有(2 l +1)个值 1 S 2
磁性物质在磁场中磁化,磁化强度 M 和磁场强度 H 之间的关系是:
M H
该关系中,磁化强度和磁场强度是同量纲的,所以这 里的磁化率是无量纲的,是一个纯粹的数字,但应注意到 由于磁化强度定义为单位体积的磁矩,所以公式中的磁化 率 暗含着单位体积磁化率的意义。 在理论推导和测量中,常常使用另外两种定义: 质量磁化率: m d 是材料的密度(kg﹒m-3)
1.1 磁场、磁性和基本磁学量
磁场:在场内运动的电荷会受到作用力的物理场。 电磁学给出的定义:(见胡有秋等电磁学p202)
F qv B
F:运动电荷 q 受到的力; q:电荷量; v:电荷运动速度;
B 称作磁通密度或磁感应强度,是表征磁场方向和大小的 物理量。其单位是 :特斯拉(T = N·A-1m-1 = Wb·m-2)。 物质的磁化状态:磁化强度矢量
F B V H
磁化率的正负和大小反映出物质磁性的特征。粗略可以 分为:(通常人们习惯说有磁物质和无磁物质是不科学的) 强磁性物质:>0,例:铁,Fe3O4 弱磁性物质: 顺磁性物质: 0<<<1,例:氧气,铝 抗磁性物质: <0 ,| |<<1,例:水,铜
磁性被定义为物质在不均匀磁场中会受到磁力作用的一种属 性,显然不能再定义磁场就是使物质受到磁力作用的场,这样相 互定义是不科学的,因此磁场是由在场内运动着的带电粒子所受 到的力来确定的,这种力称作洛伦兹(Lorentz)力,它的作用 是使带电粒子的路径发生弯曲,洛伦兹力的大小正比于电荷量 q, 电荷运动速度 v 和磁通密度 B 的乘积,其方向则垂直于 v 和 B 所形成的平面,它和磁性物质在不均匀磁场中受到的磁力相比, 性质上是完全不相同的,这就避免了又用磁性定义磁场所产生的 问题。 历史上曾用磁荷受力来定义磁场,所以先有了磁场强度的 定义,在确定用运动电荷受力确定磁场后,就只能选用磁通密 度(磁感应强度)来表述磁场了。

磁性材料与器件-第一章-磁学基础知识

磁性材料与器件-第一章-磁学基础知识

Jm 0 M
(A m 1 )
Page 5
Page 6
1.1.3 磁场强度H与磁感应强度B
物理意义:均为描述空间任意一点的磁场参量(矢量)
1、磁场强度H (magnetic intensity) :(静磁学定义)
为单位点磁荷在该处所受的磁场力的大小,方向与正磁荷在 该处所受磁场力方向一致。
为了方便研究物质磁性的起因,我们可以按其在磁场
中的表现把物质进行分类, 例如依据磁化率的正负、大 小及其与温度的关系来进行分类。
随着研究的深入,分类也在不断完善和细化,到上个 世纪 70 年代为止,在晶状固体里,共发现了五种主要类 型的磁结构物质,它们的形成机理和宏观特征各不相同, 对它们的成功解释形成了今天的磁性物理学核心内容。 上世纪 70 年代以后,随着非晶材料和纳米材料的兴 起,又发现了一些新的磁性类型,对它们的研究尚在深化 之中,课程会做初步介绍。
MS(饱和磁化强度),而B
则仍不断增大(原因?) 由B-H(M-H)曲线可求 出或
Page 27
磁化曲线是反映材料特性的基本曲线,从中可以得到标志
材料的参量:饱和磁化强度Ms、起始磁化率a 和最大磁化率m。
Ms
Ms可以理解为该温 度下的自发磁化
强度M0
顺磁性物质磁化曲线 抗磁性物质磁化曲线
Page 28
1.3.2 磁滞回线
从饱和磁化状态开始,再使磁场H减小,B或M不再沿原
始曲线返回。当H=0时,仍有一定的剩磁Br或Mr。
为使B(M)趋于零,需反向加一磁 场,此时H=Hc称为矫顽力。
BHC:使B=0的Hc M HC :
(磁感矫顽力)。
M=0时的Hc(内禀矫顽力)
一般| BHC | <

磁学基础与磁性材料

磁学基础与磁性材料

磁学基础与磁性材料1. 引言磁学是研究磁场和磁性材料特性的学科。

磁性材料是一类具有磁性的材料,它们在外加磁场作用下会发生磁化现象,并且具有一系列特殊的磁性特性。

磁学基础是理解和研究磁性材料的基础,本文将介绍磁学基础的一些重要内容,以及常用的磁性材料。

2. 磁学基础2.1 磁场磁场是指存在于一个区域内的磁力场。

磁场由磁针、磁体等产生,其物理量可以用矢量表示。

在磁学中,我们常常用磁感应强度(B)表示磁场的强弱,单位是特斯拉(T)。

2.2 磁矩磁矩是一个物体产生磁场的特性量。

它是由物体内部微观电荷或电流的旋转运动所导致的。

磁矩可以用矢量表示,它的单位是安培·米(A·m^2)。

2.3 铁磁性材料铁磁性材料是一类具有较强磁性的材料。

在外加磁场下,铁磁性材料可以产生自发磁化现象,并且保留很长时间。

常见的铁磁性材料有铁和钙钛矿结构的氧化物等。

2.4 顺磁性材料顺磁性材料是一类具有较弱磁性的材料。

在外加磁场下,顺磁性材料会发生磁化现象,但是磁化程度相对较弱。

常见的顺磁性材料有铁氧体和氯化亚铁等。

2.5 抗磁性材料抗磁性材料是一类对磁场几乎没有响应的材料。

在外加磁场下,抗磁性材料只会发生微弱的磁化现象,并且在去掉磁场后会迅速恢复到无磁化状态。

常见的抗磁性材料有铜和锌等。

3. 磁性材料的应用3.1 磁存储器件磁性材料在磁存储器件中有着重要的应用。

磁存储器件利用磁性材料的特殊磁性特性,实现数据的存储和读取。

常见的磁存储器件有硬盘、软盘和磁带等。

这些设备利用磁性材料在外加磁场下能够保持和改变磁化方向的特性,实现数据的读写。

3.2 磁共振成像磁性材料在医学中有着广泛的应用。

磁共振成像(MRI)是一种利用磁性材料的原理来获取人体器官结构和功能信息的影像技术。

在MRI中,磁性材料被放置在磁场中,通过测量磁场变化来获取图像。

磁性材料在MRI中起到了重要的作用,它们对磁场的响应可以提供丰富的图像信息。

3.3 传感器和执行器磁性材料在传感器和执行器中有着广泛的应用。

磁学基础知识

磁学基础知识

1.2 原子的磁性
关于物质磁性起源曾有过分子电流学说和磁偶极矩学, 现代科学认为物质的磁性来源于组成物质中原子的磁性: 1. 原子中外层电子的轨道磁矩 2. 电子的自旋磁矩 3. 原子核的核磁矩 宏观物质由原子组成,原子由原子核及核外电子组成, 由于电子及组成原子核的质子和中子都具有一定的磁矩,所 以宏观物质毫无例外的都具有一定的磁性,宏观物质磁性是 构成物质原子磁矩的集体反映。电子质量比质子和中子质量 小 3 个量级,电子磁矩比原子核磁矩大 3 个量级,因此宏 观物质的磁性主要由电子磁矩所决定。本节考虑孤立原子的 磁矩。凝聚态物质中构成原子的磁矩第2章中介绍。
1.1 磁场、磁性和基本磁学量
磁场:在场内运动的电荷会受到作用力的物理场。 电磁学给出的定义:(见胡有秋等电磁学p202)
F qv B
F:运动电荷 q 受到的力; q:电荷量; v:电荷运动速度;
B 称作磁通密度或磁感应强度,是表征磁场方向和大小的 物理量。其单位是 :特斯拉(T = N·A-1m-1 = Wb·m-2)。 物质的磁化状态:磁化强度矢量
从 pl 和 μl的表达式可以看出:电子处于 l = 0 ,即 s 态时 电子的轨道角动量和轨道磁矩都等于0,这是一种特殊的统计 分布状态。而 l ≠ 0 时电子轨道磁矩不为 0,其绝对值并不 是玻尔磁子的整数倍,但轨道角动量和轨道磁矩在空间都是 量子化的,它们在外磁场方向的分量不连续,只是一些由磁 量子数 ml = 0, ±1, ±2, ±3, · · ·, ±l 确定的(2l + 1 ) 个间断 值,所以在磁场方向,磁矩分量都是玻尔磁子的整数倍。
没有磁介质存在(M = 0)只有传导电流产生的磁场时, 表述磁场的两个物理量之间才存在着简单关系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档