广东省广州市中考数学模拟试卷(一)
广州模拟中考数学试卷真题

广州模拟中考数学试卷真题本试卷共分为两个部分,共计150分。
请同学们按照要求,仔细阅读题目并严格按照格式填写答案。
祝各位考试顺利!第一部分:选择题(共80分)1.(10分)方程2x + 5 = 25的解为:A. x = 10B. x = 5C. x = 3D. x = -102.(10分)某商品原价1000元,商家打折后降价为800元,降价比例为:A. 20%B. 25%C. 10%D. 5%3.(10分)已知函数y = 2x + 1,若x = 3,则y的值为:A. 4B. 7C. 6D. 54.(10分)在△ABC中,∠B = 90°,AC = 5cm,BC = 12cm,则AB的长度为:A. 13cmB. 17cmC. 7cmD. 25cm5.(10分)已知正方形ABCD的边长为4cm,E为AB的中点,连接AE并延长交BC于F,则EF的长度为:A. 4cmB. 2cmC. 3cmD. 6cm6.(10分)若a + b = 5,且a - b = 1,则a的值为:A. 2B. 3C. 4D. 57.(10分)已知平行四边形ABCD中,角A的度数是角B的度数的2倍,且$\vec{AD}$⃗ = 2$\vec{AB}$⃗,则角A的度数为:A. 60°B. 30°C. 120°D. 90°8.(10分)设集合A = {x | x是2的倍数},集合B = {y | y是3的倍数},则A∪B的元素个数是:A. 2B. 4C. 6D. 8第二部分:解答题(共70分)9.(15分)已知直线AB的斜率为2,且过点A(3,-1),求直线AB 的方程。
10.(15分)根据下列图形,求正方形ABCD的面积。
<图形略>11.(20分)已知函数f(x) = 2x + 3,g(x) = x^2 - 1,求f(g(2))的值。
12.(20分)证明:在任何一个三角形中,两边之和大于第三边。
2024广东省广州市天河区中考一模数学试题含答案解析

2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
广东省中考模拟考试(一)数学考试卷(解析版)(初三)中考模拟.doc

广东省中考模拟考试(一)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,与3互为相反数的是()A. B.﹣3 C.3﹣1 D.﹣【答案】B【解析】试题分析:根据只有符号不同的两个数互为相反数,可得﹣3与3互为相反数,故B正确;故选:B.考点:相反数【题文】如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.5 B.6 C.7 D.8【答案】B【解析】试题分析:由主视图与左视图可以在俯视图上标注数字为:主视图有三列,每列的方块数分别是:2,1,1;左视图有两列,每列的方块数分别是:1,2;俯视图有三列,每列的方块数分别是:2,1,2;因此总个数为1+2+1+1+1=6个,故选B.考点:由三视图判断几何体【题文】下列运算正确的是()评卷人得分A.x3+x2=x5B.x3﹣x2=x C.x3•x﹣2=x﹣5D.x3÷x2=x【答案】D【解析】试题分析: A、不是同底数幂的乘法指数不能相加,故A错误;B、不是同底数幂的除法指数不能相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.考点:1、同底数幂的除法;2、合并同类项;3、同底数幂的乘法;4、负整数指数幂【题文】若x,y为实数,且|x+4|+=0,则()2015的值为()A.1 B.﹣1 C.4 D.﹣4【答案】B【解析】试题分析:根据非负数的性质得x+4=0,y﹣4=0,解得x=﹣4,y=4,则()2015=﹣1.故选:B.考点:非负数的性质【题文】如图,AB∥CD,EC⊥CD于C,CF交AB于B,已知∠2=29°,则∠1的度数是()A.58° B.59° C.61° D.62°【答案】C【解析】试题分析:延长DC到F,根据垂直的性质得到∠DCE=90°,根据余角的性质得到∠3=61°,根据平行线的性质由AB∥CD,可得∠1=∠361°.故选C.考点:平行线的性质【题文】在社会实践活动中,某中学对甲、乙,丙、丁四个超市三月份的苹果价格进行调查.它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25.三月份苹果价格最稳定的超市是()A.甲 B.乙 C.丙 D.丁【答案】C【解析】试题分析:根据题意知它们的价格的平均值均为3.50元,方差分别为S甲2=0.3,S乙2=0.4,S丙2=0.1,S丁2=0.25,∴S乙2>S甲2>S丁2>S丙2,∴三月份苹果价格最稳定的超市是丙;故选C.考点:方差【题文】如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20° B.30° C.35° D.40°【答案】B【解析】试题分析:根据全等三角形的性质得到∠ACB=∠A′C′B′,然后根据角的和差计算得∠BCB′=30°.故选:B.考点:全等三角形的性质【题文】用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=4【答案】D【解析】试题分析:先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.即x2﹣6x+9=4,(x﹣3)2=4.故选D.考点:解一元二次方程-配方法【题文】如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A. B. C. D.【答案】D【解析】试题分析:如图,由6块长为2、宽为1的长方形,可得∠D=90°,AD=3×1=3,BD=2×2=4,因此在Rt△ABD中,AB==5,因此可得cos∠ABC=.故选D.考点:锐角三角函数【题文】若mn<0,则正比例函数y=mx与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.【答案】B【解析】试题分析:根据mn<0,可得m和n异号,所以:当m>0时,n<0,此时正比例函数y=mx经过第一、三象限,反比例函数图象在二、四象限,没有符合条件的图象;当m<0时,n>0,此时正比例函数y=mx经过第二、四象限,反比例函数图象经过一、三象限,B符合条件.故选B.考点:1、反比例函数的图象;2、正比例函数的图象【题文】化简: =.【答案】1【解析】试题分析:先将第二项变形,使之分母与第一项分母相同,然后再进行计算.==1.考点:分式的加减法【题文】我国首个火星探测器“萤火一号”已通过研制阶段的考核和验证,并将于今年下半年发射升空,预计历经约10个月,行程约380 000 000公里抵达火星轨道并定位.将380 000 000公里用科学记数法可表示为公里.【答案】3.8×108【解析】试题分析:科学记数法的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大与10时,n是正整数;当原数的绝对值小于1时,n是负数.根据题意380000000公里=3.8×108公里.考点:科学记数法—表示较大的数【题文】八边形的内角和等于度.【答案】1080°【解析】试题分析: n边形的内角和可以表示成(n-2)•180°,代入公式就可以求出内角和(8-2)×180°=1080°.考点:多边形内角与外角【题文】如图,A(2,1),B(1,﹣1),以O为位似中心,按比例尺1:2,把△AOB放大,则点A的对应点A′的坐标为.【答案】(4,2)或(﹣4,﹣2)【解析】试题分析:根据位似的性质,以O为位似中心,按比例尺1:2,把△AOB放大,可得点A的对应点A′的坐标为(2×2,2×1)或(﹣2×2,﹣2×1),即(4,2)或(﹣4,﹣2).考点:1、位似变换;2、坐标与图形性质【题文】如图,直线y1=k1x+b和直线y2=k2x+b分别与轴交于A(-1,0)和B(3,0)两点.则不等式组k1x+b>k2x+b>0的解集为______.【答案】0<x<3【解析】试题分析:当x=﹣1时,y1=k1x+b=0,则x>﹣1时,y1=k1x+b>0,当x=3时,y2=k2x+b=0,则x<3时,y2=k2x+b>0,因为x>0时,y1>y2,所以当0<x<3时,k1x+b>k2x+b>0,即不等式组k1x+b>k2x+b>0的解集为0<x<3.考点:一次函数与一元一次不等式【题文】如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.【答案】【解析】试题分析:连接D′C,∵绕顶点A顺时针旋转45°,∴∠D′CE=45°,∵ED′⊥AC,∴∠CD′E=90°,∵AC==,∴CD′=﹣1,∴正方形重叠部分的面积是×1×1﹣×(﹣1)(﹣1)=﹣1.考点:1、正方形的性质;2、旋转的性质【题文】解不等式组:.【答案】﹣4<x<2【解析】试题分析:分别求出不等式组中两个一元一次不等式的解集,然后根据同大取大,同小取小,大小小大取中间,大大小小无解的法则,即可求出原不等式组的解集.试题解析:解不等式4x﹣8<0,得x<2;解不等式,得2x+2﹣6<3x,即x>﹣4,所以,这个不等式组的解集是﹣4<x<2.考点:解一元一次不等式组【题文】先化简,再求值:,其中x=.【答案】,【解析】试题分析:先把分子分母因式分解和把除法运算化为乘法运算,然后约分后进行同分母的加法运算,再把x 的值代入计算即可.试题解析:===,当x=时,原式==.考点:分式的化简求值【题文】如图,A是∠MON边OM上一点,AE∥ON.(1)在图中作∠MON的角平分线OB,交AE于点B;(要求:尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)中,过点A画OB的垂线,垂足为点D,交ON于点C,连接CB,将图形补充完整,并证明四边形OABC是菱形.【答案】(1)作图见解析(2)证明见解析【解析】试题分析:(1)角平分线的作法:用圆规以顶点为圆心,任意长为半径画一个弧(要保证有两个交点,不要太小),再以刚才画出的交点为顶点,以大于第一次的半径为半径画弧(左右各画一个弧),再取两道弧的交点,并连接这个交点的一开始最上面的顶点,这就是角平分线.(2)本题可根据“一组邻边相等的平行四边形是菱形”,先证明OABC是个平行四边形,然后证明OA=AB 即可.试题解析:(1)如图,射线OB为所求作的图形.(2)证明:∵OB平分∠MON,∴∠AOB=∠BOC.∵AE∥ON,∴∠ABO=∠BOC.∴∠AOB=∠ABO,AO=AB.∵AD⊥OB,∴BD=OD.在△ADB和△CDO中∵∴△ADB≌△CDO,AB=OC.∵AB∥OC,∴四边形OABC是平行四边形.∵AO=AB,∴四边形OABC是菱形.考点:1、菱形的判定;2、全等三角形的判定【题文】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:该班学生参加各项服务的频数、频率统计表:服务类别频数频率文明宣传员40.08文明劝导员10义务小警卫80.16环境小卫士0.32小小活雷锋120.24请根据上面的统计图表,解答下列问题:(1)该班参加这次公益活动的学生共有名;(2)请补全频数、频率统计表和频数分布直方图;(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.【答案】(1)50(2)图见解析(3)180【解析】试题分析:(1)根据总数=频数÷频率进行计算总人数;(2)首先根据各小组的频数和等于总数以及各小组的频率和等于1或频率=频数÷总数进行计算,然后正确补全即可;(3)根据样本中文明劝导员所占的频率来估算总体.试题解析:(1)总人数=4÷0.08=50;(2)环境小卫士的频数为50﹣(4+10+8+12)=16,文明劝导员的频率为10÷50=0.2,补全频率分布直方图:服务类别频数频率文明宣传员40.08文明劝导员100.2义务小警卫80.16环境小卫士160.32小小活雷锋120.24(3)参加文明劝导的学生人数=900×0.2=180人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表【题文】如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD 为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.【答案】【解析】试题分析:在图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.试题解析:由已知,得∠ECA=30°,∠FCB=60°,CD=90,EF∥AB,CD⊥AB于点D.∴∠A=∠ECA=30°,∠B=∠FCB=60°.在Rt△ACD中,∠CDA=90°,tanA=,∴AD==90×=90.在Rt△BCD中,∠CDB=90°,tanB=,∴DB==30.∴AB=AD+BD=90+30=120.答:建筑物A、B间的距离为120米.考点:解直角三角形的应用-仰角俯角问题【题文】在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90(2)甲、乙合作【解析】试题分析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.试题解析:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.考点:分式方程的应用【题文】如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【答案】(1)证明见解析(2)6【解析】试题分析:(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.考点:切线的判定与性质【题文】如图,已知抛物线与x轴交于A(﹣1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)9(3)相似【解析】试题分析:(1)易得c=3,故设抛物线解析式为y=ax2+bx+3,根据抛物线所过的三点的坐标,可得方程组,解可得a、b的值,即可得解析式;(2)易由顶点坐标公式得顶点坐标,根据图形间的关系可得四边形ABDE的面积=,代入数值可得答案;(3)根据题意,易得∠AOB=∠DBE=90°,且,即可判断出两三角形相似.试题解析:(1)∵抛物线与y轴交于点(0,3),∴设抛物线解析式为y=ax2+bx+3(a≠0)根据题意,得,解得.∴抛物线的解析式为y=﹣x2+2x+3;(2)如图,设该抛物线对称轴是DF,连接DE、BD.过点B作BG⊥DF于点G.由顶点坐标公式得顶点坐标为D(1,4)设对称轴与x轴的交点为F∴四边形ABDE的面积==AO•BO+(BO+DF)•OF+EF•DF=×1×3+×(3+4)×1+×2×4=9;(3)相似,如图,BD=;∴BE=DE==∴BD2+BE2=20,DE2=20即:BD2+BE2=DE2,所以△BDE是直角三角形∴∠AOB=∠DBE=90°,且,∴△AOB∽△DBE.考点:二次函数综合题【题文】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y= cm2;当x=s时,y= cm2.(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.【答案】(1)2;9(2)(2)当5≤x≤9时,y=x2-7x+;当9<x≤13时, y=-x2+x-35;当13<x≤14时,y=-4x+56;(3)y=(4)、或【解析】试题分析:(1)当x=2s时,AP=2,BQ=2,利用三角形的面积公式直接可以求出y的值,当x=s时,三角形PAQ的高就是4,底为4.5,由三角形的面积公式可以求出其解.(2)当5≤x≤14 时,求y与x之间的函数关系式.要分为三种不同的情况进行表示:当5≤x≤9时,当9<x≤13时,当13<x≤14时.(3)可以由ly=x2-7x+当9<x≤13时(如图2)y=(x-9+4)(14-x)y=-x2+x-35当13<x≤14时(如图3)y=×8(14-x)y=-4x+56;(3)当动点P在线段BC上运动时,∵y= =×(4+8)×5=8∴8=x2-7x+,即x2-14x+49=0,解得:x1=x2=7 ∴当x=7时,y=(4)设运动时间为x秒,当PQ∥AC时,BP=5-x,BQ=x,此时△BPQ∽△BAC,故,即,解得x=;当PQ∥BE时,PC=9-x,QC=x-4,此时△PCQ∽△BCE,故,即,解得x=;当PQ∥BE时,EP=14-x,EQ=x-9,此时△PEQ∽△BAE,故,即,解得x=.综上所述x的值为:x=、或.考点:二次函数综合题。
2024年广东省广州市白云区中考数学一模试卷及答案解析

2024年广东省广州市白云区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)下列各数中,与﹣2024互为相反数的是()A.2024B.﹣2024C.D.2.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.3.(3分)下列运算正确的是()A.(m2)3=m6B.m2•m3=m6C.m﹣2=﹣m2D.m2÷m2=m24.(3分)某校举行“喜迎中国共产党建党105周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.方差是0B.中位数是95C.众数是5D.平均数是905.(3分)不等式组的解集在数轴上表示为()A.B.C.D.6.(3分)已知一次函数y=ax+b经过点(﹣2,﹣3),正比例函数y1=ax不经过第三象限,则反比例函数的图象位于()A.第一、第二象限B.第一、第三象限C.第二、第三象限D.第二、第四象限7.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.1738.(3分)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6B.﹣=6C.﹣=6D.﹣=69.(3分)如图,△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,若⊙I的半径为r,∠FDE =α,则(AF+CD﹣AC)的值和∠A的大小分别为()A.0,180°﹣2αB.r,180°﹣αC.D.10.(3分)若,则关于x的方程x2﹣(2k﹣2)x+k2﹣1=0根的情况是()A.无实数根B.有两个相等的实数根C.有两个实数根D.有两个不相等的实数根二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)2023年10月26日上午,神舟十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神舟十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为.12.(3分)若点A(﹣1,y1),B,C(2,y3)在抛物线y=(x﹣2)2+k上,则y1,y2,y3的大小关系为(用“>”连接).13.(3分)2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的条形图若将获奖作品按四个等级所占比例绘制成扇形统计图,则“二等奖”对应扇形的圆心角度数为°.14.(3分)如图,正方形ABCD的边长为4,点E在边BC上,F为对角线BD上一动点,连接CF,EF,若CF+EF的最小值,则CE=.15.(3分)如图,已知AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,四边形AEDF 的面积为60,DF=5,则△ADE中AD边上的高为.16.(3分)如图,矩形ABCD中,AB=9,AD=12,点P从A出发以每秒3个单位长度的速度沿A→D→C→B→A运动一周到点A停止.当点P不与矩形ABCD的顶点重合时,过点P作直线PQ⊥AP,与矩形的边的另一交点为Q.若点P的运动时间为t,当8<t<10时,CQ长度的范围是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)解方程:x2+4x﹣12=0.18.(4分)已知:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB,垂足为D.在射线CD上截取CE=CA,过点E作EF⊥CE,交CB的延长线于点F.求证:BC=FE.19.(6分)如图,在平面直角坐标系xOy中,点A(﹣2,0),所在圆的圆心为O,∠AOB=60°.将AB向右平移5个单位,得到(点A平移后的对应点为C).(1)点B的坐标是,所在圆的圆心坐标是;(2)在图中画出,求的长.20.(6分)给出6个整式:x+2,x﹣2,2x+1,2,x2+x﹣1,x2﹣x﹣11.(1)从上面的6个整式中选择2个合适的整式,组成一个分式;(2)从上面的6个整式中选择2个合适的整式进行乘法运算,使运算结果为一个不含有一次项的多项式,请你列出算式,并写出运算过程.21.(8分)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.22.(10分)某车间甲、乙两台机器共生产9200个零件,两台机器同时加工一段时间后,甲机器出现故障,维修一段时间后仍按原来的效率加工,已知甲机器每天加工150个零件,如图是表示未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数图象.(1)乙机器每天加工个零件,甲机器维修了天;(2)求甲机器出现故障以后,未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式.23.(10分)【问题探究】(1)如图①,在四边形ABCD中,∠A=∠B=90°,在AB边上作点E为一点,连接CE,DE,使得CE⊥DE(画出一个点E即可,要求用尺规作图,保留作图痕迹,不要求写作图的证明);(2)如图②,在四边形ABCD中,AD∥BC,BC=CD,∠C=60°,点E为CD上一点,连接AE,BE,∠ABE=60°,试判断AD与CE之间的数量关系,并说明理由;【问题解决】(3)如图③,四边形ABCD是赵叔叔家的果园平面示意图,点E为果园的一个出入口(点E在边CD 上),AE,BE为果园内的两条运输通道(通道宽度忽略不计),经测量,AD∥BC,AB=AE,∠C=∠ABE=45°,AD=150米,赵叔叔计划在△BCE区域内种植某种果树,并沿CE修建一条安全栅栏,为提前做好修建安全栅栏的预算,请你帮赵叔叔计算出CE的长度.24.(12分)已知直线l:y=kx+b(k>0)经过点P(﹣1,2).(1)用含有k的式子表示b;(2)若直线l与x,y轴分别交于A,B两点,△AOB面积为S,求S的取值范围;(3)过点P的抛物线y=(x﹣k)2+n与y轴交点为E,记抛物线的顶点为C,该抛物线是否存在点F 使四边形BPEF为平行四边形?若存在,求此时顶点C的坐标;若不存在,请说明理由.25.(12分)如图,在四边形ABCD中,点N,M分别在边BC,CD上.连接AM,AN,MN,∠MAN=45°.(1)【实践探究】如图①,四边形ABCD是正方形.(Ⅰ)若CN=6,MN=10,求∠CMN的余弦值;(Ⅱ)若tan∠BAN=,求证:M是CD的中点;(2)【拓展】如图②,四边形ABCD是直角梯形,AD∥BC,∠C=90°,CD=12,AD=16,CN=12,求DM的长.2024年广东省广州市白云区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:﹣2024的相反数为2024,A选项正确.故选:A.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,对各选项准确化简是解题的关键.2.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为:故选:D.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则、负整数指数幂的性质分别化简,进而得出答案.【解答】解:A.(m2)3=m6,故此选项符合题意;B.m2•m3=m5,故此选项不合题意;C.m﹣2=,故此选项不合题意;D.m2÷m2=1,故此选项不合题意.故选:A.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算、负整数指数幂的性质,正确掌握相关运算法则是解题关键.4.【分析】分别根据众数、中位数、算术平均数以及方差的定义与计算方法判断即可.【解答】解:由题意可知,这10名选手的成绩的众数是95,中位数是=95,平均数是(85×1+90×3+95×5+100×1)=93,方差是[(85﹣93)2+3×(90﹣93)2+5×(95﹣93)2+(100﹣93)2]=16,故选:B.【点评】本题考查条形统计图,中位数,众数,算术平均数以及方差,理解统计图中数量之间的关系是正确计算的前提,掌握中位数、方差的计算方法是得出正确答案的关键.5.【分析】先解出每个不等式的解集,然后即可得到不等式组的解集,再在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≤﹣1,解不等式②,得:x>﹣5,∴该不等式组的解集为﹣5<x≤﹣1,其解集在数轴上表示如下:故选:A.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式的方法.6.【分析】根据正比例函数不经过第三象限得到a<0,再根据一次函数y=ax+b经过点(﹣2,﹣3)确定b值的正负,最后确定反比例函数图象的分布即可.【解答】解:∵正比例函数y1=ax不经过第三象限,∴a<0,∵一次函数y=ax+b经过点(﹣2,﹣3),∴b<0,∴反比例函数的图象位于第二、四象限.故选:D.【点评】本题考查了一次函数图象与系数的关系,熟练掌握反比例函数性质是解答本题的关键.7.【分析】过点P作PC⊥AB,垂足为P,设PC=x米,然后分别在Rt△APC和Rt△CBP中,利用锐角三角函数的定义求出AC,BC的长,再根据AB=400米,列出关于x的方程,进行计算即可解答.【解答】解:过点P作PC⊥AB,垂足为C,设PC=x米,在Rt△APC中,∠APC=30°,∴(米),在Rt△CBP中,∠CPB=60°,∴(米),∵AB=400米,∴AC+BC=400,∴,∴,∴PC=173米,∴点P到赛道AB的距离约为173米,故选:D.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.8.【分析】根据题意,可以列出相应的分式方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得:﹣=6,故选:B.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.【分析】连接IE、IF,根据切线长定理和切线的性质定理得AF=AE,CD=CE,AB⊥IF,AC⊥IE,则AF+CD=AF+CE=AC,所以AF+CD﹣AC=0,而∠FIE=2∠FDE=2α,则∠A=360°﹣∠AEI﹣∠AFI ﹣∠FIE=180°﹣2α,于是得到问题的答案.【解答】解:连接IE、IF,∵△ABC的内切圆⊙I与BC,CA,AB分别相切于点D,E,F,∠FDE=α,∴AF=AE,CD=CE,AB⊥IF,AC⊥IE,∴AF+CD=AF+CE=AC,∴AF+CD﹣AC=AC﹣AC=0,∵∠AEI=∠AFI=90°,∠FIE=2∠FDE=2α,∴∠A=360°﹣∠AEI﹣∠AFI﹣∠FIE=360°﹣90°﹣90°﹣2α=180°﹣2α,故选:A.【点评】此题重点考查三角形的内切圆的定义、切线的性质定理、切线长定理、圆周角定理、四边形的内角和等于360°等知识,正确地作出辅助线是解题的关键.10.【分析】先根据二次根式有意义的条件得到k≤2,再根据二次根式的性质计算得到|k﹣1|=﹣(k﹣1),则利用绝对值的意义得到k≤1,所以k的取值范围为k≤1,接着计算出根的判别式的值得到Δ=﹣8(k ﹣1),从而可判断Δ≥0,然后根据根的判别式的意义可对各选项进行判断.【解答】解:根据题意得2﹣k≥0,解得k≤2,∵,∴|k﹣1|﹣(2﹣k)=﹣1,即|k﹣1|=﹣(k﹣1),∴k﹣1≤0,解得k≤1,∴k的取值范围为k≤1,∵Δ=[﹣(2k﹣2)]2﹣4(k2﹣1)=﹣8(k﹣1)≥0,∴方程有两个实数解.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.也考查了二次根式的化简求值.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【解答】解:21200=2.12×104,故答案为:2.12×104.【点评】本题主要考查了科学记数法,熟练掌握科学记数法是关键.12.【分析】根据二次函数的性质得到抛物线y=(x﹣2)2+k的开口向上,对称轴为直线x=2,然后根据三个点离对称轴的远近判断函数值的大小.【解答】解:y=(x﹣2)2+k,∵a=1>0,∴抛物线开口向上,对称轴为直线x=2,∵点A(﹣1,y1)离直线x=2的距离最远,C(2,y3)在直线x=2上,∴y1>y2>y3.故答案无:y1>y2>y3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.【分析】根据直方图中的数据,可以计算出a的值,然后即可计算出“一等奖”对应扇形的圆心角度数.【解答】解:由条形统计图可得,a=100﹣10﹣50﹣10=30,“一等奖”对应扇形的圆心角度数为:360°×=108°,故答案为:108.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】连接AF,AE,推出CF+EF的最小值,就是AE的长,再利用勾股定理求出BE,进而求出CE的长.【解答】解:连接AF,AE,∵四边形ABCD是正方形,∴点A与点C关于直线BD对称,∴AF=CF,∴CF+EF=AF+EF≥AE,∵CF+EF的最小值,∴AE=,在Rt△ABE中,∵AB=4,AE=,∴由勾股定理,得BE===2,∴CE=BC﹣BE=4﹣2=2,故答案为:2.【点评】本题考查轴对称﹣最短路线问题,正方形的性质,勾股定理,两点之间线段最短,能将两线段和的最小值用一条线段表示是解题的关键.15.【分析】先证△AED≌△AFD,可得DE=DF=5,已知四边形AEDF的面积为60,可得△ADE的面积,可求得AE、AD的长,再根据面积公式可得△ADE中AD边上的高的长度.【解答】解:∵DE,DF分别是△ABD和△ACD的高,∴∠AED=∠AFD=90°,∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵AD=AD,∴△AED≌△AFD(AAS),∴DE=DF=5,△AED的面积=△AFD的面积,∵四边形AEDF的面积为60,=30,∴S△ADE=×DE×AE,∵S△ADE∴AE=12,AD==13,∴△ADE中AD边上的高==,故答案为:.【点评】本题考查了角平分线的性质,关键是掌握角平分线的性质以及全等三角形的判定条件.16.【分析】先判断出P点所在位置,连接AQ,根据三角形相似的判定与性质,用t表示出CQ,从而求出DQ,在根据二次函数的最值求出DQ的取值范围,最后根据勾股定理求出AQ的取值范围即可.【解答】解:由题意可知,当t=8时,点P的运动路程为3×8=24,当t=10时,点P的运动路程为3×10=30,∵AD+CD=21,AD+CD+BC=33,∴当8<t<10时,点P在线段BC上,∴CP=3t﹣21,BP=33﹣3t,∵∠APQ=90°,∴∠CPQ +∠APB =90°,∵∠PAB +∠APB =90°,∴∠PAB =∠CPQ ,∴△CPQ ∽△BAP ,∴=,∴CQ =(t ﹣7)(11﹣t )=﹣(t ﹣9)2+4,∵8<t <10,∴3<CQ ≤4.故答案为:3<CQ ≤4.【点评】本题主要考查了勾股定理的应用,结合相似三角形的判定与性质以及二次函数最值问题来解答是本题解题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:分解因式得:(x ﹣2)(x +6)=0,可得x ﹣2=0或x +6=0,解得:x 1=2,x 2=﹣6.【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程左边化为积的形式,右边化为0,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.【分析】根据题意,先得出∠E =∠ACB ,再用两角夹边判定即可.【解答】证明:∵CD ⊥AB ,∴∠A +∠ACD =90°,∵∠ACB =90°,∴∠ACD +∠ECF =90°,∴∠A =∠ECF ,∵EF ⊥CE ,∴∠E =90°,∴∠E =∠ACB ,在△ACB 和△CEF 中,,∴△ACB≌△CEF(ASA),∴BC=FE.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定和性质是解题的关键.19.【分析】(1)根据等边三角形的判定与性质可得点B的坐标,根据题意可得所在圆的圆心坐标;(2)由平移的性质画出,再根据弧长公式计算即可.【解答】解:(1)如图,连接OB,AB,作BP⊥OA于点P,∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2,故BP=AB•sin60°==,OP=OA=1,∴点B的坐标是(﹣1,);所在圆的圆心坐标是(0,0).故答案为:(﹣1,),(0,0);(2)如图所示:==.【点评】本题考查了图象的平移、弧长的计算等,掌握平移的性质以及弧长公式是解答本题的关键.20.【分析】(1)根据分式的定义即可写出,答案不唯一;(2)根据多项式乘多项式的运算法则进行运算即可.【解答】解:(1)写出的分式有:等,答案不唯一;(2)从6个整式:x+2,x﹣2,2x+1,2,x2+x﹣1,x2﹣x﹣11中选择2个整式进行乘法运算,使运算结果为一个不含有一次项的多项式:(x+2)(x﹣2)=x2﹣4.【点评】本题考查了分式的定义及整式的混合运算,分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式叫做分式,A叫做分式的分子,B叫做分式的分母.多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.21.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果和满足条件的结果数,再根据概率公式求解即可.【解答】解:画树状图得:共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,所以这三人在同一个献血站献血的概率为=.【点评】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)设乙机器每天加工a个零件,根据甲、乙两台机器10天共生产(9200﹣5200)个零件列出方程,求出a得到乙机器每天加工250个零件;根据甲机器维修的时间即为乙机器单独工作的时间,结合图象根据工作时间=工作总量÷工作效率即可求出甲机器维修的天数;(2)分两种情况:①当10<x≤18时;②当18<x≤26时;利用待定系数法即可求解.【解答】解:(1)设乙机器每天加工a个零件,由题意得:10(150+a)=9200﹣5200,解得:a=250,即乙机器每天加工250个零件;甲机器维修的天数为=8(天).故答案为:250,8;(2)设未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式为y=kx+b.①当10<x≤18时,把(10,5200),(18,3200)代入,得:,解得:,∴y=﹣250x+7700(10<x≤18);②当18<x≤26时,把(18,3200),(26,0)代入,得:,解得:,∴y=﹣400x+10400(18<x≤26);综上所述,甲机器出现故障以后,未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数关系式为:y=.【点评】本题考查了一元一次方程的应用,一次函数的应用,工作时间、工作总量与工作效率之间关系的应用,利用数形结合以及分类讨论是解题的关键.23.【分析】(1)作出以CD为直径的圆,利用直径所对的圆周角为直角可得该圆与AB的交点即为所求;(2)连接BD,利用等边三角形的判定与性质和全等三角形的判定与性质解答即可得出结论;(3)过点A作AF⊥BC于点F,过点E作EH⊥BC,延长HE交AD的延长线于点G,利用矩形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质得到EH的长度,再利用等腰直角三角形的性质即可得出结论.【解答】解:(1)1.作出线段CD的垂直平分线,2.以CD为直径画圆,交AB于点E,3.连接DE,CE,则点E为所求.如图,(2)AD与CE之间的数量关系为:AD=CE,理由:连接BD,如图,∵BC=CD,∠C=60°,∴△BCD为等边三角形,∴BD=BC,∠CBD=∠CDB=60°,∵∠ABE=60°,∴∠ABE=∠CBD,∴∠ABD=∠EBC.∵AD∥BC,∴∠ADB=∠CBD=60°,∴∠ADB=∠C=60°.在△ABD和△EBC中,,∴△ABD≌△EBC(ASA),∴AD=EC;(3)过点A作AF⊥BC于点F,过点E作EH⊥BC,延长HE交AD的延长线于点G,如图,∵AD∥BC,AF⊥BC,EH⊥BC,∴四边形AFHG为矩形,∴AF=HG,∠G=∠FAG=90°.∵AB=AE,∠C=∠ABE=45°,∴∠ABE=∠AEB=∠C=45°,∴△ABE,△EHC为等腰直角三角形,∴∠BAE=90°,∠HEC=45°,∴∠GED=∠HEC=45°,∴△DEG为等腰直角三角形,∴DG=EG.∵∠BAE=∠FAG=90°,∴∠BAF=∠GAE.在△BAF和△EAG中,,∴△BAF≌△EAG(AAS),∴AF=AG,∴AG=GH,∴AG﹣DG=GH﹣GE,即:HE=AD=150(米),∴CE=EH=150(米).【点评】本题主要考查了尺规作图,梯形的性质,线段垂直平分线的判定与性质,圆的有关性质,圆周角定理,直角三角形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,等边三角形的判定与性质,作出梯形的高线是解决此类问题常添加的辅助线.24.【分析】(1)将点P(﹣1,2)坐标代入y=kx+b即可得到b=k+2;(2)由(1)可知,直线y=kx+b=kx+k+2(k>0),可得A(﹣,0),B(0,k+2),根据面积公式和均值不等式求出S的取值范围即可;(3)先求出n与k的关系,然后用k表示出E,C的坐标,根据B和P的坐标关系,可以推出E和F 的坐标关系,从而得到F的坐标,代入抛物线解析式求得k值,即可求出C的坐标.【解答】解:(1)∵y=kx+b(k>0)经过点P(﹣1,2).∴﹣k+b=2,∴b=k+2(k>0).(2)由(1)可知,直线y=kx+b=kx+k+2(k>0),∴A(﹣,0),B(0,k+2),S==×(k+2)=×(4+k+),∵k>0,∴(﹣)2≥0,k﹣4+≥0,∴k+≥4,∴S=×(4+k+)≥×(4+4)=4,∴S的取值范围为:S≥4.(3)存在点F使四边形BPEF为平行四边形,理由如下:∵抛物线y=(x﹣k)2+n过点P(﹣1,2),∴2=(﹣1﹣k)2+n,∴n=﹣k2﹣2k+1,∴抛物线为y=(x﹣k)2﹣k2﹣2k+1(k>0),∴C(k,﹣k2﹣2k+1),当x=0,y=﹣2k+1,∴E(0,﹣2k+1),∵四边形BPEF为平行四边形,∴PB∥EF,PB=EF,∵点P向右平移1个单位长度、再向上平移k个单位长度得到点B,∴点E向右平移1个单位长度、再向上平移k个单位长度得到点F,∴F(0+1,﹣2k+1+k)即(1,﹣k+1),∵点F在抛物线上,∴(1﹣k)2﹣k2﹣2k+1=﹣k+1,解得:k=,∴C(,).【点评】本题主要考查了二次函数的性质,熟练掌握待定系数法求解一次和二次函数的解析式以及平行四边形的性质是本题解题的关键.25.【分析】(1)(Ⅰ)利用正方形的性质,勾股定理和直角三角形的边角关系定理解答即可;(Ⅱ)延长CB至点E,使BE=DM,连接AE,利用全等三角形的判定与性质得到EN=MN,设BN=m,DM=n,则MN=EN=m+n,利用直角三角形的边角关系定理得到CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n,利用勾股定理得到m,n的关系式3m=2n,从而CM=DM=n;(2)以AD为边作正方形ADEF,延长AN,交EF于点G,延长EF至点H,使FH=DM,连接AH,MG,延长CB交AF于点K,利用(1)(ii)的方法解答即可得出结论.【解答】(1)(Ⅰ)解:∵四边形ABCD是正方形,∴∠C=90°,∴CM===8,∴∠CMN的余弦值=;(Ⅱ)证明:延长CB至点E,使BE=DM,连接AE,如图,∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠D=90°,在△ABE和△ADM中,,∴△ABE≌△ADM(SAS),∴EN=MN,设BN=m,DM=n,则MN=EN=m+n.∵tan∠BAN==,∴AB=3m,∴BC=CD=AB=3m,∴CN=BC﹣BN=2m,CM=CD﹣DM=3m﹣n.在Rt△CMN中,∵CN2+CM2=MN2,∴(2m)2+(3m﹣n)2=(m+n)2,∴3m=2n.∴CM=3m﹣n=2n﹣n=n,∵DM=n,∴CM=DM,∴M是CD的中点;(2)解:以AD为边作正方形ADEF,延长AN,交EF于点G,延长EF至点H,使FH=DM,连接AH,MG,延长CB交AF于点K,如图,∵四边形ADEF为正方形,∴AF=EF=DE=AD=16,∵四边形ABCD是直角梯形,AD∥BC,∠C=90°,∴四边形AKCD为矩形,∴CK=AD=16,AK=CD=12,∴KN=CK﹣CN=16﹣12=4,∵KN∥EF,∴△AKN∽△AFG,第15页(共15页)∴,∴,∴FG=.∴EG =EF ﹣FG =.在△AFH 和△ADM中,,∴△AFH ≌△ADM (SAS ),∴HG =MG .设DM =x ,则EM =16﹣x ,MG =HG =x ,∵EG 2+EM 2=MG 2,∴,解得:x =8.∴DM 的长为8.【点评】本题主要考查了正方形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,恰当的添加辅助线构造全等三角形是解题的关键。
强化训练:2022年广东省广州市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)

2022年广东省广州市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列计算正确的是( ) A .()222a b a b +=+ B .()()22a b b a a b -+-+=- C .()2222a b a ab b -+=++ D .()22121a a a --=++ 2、若二次函数2y ax =的图象经过点()2,4--,则a 的值为( ) A .-2 B .2 C .-1 D .1 3、正八边形每个内角度数为( ) A .120° B .135° C .150° D .160°4、已知4个数:()20201-,2-,()1.5--,23-,其中正数的个数有( )A .1B .C .3D .4 5、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )·线○封○密○外A .21B .25C .28D .296、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:则a 的值最有可能是( )A .2700B .2780C .2880D .29407、下列计算中正确的是( )A .1133--=B .22256x y x y x y -=-C .257a b ab +=D .224-=8、已知21x =,2y =,且x y >,则x y -的值为( )A .1或3B .1或﹣3C .﹣1或﹣3D .﹣1或39、如果23n x y +与3213m x y --的差是单项式,那么m 、n 的值是( )A .1m =,2n =B .0m =,2n =C .2m =,1n =D .1m =,1n =10、已知23m x y 和312n x y 是同类项,那么m n +的值是( ) A .3 B .4 C .5 D .6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据8,2,6,10,5的极差是_________.2、如图,四边形ABCD 中,AB BC ⊥,AD DC ⊥,116BAD ∠=︒,在BC 、CD 上分别找一点M 、N ,当AMN 周长最小时,AMN ANM ∠+∠的度数是______________.3、已知代数式23x x -的值是2,则代数式2362x x +-的值为______. 4x 的取值范围是________. 5、2021年5月11日,国新办举行新闻发布会公布第七次全国人口普查主要数据结果,全国人口共141147万人,请将141147万用科学记数法表示为 ______________. 三、解答题(5小题,每小题10分,共计50分) 1、如图,点A 、B 在O 上,点P 为O 外一点. (1)请用直尺和圆规在优弧AmB 上求一点C ,使CP 平分ACB ∠(不写作法,保留作图痕迹); ·线○封○密○外(2)在(1)中,若AC恰好是O的直径,设PC交O于点D,过点D作DE AC⊥,垂足为E.若4OE=,求弦BC的长.2、某公司销售部门2021年上半年完成的销售额如下表.(正号表示销售额比上个月上升,负号表示销售额比上个月下降)(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?3、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y (件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:注:月销售利润=月销售量×(售价-进价)(1)求y关于x的函数表达式;(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(3)现公司决定每销售1件商品就捐赠m元利润(6m≤)给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.4、解方程:82521 2157x=-.5、解方程(组)(1)3122123m m -+-=; (2)323123m n m n m n m n +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩.-参考答案-一、单选题1、D【分析】利用完全平方公式计算即可.【详解】解:A 、原式=a 2+2ab +b 2,本选项错误;B 、原式=()2a b --=-a 2+2ab -b 2,本选项错误;C 、原式=a 2−2ab +b 2,本选项错误; D 、原式=a 2+2ab +b 2,本选项正确,故选:D . 【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.2、C【分析】把(-2,-4)代入函数y =ax 2中,即可求a .【详解】·线○封○密·○外解:把(-2,-4)代入函数y =ax 2,得4a =-4,解得a =-1.故选:C .【点睛】本题考查了点与函数的关系,解题的关键是代入求值.3、B【分析】根据正多边形的每一个内角相等,则对应的外角也相等,根据多边形的外角和为360°,进而求得一个外角的度数,即可求得正八边形每个内角度数.【详解】解:∵正多边形的每一个内角相等,则对应的外角也相等,一个外角等于:360845÷=︒∴内角为18045135︒-︒=︒故选B【点睛】本题考查了正多边形的内角与外角的关系,利用外角求内角是解题的关键.4、C【分析】化简后根据正数的定义判断即可.【详解】解:()20201-=1是正数,2-=2是正数,()1.5--=1.5是正数,23-=-9是负数,故选C .【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键. 5、D【分析】根据已知图形得出第n 个图形中圆圈数量为1+4×n =4n +1,再将n =7代入即可得.【详解】 解:∵第1个图形中圆圈数量5=1+4×1, 第2个图形中圆圈数量9=1+4×2, 第3个图形中圆圈数量13=1+4×3, …… ∴第n 个图形中圆圈数量为1+4×n =4n +1, 当n =7时,圆圈的数量为29, 故选:D . 【点睛】 本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题. 6、C 【分析】 计算每组小麦的发芽率,根据结果计算. 【详解】 ·线○封○密○外解:∵96100%=96%100⨯,2877709581923100%96%100%96%100%96%100%96% 30080010002000⨯≈⨯≈⨯≈⨯≈,,,,∴300096%⨯=2880,故选:C.【点睛】此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.7、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可.【详解】解:A、1133--=-,故选项错误;B、22256x y x y x y-=-,故选项正确;C、25a b+不能合并计算,故选项错误;D、224-=-,故选项错误;故选B.【点睛】本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.8、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵21x=,2y=,1,2, x yx y>,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.9、C【分析】根据23nx y+与3213mx y--的差是单项式,判定它们是同类项,根据同类项的定义计算即可.【详解】∵23nx y+与3213mx y--的差是单项式,∴23nx y+与3213mx y--是同类项,∴n+2=3,2m-1=3,∴m=2,n=1,故选C.【点睛】本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.10、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.·线○封○密○外【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.二、填空题1、8【分析】根据“极差”的定义,求出最大值与最小值的差即可.【详解】解:最大值与最小值的差为极差,所以极差为10-2=8,故答案为:8.【点睛】本题考查了极差,掌握一组数据中最大值与最小值的差即为极差是正确判断的前提.2、128°【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图由对称的性质得:AN =FN ,AM =EM∴∠F =∠NAD ,∠E =∠MAB ∵AM +AN +MN =EM +FN +MN ≥EF ∴当M 、N 在线段EF 上时,△AMN 的周长最小 ∵∠AMN +∠ANM =∠E +∠MAB +∠F +∠NAD =2∠E +2∠F =2(∠E +∠F )=2(180°−∠BAD )=2×(180°−116°)=128° 故答案为:128° 【点睛】 本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A 关于BC 、DC 的对称点是本题的关键. 3、-1 【分析】 把2362x x +-变形为()2323x x --,然后把23x x -=2代入计算. 【详解】解:∵代数式23x x -的值是2, ∴23x x -=2, ∴2362x x +-=()2323x x --=3-4=-1.·线○封○密○外故答案为:-1.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.4、1x ≥-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,x +1≥0且x ≠0,解得x ≥−1且x ≠0,故答案为:1x ≥-且0x ≠.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5、1.41147×109【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:141147万=1411470000=1.41147×109.故答案为:1.41147×109【点睛】本题考查用科学记数法表示较大的数,熟练掌握一般形式为10n a ⨯ ,其中110a ≤<,n 是正整数,解题的关键是确定a 和n 的值.三、解答题1、(1)见解析(2)8【分析】 (1)根据垂径定理,先作AB 的垂直平分线,交AB 于点M ,作射线PM 交AmB 于点C ,点C 即为所求; (2)过点O 作OF BC ⊥于点F ,过点D 作DE AC ⊥,则OFC ∠=90DEO ∠=︒,证明FCO ≌EOD △,可得4CF OE ==,进而可得BC 的长. (1) 如图所示,点C 即为所求, (2) 如图,过点O 作OF BC ⊥于点F ,过点D 作DE AC ⊥,则OFC ∠=90DEO ∠=︒ ·线○封○密○外AC 是直径,90ABC ∴∠=︒AB BC ∴⊥OF AB ∴∥1CF CO BF AO∴== CF BF ∴=OD AB ⊥∴∥OD BCDOE FCO ∴∠=∠在FCO 和EOD △中OFC DEO DOE OCF CO DO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FCO ≌EOD △4CF OE ∴==28BC CF ∴==【点睛】本题考查了垂径定理,作垂直平分线,全等三角形的性质与判定,平行线分线段成比例,直径所对的圆周角是直角,掌握垂径定理是解题的关键. 2、(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元 (2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元. 【分析】(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销售额;求出销售额最高与最低之差即可;(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.(1)解:设2020年12月完成销售额为a 万元.根据题意得:2021年上半年的销售额分别为:a -1.6;a -1.6-2.5=a -4.1;a -4.1+2.4=a -1.7;a -1.7+1.2=a -0.5;a -0.5-0.7=a -1.2;a -1.2+1.8=a +0.6, a +0.6-( a -4.1)=4.7(万元); 则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元; (2) 解:由(1)2020年12月完成销售额为a 万元,2021年6月的销售额为a +0.6万元, a +0.6-a =0.6>0, 所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元. 【点睛】 本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键. 3、 ·线○封○密·○外(1)y =-10x +700(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元(3)46m ≤≤【分析】(1)依题意设y =kx +b ,用待定系数法得到结论;(2)该商品进价是40-3000÷300=30,月销售利润为w 元,列出函数解析式,根据二次函数的性质求解;(3)设利润为w ′元,列出函数解析式,根据二次函数的性质求解.(1)解:设y =kx +b (k ,b 为常数,k ≠0),根据题意得:4030045250k b k b +=⎧⎨+=⎩, 解得:10700k b =-⎧⎨=⎩, ∴y =-10x +700;(2)解:当该商品的进价是40-3000÷300=30元,设当该商品的售价是x 元/件时,月销售利润为w 元,根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000 x -21000=-10(x -50)2+4000,∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;(3)解:设利润为w ′元,由题意得,w ′=y (x -30-m ) =(x -30-m )(-10x +700) =-10x 2+1000 x +10mx -21000-700m , ∴对称轴是直线x =101000150202m m +-=+-, ∵-10<0, ∴抛物线开口向下, ∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x 的增大而增大, ∴150522m +≥, 解得m ≥4, ∵6m ≤, ∴46m ≤≤. 【点睛】 本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键. 4、95x =. 【分析】 先计算右边算式,再把系数化为1即可得答案. 【详解】 825212157x =- 8242135x =, ·线○封○密○外95x =. 【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键. 5、(1)135=m (2)42m n =⎧⎨=-⎩ 【分析】(1)方程去分母,去括号,移项合并,把m 系数化为1,即可求出解;(2)把原方程组整理后,再利用加减消元法解答即可.【小题1】 解:3122123m m -+-=, 去分母得:()()3316222m m --=+,去括号得:93644m m --=+,移项合并得:513m = 解得:135=m ; 【小题2】方程组整理得:51856m n m n +=⎧⎨+=-⎩①②, ①×5-②得:2496m =,解得:4m =,代入①中,解得:2n =-, 所以原方程组的解为:42m n =⎧⎨=-⎩. 【点睛】 此题考查了解一元一次方程以及解二元一次方程组,掌握消元的思想和消元的方法是解题的关键,消元的方法有:代入消元法与加减消元法. ·线○封○密○外。
2024年广东省广州市中考模拟数学试题

2024年广东省广州市中考模拟数学试题一、单选题1.如图,几何体由5个相同的小正方体搭成.它的主视图是( )A .B .C .D .2.下列各式中运算正确的是( ) A .321a a -= B .()11a a --+=- C .()22330-+-=D .()3326a a -=3.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米0.000000001=米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米. A .8310-⨯B .90.310-⨯C .9310-⨯D .10310-⨯4.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽取两张卡片,卡片上诗的作者都是李白的概率( ) A .13B .14C .15D .165.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .1736.已知关于x 的一元二次方程()22110k k x x -++=有两个实数根1x ,2x ,且满足()()12112x x ++=,则k 的值是( )A .1k =-B .1k =C .2k =-D .1k =或2k =-7.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14 C .28 D .-568.如图,在等边ABC V 中,D 是边AC 上一点,连接BD ,将BCD △绕点B 按逆时针方向旋转60︒,得到BAE V ,连接ED ,若10BC =,9BD =,则四边形ADBE 的周长是( )A .19B .20C .28D .299.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,正方形ABCD 的边长为4,点E ,F 分别在边DC BC ,上,且BF CE =,AE 平分CAD ∠,连接DF ,分别交AE AC ,于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN AC ⊥,垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM PN +的最小值为③2CF GE AE =⋅;④ADM S =△ )A .1B .2C .3D .4二、填空题11.因式分解:29x y y -=.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3=.13.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为.14.若关于x 的一元二次方程210(0)4ax x a --=≠有两个不相等的实数根,则点(1, 3 )P a a +--在第象限.15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O e 交于,A B 两点,若60AOB ∠=︒,则k 的值是.16.如图,已知正方形ABCD 的边长为2,E 为AB 的中点,F 是AD 边上的一个动点,连接EF ,将AEF △沿EF 折叠得HEF V ,若延长FH 交边BC 于点M ,则DH 的取值范围是.三、解答题17.计算:()11113tan303π-⎛⎫-+--︒ ⎪⎝⎭18.先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中4x =.19.为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20.某文具店准备购进甲、乙两种圆规,若购进甲种圆规10个,乙种圆规30个,需要340元;若购进甲种圆规30个,乙种圆规50个,需要700元. (1)求购进甲、乙两种圆规的单价各是多少元;(2)文具店购进甲、乙两种圆规共100个,每个甲种圆规的售价为15元,每个乙种圆规的售价为12元,销售这两种圆规的总利润不低于480元,那么这个文具店至少购进甲种圆规多少个?21.如图,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且4OA =,2OB =,反比例函数()0ky k x=≠在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标和反比例函数的解析式;(2)若点N 为直线OD 上的一动点(不与点O 重合),在y 轴上是否存在点M ,使以点A 、M 、C 、N 为顶点的四边形是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.22.如图是一个山坡的纵向剖面图,坡面DE 的延长线交地面AC 于点B ,点E 恰好在BD 的中点处,60CBD ∠=︒,坡面AE 的坡角为45°,山坡顶点D 与水平线AC 的距离,即CD 的长为.(1)求BE 的长度;(2)求AB 的长度.(结果保留根号)23.如图,在Rt ABC △中,90ABC ∠=︒,点P 是斜边AC 上一个动点,以BP 为直径作O e ,交BC 于点D ,与AC 的另一个交点为E ,连接DE ,BE .(1)当»»DPEP =时,求证:AB AP =; (2)当3AB =,4BC =时.①是否存在点P ,使得BDE V 是等腰三角形,若存在,求出所有符合条件的CP 的长;若不存在,请说明理由;②连接DP ,点H 在DP 的延长线上,若点O 关于DE 的对称点Q 恰好落在CPH ∠内,求CP 的取值范围.24.已知抛物线22y x mx n =-++经过点(2,23)m -. (1)用含m 的式子表示n ;(2)当0m <时,设该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,ABC V 的外接圆与y 轴交于另一点D (点D 与点C 不重合),求点D 的坐标;(3)若点()13,E y -,()2,F t y ,()31,G m y -在该抛物线上,且当34t <≤时,总有123y y y <<,求3y 的取值范围.25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形. (ⅰ)若6CN =,10MN =,求CMN ∠的余弦值; (ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.。
广东省广州市中考数学模拟试卷(一)(优.选)

∵ ∠ECF= 45º, ∴ ∠ECF = ∠B = 45º,
∴ ∠ECF+∠1 = ∠B+∠1
∵ ∠BCE = ∠ECF+∠1,∠2 = ∠B+∠1;
∴ ∠BCE = ∠2,
∵ ∠A = ∠B ,AC=BC,
∴ △ACF∽△BEC。
∴MN=OB=1,∠PMO=∠CNP=900 ∵ AM PM ,AO=BO=1,
AO BO ∴AM=PM。 ∴OM=OA-AM=1-AM,PN=MN-PM=1-PM, ∴OM=PN, ∵∠OPC=900, ∴∠OPM+CPN=900, 又∵∠O PM+∠POM=900 ∴∠CPN=∠POM, ∴△OPM≌△PCN.
AB BC
AB 8
D
11m .
B
EF
C
21. (本小题满分8分)
用心 爱心 专心
- 10 -
(1)设一次函数表达式为y=kx+b,由温度计的示数得x=0,y=3 2;x=20时
,y=68.将其代入y=kx+b,得(任选其它两对对应值也可)
b 32, 20k b
68.
解得
b k
32, 9. 5
,OM=5,HM=OM×sinα=3,所以OH=4,MB=HA=5-4=1(单位),1×5=5(cm),
所以铁环钩离地面的高度为5cm.(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN
FN
3
3
=∠MOH=α,所以 FM =sinα= 5 ,即得FN= 5 FM,在Rt△FMN中,∠FNM=90°,
所以y=
9 5
x+32.(2)当摄氏温度为零下15℃时,即x=-15,将其代入y=
2024年广东省广州市中考数学模拟试卷(含答案)

2024年广东省广州市中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.舟山市体育中考,女生立定跳远的测试中,以1.97m 为满分标准,若小贺跳出了2.00m ,可记作+0.03m ,则小郑跳出了1.90m ,应记作( )A. ―0.07mB. +0.07mC. +1.90mD. ―1.90m2.设计师石昌鸿耗时两年,将34个省市的风土人情、历史典故转化为形象生动的符号,别具一格.石昌鸿设计的以下省市的简称标志中,是轴对称图形的是( )A.B. C. D.3.下列运算正确的是( )A. x 2⋅x 3=x 6B. 5x ―2x =3C. x 6÷x 2=x 4D. (―2x 2)3=―6x 64.如图,由5个完全相同的小正方体组合成一个立体图形,它的主视图为( )A.B.C.D.5.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到正方形OA 2024B 2024C 2024,那么点A 2024的坐标是( )A. ( 22,― 22)B. (― 22, 22)C. (1,0)D. (0,1)6.如图,将△ABC沿CB向左平移3cm得到△DEF,AB,DF相交于点G,如果△ABC的周长是12cm,四边形ACED周长为( )A. 12cmB. 15cmC. 18cmD. 24cm7.若关于x的一元二次方程x2―3x+m=0有两个不相等的实数根,则实数m的值可以是( )A. 5B. 4C. 3D. 28.在正方形网格中,△ABC的位置如图所示,则tanB的值为( )A. 2B. 12C. 22D. 19.如图所示,二次函数y=ax2+bx+c(a,b,c常数,a≠0)的图象与x轴交于点A(―3,0),B(1,0).有下列结论:①abc>0;②若点(―2,y1)和(―0.5,y2)均在抛物线上,则y1<y2;③9a―3b+c=0;④4a+2b+c>0.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,点P是对角线BD上一点(点P不与B、D重合),连接AP并延长交CD于点E,过点P作PF⊥AP交BC于点F,连接AF、EF,AF交BD于点G,给出四个结论:①AB2+BF2=2AP2;②BF+ DE=EF;③PB―PD=2BF;上述结论中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题:本题共6小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广州中考数学模拟试题一考生须知:1.本试卷分试题卷和答题卷两部分。
满分120分,考试时间100分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1、如果a 与-2互为倒数,那么a 是(▲)A.-2B.-21 C.21D.2 2、据统计,2008“超级男生”短信投票的总票数约327 000 000张,将这个数写成科学数法是(▲)A.3.27×106B.3.27×107C.3.27×108D.3.27×1093、如图所示的图案中是轴对称图形的是(▲)4、已知α为等边三角形的一个内角,则cosα等于(▲)A.21B.22C.23D.335、已知圆锥的侧面积为10πcm 2,侧面展开图的圆心角为36º,则该圆锥的母线长为(▲)A.100cmB.10cmC. 10cmD.10cm 6、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是(▲)A B C D7、为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m ,参考数据:2≈1.414,3≈1.732,5是(▲)A.0.62mB.0.76mC.1.24mD.1.62m8、若反比例函数ky x=的图象经过点(-1,2),则这个函数的图象一定经过点(▲) A 、(2,-1) B 、(12-,2) C 、(-2,-1) D 、(12,2)9、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏. 游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸就不得奖. 参与这个游戏的观众有三次翻牌的机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是(▲)A.14 B.15 C.16 D.32010、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1,x 2是方程x 2+6x ++3=0的两实数根,则21x x +12x x 的值为(▲) A.4 B.6 C.8 D.10二. 认真填一填 (本题有6个小题, 每小题4分, 共24分要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.) 11、分解因式:x 3-4x =___.12、函数函数12-+=x x y 中自变量x 的取值范围是 ;13、要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值是 .14、如图有一直角梯形零件ABCD ,AD∥BC,斜腰DC 的长为10cm ,∠D=120︒,则该零件另一腰AB 的长是 m.A BCD15、某住宅小区6月份随机抽查了该小区6天的用水量(单位:吨),结果分别是30、34、32、37、28、31,那么,请你估计该小区6月份(30天)的总用水量约是 吨. 16、在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+ n .1!=1,2!=2×1,3!=3×2×1,…,n !=n ×(n -1)×(n -2)×…×3×2×1.则20061k k =∑-20071k k =∑+2007!2006!=___. 三. 全面答一答 (本题有8个小题, 共66分 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.) 17(本小题满分6分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;18(本小题满分6分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(要求写出画法).ABC为迎接“城运会”,某射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示:(1)根据下图所提供的信息完成表格(2)如果你是教练,会选择哪位运动员参加比赛?请说明理由.20(本小题满分8分)如图,小丽在观察某建筑物AB.(1)请你根据小亮在阳光下的投影,画出建筑物AB在阳光下的投影.(2)已知小丽的身高为1.65m,在同一时刻测得小丽和建筑物AB的投影长分别为1.2mA和8m,求建筑物AB的高.B温度与我们的生活息息相关,你仔细观察过温度计吗?如图12是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(°F),设摄氏温度为x(℃),华氏温度为y(°F),则y是x的一次函数.(1)仔细观察图中数据,试求出y与x之间的函数表达式;(2)当摄氏温度为零下15℃时,求华氏温度为多少?22(本小题满分10分)如图,已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,(1)求证:△ACF∽△BEC(5分)(2)设△ABC的面积为S,求证:AF·BE=2S(3) AEFC如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=35.(1)求点M离地面AC的高度BM(单位:厘米);(2)11(单位:厘米).②①如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。
P 为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。
过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。
(1)当点C在第一象限时,求证:△OPM≌△PCN;(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。
2010年广州中考数学模拟试题一答案卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 题号 12345678910 答案 BC D A A D C A C D二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. x (x +2)(x -2). 12. 2-≥x 且1≠x ; 13.72. 14. 53. 15.960. 16 0.三. 全面答一答 (本题有8个小题, 共66分)17. (本小题满分6分)原式当12+=a 时,原式18. (本小题满分6分)19. (本小题满分6分)甲众数 6 乙 7 8 2.2 (2)答案不唯一。
选甲运动员参赛理由:从平均数看两人平均成绩一样,从方差看,甲的方差比乙的方差小,甲的成绩比乙稳定;选乙运动员参赛理由:从众数看,乙比甲成绩好,从发展趋势看,乙比甲潜能要大。
ABCB ''A ''A 'B 'C '20. (本小题满分8分)(1)如图.(2)如图,因为DE ,AF 都垂直于地面,且光线DF ∥AC ,所以Rt△DEF ∽Rt△ABC .所以DE EF AB BC =.所以1.65 1.28AB =.所以AB =11(m ).即建筑物AB 的高为21. (本小题满分8分)(1)设一次函数表达式为y =kx +b ,由温度计的示数得x =0,y =32;x =20时,y =68.将其代入y =kx +b ,得(任选其它两对对应值也可)32,2068.b k b =⎧⎨+=⎩解得32,9.5b k =⎧⎪⎨=⎪⎩所以y =95x +32.(2)当摄氏温度为零下15℃时,即x =-15,将其代入y =95x +32,得y =95×(-15)+32=5.所以当摄氏温度为零下15℃时,华氏温度为5°F.22. (本小题满分10分)证明:(1) ∵ AC=BC , ∴ ∠A = ∠B ∵ ∠ACB=90º, ∴ ∠A = ∠B = 45 0,∵ ∠ECF= 45º, ∴ ∠ECF = ∠B = 45º, ∴ ∠ECF +∠1 = ∠B +∠1∵ ∠BCE =∠ECF +∠1,∠2 = ∠B +∠1;∴ ∠BCE = ∠2, ∵ ∠A = ∠B ,AC=BC ,∴ △ACF ∽△BEC 。
(2)∵△ACF ∽△BEC∴ AC = BE ,BC = AF , ∴△ABC 的面积:S =21AC ·BC = 21BE ·AF ∴AF ·BE=2S.F23. (本小题满分10分)过M作AC平行的直线,与OA,FC分别相交于H,N.(1)在Rt△OHM中,∠OHM=90°,OM =5,HM=OM×sinα=3,所以OH=4,MB=HA=5-4=1(单位),1×5=5(cm),所以铁环钩离地面的高度为5cm.(2)因为∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,所以FNFM=sinα=35,即得FN=35FM,在Rt△FMN中,∠FNM=90°,MN=BC=AC-AB=11-3=8(单位),由勾股定理FM2=FN2+MN2,即FM2=(35FM)2+82,解得FM=10(单位),10×5=50(cm),所以铁环钩的长度FM为50cm.24. (本小题满分12分)(1)∵OM∥BN,MN∥OB,∠AOB=900,∴四边形OBNM为矩形。