计量分位数回归 eviews
计量经济学EViews操作

计量经济学作业操作过程详解1.进入Eviews软件2.主菜单-->File--->Workfile3.打开工作文件范围选择框,选择Annual,分别输入1985,1998。
点击完成。
4.数据输入:方法一:导入excel文件中的数据1)在excel中先建立数据文件2)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。
此时工作文件中出现变量图标。
方法二:手工数据输入主菜单--->Quick----->Empty Group分别输入变量Y、GDP的数据。
点击obs后面的灰色格子中分别输入Y、GDP。
(方法一:一个一个输入方法二:在Excel中输入完再复制粘贴)5.主菜单---->Quick----->Estimate Equation打开估计模型对话框,输入Y C GDP ,(如上图所示,注意字母之间要有空格)点击OK键。
得出Eviews的估计结果:β(上面还要带个帽子,电脑打不出来),26.95415为1β。
其中12596.27为0第五步可以直接输入LS Y C GDP 等出结果6.一元线性回归模型的预测1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。
计量经济学eviews表解读

计量经济学eviews表解读Eviews 是一种广泛使用的计量经济学软件,可用于数据分析和模型构建。
在 Eviews 中,用户可以通过输出表来查看分析结果。
下面将介绍 Eviews 输出表的解读方法。
1. 参数估计表参数估计表是 Eviews 输出表中最基本的表之一。
它包含了模型中所有参数的估计值、标准误差以及置信区间。
参数估计表可以帮助我们了解模型的参数估计情况,判断模型是否成立。
2. 估计误差表估计误差表是 Eviews 输出表中另一个重要的表。
它包含了模型中所有估计误差的值和标准误差。
估计误差表可以帮助我们了解模型的估计误差情况,判断模型是否准确。
3. 统计量表统计量表是 Eviews 输出表中用于描述模型结果的表。
它包含了模型中所有统计量的估计值、标准误差以及置信区间。
统计量表可以帮助我们了解模型的结果,判断模型是否显著。
4. 模型诊断表模型诊断表是 Eviews 输出表中用于诊断模型的表。
它包含了模型中所有变量的显著性、相关性、缺失值等因素的诊断结果。
模型诊断表可以帮助我们诊断模型的问题,从而优化模型。
5. 估计方程表估计方程表是 Eviews 输出表中用于估计方程的表。
它包含了模型中所有方程的估计值、标准误差以及置信区间。
估计方程表可以帮助我们了解模型的估计方程情况,判断模型是否成立。
6. 方差分析表方差分析表是 Eviews 输出表中用于方差分析的表。
它包含了模型中所有变量的方差分析结果,包括总体方差、组间方差和组内方差等。
方差分析表可以帮助我们了解模型的方差分析情况,判断模型是否显著。
Eviews 输出表的解读可以帮助我们了解模型的结果和问题,从而优化模型并得出结论。
EVIEWS回归结果的理解

EVIEWS回归结果的理解在经济学和统计学中,回归分析是一种常用的方法,用于研究变量之间的关系。
EVIEWS是一款常用的计量经济学软件,通过进行回归分析,可以得到一系列统计结果。
本文将介绍EVIEWS回归结果的理解,并解释这些结果对研究的意义和解释。
一、回归方程在进行回归分析后,EVIEWS将给出一个回归方程。
回归方程表示了自变量与因变量之间的关系。
通常,回归方程的形式为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y代表因变量,X1、X2、...、Xk代表自变量,β0、β1、β2、...、βk代表回归系数,ε代表误差项。
回归系数可以理解为自变量对因变量的影响程度,而误差项表示了模型无法解释的部分。
二、回归系数的解释EVIEWS给出的回归结果中,包含了回归方程中自变量的回归系数。
这些回归系数可以帮助我们理解自变量对因变量的影响。
回归系数的正负值表示变量间的正相关或负相关关系,绝对值大小表示相关关系的强弱程度。
需要注意的是,回归系数的统计显著性非常重要。
EVIEWS会给出回归系数的t值和p值,用于判断回归系数是否显著。
如果p值小于设定的显著性水平(通常为0.05),则认为回归系数是显著的,即表明自变量对因变量的影响是存在的。
三、决定系数(R-squared)在EVIEWS回归结果中,还会给出一个被称为决定系数的统计量,用于衡量回归模型对因变量的解释程度。
决定系数的取值范围在0到1之间,越接近1表示回归模型对因变量的解释能力越强。
需要注意的是,决定系数并不代表回归模型的好坏。
一个决定系数较高的回归模型并不一定是更好的模型,因为决定系数受到样本大小、变量选择等多个因素的影响。
因此,在解读决定系数时,需要结合实际问题和模型的适用性进行综合评估。
四、残差分析在EVIEWS回归结果中,还会给出一系列统计指标,用于评估回归模型的拟合优度和模型的合理性。
其中,残差是一项重要指标。
如何用EVIEWS做统计回归分析

时间序列数据
第一步:打开EViews,点击File,再点击Workfile
第二步:在新打开的界面中,Workfile structure type选择“Date-regular frequency”,在start date,输入1960,在End date输入1999,然后点击0k
点击上个界面里的OK后,出现以下界面
第三步:点击最上面的“Quick”——“Empty Group(Edit Series)
点击后出现以下界面
第四步:在表格的obs一行中输入变量英文简称,例如输了y之后,会出现一个小小的窗口(见右下图),直接按OK就行,输入每个变量英文简称时都会出现这个小窗口。
另外输入变量的数据记得要和EXCEL表里变量出现的数据一致
第五步:将数据用EXCEL表格中复制粘贴到Eviews中去,记住在复制数据前先将excel里的数据类型调整为数值型
第6步:选择QUICK——estimate equation,然后在出现的窗口里输入y、C、pb、pc、yd(这里的C是常数C),再点击0K就出现了。
记住,在出现的窗口里先输入因变量,再输入其他变量。
统计回归结果
非时间序列数据,除了第二步不同外,其他都一样
第二步:在新打开的界面中,Workfile structure type选择“Unstructured/Undated”,在observations里输入样本量,然后点击0k。
计量经济学---EViews的基本操作案例

说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
(3)画散点图
确定了模型后,需要在直观上初步探明变量之间的相互关系,
为此,以人均年收入为横轴,以人均年消费支出为纵轴,描 出样本变量观测值的散点分布图。如下图所示:
根据上图散点分布情况可以看出,在1985~2001年期间,我国城镇
居民人均年消费和可支配收入之间存在较为明显的线性关系。
(4)显示估计结果Fra bibliotekTHANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
Xi——表示城镇居民人均年收入水平 ui——表示随机误差项 现给定样本观测值(Xi,Yi),i=1,2,…,17,n=17为样本容量。则建立样 本回归模型:Yi=β0+β1Xi+ei 其中,β0,β1分别为β0、β1的估计值,ei为残差项。样本回归方程: Ŷi=β0+β1Xi 其中,Ŷi表示样本观测值Yi的估计值。
计量经济学软件Eviews6.0基本操作

计量经济学软件EVIEWS6.0基本操作一、什么是EVIEWSEVIEWS (ECONOMETRIC VIEWS)软件是QMS(QUANTITATIVE MICRO SOFTWARE)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EVIEWS软件主要应用在经济学领域,可用于回归分析与预测(REGRESSION AND FORECASTING)、时间序列(TIME SERIES)以及横截面数据(CROSS-SECTIONAL DATA )分析。
与其他统计软件(如EXCEL、SAS、SPSS、stata、R)相比,EVIEWS功能优势是菜单操作简单明了,使用方法,非常适用计量经济学初级学员。
本手册对EVIEWS软件6.0版本进行简单介绍,目的是让初级学员通过本章介绍,能够对学过的计量经济理论和方法进行简单应用,以便完成本书所述的相关实验项目。
二、EVIEWS安装EVIEWS6.0文件安装包大小约190MB,可在网上下载①。
下载完毕后,按照包中安装文件所述安装方法安装该软件。
安装完毕后,将快捷键发送的桌面,电脑桌面显示有EVIEWS6.0图标,整个安装过程就结束了。
双击EVIEWS按钮即可启动该软件(图1),图1所示界面称为EVIEWS软件主窗口,主窗口中的菜单,如File菜单称为EVIEWS主菜单。
图1三、Eviews工作特点初次使EVIEWS6.0计量经济学软件,必须了解其工作过程。
如,想要完成一个校准一元线性回归模型的参数估计,必须要完成两大步工作。
第一大步工作就是在建立一个工作文档(即EVIEWS6.0中的Workfile文档)、建立变量、导入数据;第二大步工作是在第一大步工作的基础上,根据模型特征,选用适当的参数估计方法,完成参数估计及相关检验。
四、具体示例在这里,我们通过一个简单的标准一元线性回归模型的估计过程来说明Eviews软件完成回归分析的基本过程。
基于Eviews的分位数回归分析课件

基于Eviews的分位数回归分析
• 考察此最小化问题的一阶条件为:
0d( Fy)(1)d( Fy)
(4.7.4)
y
y
(1F()) (1)F()F()
• 即F() = ,也就是说F(Y)的第 个分位数是上述优化问题的解。
基于Eviews的分位数回归分析
系数协方差的估计
• 1.独立同分布设定下协方差矩阵的直接估计方法 • (1)Siddiqui 差商法 • (2)稀疏度的核密度估计量 • 2.独立但不同分布设定下协方差矩阵的直接估计方法 • 3.自举法(Bootstrap) • (1)X-Y自举法 • (2)残差自举方法 • (3)马尔可夫链边际自举法
• 1. 方法选择
• 为了使用分位数回归方法估计方程,在方程设定对话框的估计方法 中选择“QREG”,打开分位数回归估计对话框:
•
图4.15 分位数回归
• “Quantile to estimate”后面输入值,可以输入0~1之间的任意数值, 默认值是0.5,即进行中位数回归。
基于Eviews的分位数回归分析
0.24 (0.25)
ˆ2
0.62
0.93
0.74
0.46
(0.001) (0.00) (0.0002) (0.16)
0.13
0.08
0.11
0.13
ˆ3
(0.001) (0.08) (0.009) (0.03)
R2
0.99
0.96
0.97
0.96
注:括号内为弹性系数的t值; Quant20, Quant50, Quant80分别
基于Eviews的分位数回归分析
模型评价和检验
• 1.拟合优度
EVIEWS回归结果的理解

EVIEWS回归结果的理解在数据分析的领域中,EViews 是一款被广泛使用的统计软件,其回归分析功能对于研究变量之间的关系起着至关重要的作用。
然而,对于初学者或者非统计学专业的人士来说,理解 EViews 回归结果可能会感到困惑。
接下来,让我们一起深入探讨如何理解 EViews 回归结果。
首先,我们要明白回归分析的目的。
简单来说,回归分析是试图找出一个或多个自变量与因变量之间的线性或非线性关系。
在 EViews 中,我们输入相关的数据,并指定自变量和因变量,然后运行回归程序,得到一系列的结果。
当我们得到回归结果时,最先关注的通常是系数估计值。
这些系数表示了自变量每变化一个单位,因变量的平均变化量。
例如,如果我们研究工资(因变量)与工作年限(自变量)的关系,工作年限的系数为 500,这意味着工作年限每增加一年,平均工资会增加 500 元。
但要注意,这些系数的解释是在其他自变量保持不变的情况下得出的。
除了系数估计值,标准误差也是一个重要的指标。
标准误差反映了系数估计值的不确定性。
较小的标准误差意味着系数估计值相对更准确和可靠。
我们可以通过系数除以标准误差来得到 t 统计量。
t 统计量用于检验系数是否显著不为零。
如果 t 统计量的绝对值大于某个临界值(通常由我们设定的显著性水平决定,如 5%或 1%),我们就可以说该自变量对因变量有显著的影响。
另一个关键的指标是 Rsquared(决定系数)。
Rsquared 的值介于 0到 1 之间,它表示自变量能够解释因变量变异的比例。
例如,Rsquared 为 08 意味着自变量能够解释因变量 80%的变异。
然而,需要注意的是,Rsquared 高并不一定意味着模型就是完美的,有可能存在过拟合的问题。
调整后的 Rsquared 则是对 Rsquared 的一种修正,考虑了模型中自变量的个数。
当我们添加过多不显著的自变量时,Rsquared 可能会增加,但调整后的 Rsquared 可能会下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共计
2420
21450 21285
15510
• 由于不确定因素的影响,对同一收入水平X, 不同家庭的消费支出不完全相同; • 但由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的,即以X的给定值为条 件的Y的条件分布(Conditional distribution) 是已知的,例如:P(Y=561|X=800)=1/4。 • 因此,给定收入X的值Xi,可得消费支出Y的条 件均值(conditional mean)或条件期望 (conditional expectation):E(Y|X=Xi)。 • 该例中:E(Y | X=800)=605
V yi xi β
i 1
N
针对LAD方法的回归估计是条件分位点回归的一种特殊情况, 通常被人们称为“中位数回归”。 分位数回归的系数估计需要求解线性规划问题,很多种方法 可以对此问题进行求解。
1、条件均值(conditional mean)
• 例2.1.1:一个假想的社区有99户家庭组成, 欲研究该社区每月家庭消费支出Y与每月家庭 可支配收入X的关系。 即如果知道了家庭的月 收入,能否预测该社区家庭的平均月消费支出 水平。 • 为达到此目的,将该99户家庭划分为组内收入 差不多的10组,以分析每一收入组的家庭消费 支出。
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入 X(元) 800 每 月 家 庭 消 费 支 出 Y (元) 561 594 627 638 1100 638 748 814 847 935 968 1400 869 913 924 979 1012 1045 1078 1122 1155 1188 1210 1700 1023 1100 1144 1155 1210 1243 1254 1298 1331 1364 1408 1430 1485 2000 1254 1309 1364 1397 1408 1474 1496 1496 1562 1573 1606 1650 1716 2300 2600 2900 1969 1991 2046 2068 2101 2189 2233 2244 2299 2310 3200 2090 2134 2178 2266 2354 2486 2552 2585 2640 3500 2299 2321 2530 2629 2860 2871 1408 1650 1452 1738 1551 1749 1595 1804 1650 1848 1672 1881 1683 1925 1716 1969 1749 2013 1771 2035 1804 2101 1870 2112 1947 2200 2002 4950 11495 16445 19305 23870 25025
假设随机变量 Y 的概率分布为:
F ( y) Prob(Y y)
Y 的 分位数定义为满足 F(y) 的最小 y 值,即:
(4.7.1)
q( ) inf{ y : F ( y) } , 0 1
(4.7.2)
图4.7.1 cs 变量的累积分布函数F(y)
图4.7.2 cs 变量的分位数分布函数q()
其中,argmin{}函数表示取函数最小值时 的取值,
(u) u( I(u < 0)) 称为检查函数(check function),
依据 u 取值符号进行非对称的加权,这里 u y 。
1 , u 0 I (u 0) 0 , u 0
一般的 分位数回归的检查函数为:
(4.7.7)
现假设 Y 的条件分位数由 k 个解释变量组成的矩阵 X 线
性表示:
q | xi , β ( ) xi β ( )
(4.7.8)
其中,xi =(x1i,x2i,…,xki) 为解释变量向量,( ) =(1, 2,…,k )是 分位数下的系数向量。当 在 (0, 1) 上变动时, 求解下面的最小化问题就可以得到分位数回归不同的参数估 计:
u u I u 0
其中, I Z 为示性函数,Z是指示关系式。 当分位数为0.5时,就是最小一乘回归,即 中位数回归。
考察此最小化问题的一阶条件为:
0
y
dF ( y) (1 ) dF ( y)
y
(1 F ( )) (1 ) F ( ) F ( )
(4.7.4)
即F() = ,也就是说F(Y)的第 个分位数是上述优化问题的解。 F(y) 可以由如下的经验分布函数替代:
1 FN ( y ) N
I(y
i 1
N
i
y)
(4.7.5)
其中 y1,y2,…,yn 为Y 的 N 个样本观测值;I(z) 是指示函数,z 是条件关系式,当 z 为真时,I(z) = 1;当 z 为假时,I(z) = 0。式 (4.7.3)中条件关系式 z 为 yi y,当 yi y 时,I(yi y) = 1,否 则取值为0。
分位数回归(Quantile Regression)最早由科恩克 和巴塞特 (Koenker 和Bassett, 1978)于1978年提出 ,它 提供了回归变量 X 和因变量Y 的分位数之间线性关系的
估计方法。绝大多数的回归模型都关注因变量的条件均
值,但是人们对于因变量条件分布的其他方面的模拟方 法也越来越有兴趣,尤其是能够更加全面地描述因变量 的条件分布的分位数回归。
为线性函数。其中,0,1是未知参数,称为 回归系数(regression coefficients)。
1、样本回归函数
• 问题:能否从一次抽样中获得总体的近似信息? 如果可以,如何从抽样中获得总体的近似信息? • 在例2.1.1的总体中有如下一个样本,能否从该 样本估计总体回归函数?
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 X Y 800 1100 1400 594 638 1122 1700 2000 2300 1155 1408 1595 2600 1969 2900 2078 3200 2585 3500 2530
利用分位数回归解决经济学问题的文献越来越多, 尤其是在劳动经济学中取得了广泛应用。如在教育回报和 劳动市场歧视等方面都出现了很好的研究成果。在经济学 中的应用研究还包括诸如财富分配不均问题、失业持续时
间问题、食品支出的恩格尔曲线问题、酒精需求问题和日
间用电需求问题等。在金融学领域也涌现出大量使用分位 数回归的应用研究成果,主要应用领域包括风险价值 (Value at Risk, VaR)研究和刻画共同基金投资类型的指 数模型。
E (Y | X i ) f ( X i )
• 含义:回归函数(PRF)说明被解释变量Y的 平均状态(总体条件期望)随解释变量X变化 的规律。 • 函数形式:可以是线性或非线性的。 • 例2.1.1中,将居民消费支出看成是其可支配收 入的线性函数时:
E (Y | X i ) 0 1 X i
分位数回归(QRM)方法及其应用
管理与经济学院
夏先锋
主要内容:
分位数回归的基本介绍 系数协方差的估计方法
模型评价与检验 基于Eviews的分位数回归
一、分位数回归的提出
传统的回归分析主要关注均值,即采用因 变量条件均值的函数来描述自变量每一特定数 值下的因变量均值,从而揭示自变量与因变量 的关系。这类回归模型实际上是研究被解释变 量的条件期望,描述了因变量条件均值的变化。 人们当然也关心解释变量与被解释变量分 布的中位数,分位数呈何种关系。这就是分位 数回归,它最早由凯恩克(Koenker Roger)和 巴西特(Bassett Gilbert Jr)于1978年提出, 是估计一组回归变量X与被解释变量Y的分位数 之间线性关系的建模方法,强调条件分位数的 变化。
V
i: yi xi β
y xβ (1 ) y xβ
i i i: yi xi β i i
(4.7.10)
当 =0.5时称为最小绝对值离差法(Least Absolute Deviations, LAD),(4.7.10) 式的2倍就是LAD估计的精确的目标函数:
中位数是一个特殊的分位数,它表示一种分 布的中心位置。中位数回归是分位数回归的 一种特殊情况,其他分位数则可以用来描述 一种分布的非中心位置。第p个百分位数表 示因变量的数值低于这一百分位数的个数占 总体的p%.因此,分位数可以指定分布中的 任何一个位置。
4.7.1 分位数回归的基本思想和系数估计
分位数回归参数估计的思想
与LR估计量明显不同的QR估计量的特点在 于,在QR中数据点到回归线距离的测量通 过垂直距离的加权总和(没有平方)而求 得,这里赋予拟合线之下的数据点的权重 是1-τ,而赋予拟合线之上的数据点的权重 则是τ.对于τ的每一个选择,都会产生各自 不同的条件分位数的拟合函数,这一任务 是为每一个可能的寻找适合的估计量。
• 描出散点图发现:随着收入的增加,消费“平 均地说”也在增加,且Y的条件均值均落在一 根正斜率的直线上。
3500 每 月 消 费 支 出 Y (元) 3000 2500 2000 1500 1000 500 0 500 1000 1500 2000 2500 3000 3500 4000 每月可支配收入X(元)
F(y)的 分位数可以由最小化关于 的目标函数得到,即:
q( ) arg min y dF ( y ) (1 ) y dF ( y ) y y (4.7.3) arg min ( y )dF ( y )
N ˆ β N ( ) arg min β ( ) yi x i β ( ) i 1
(4.7.9)
类似OLS方法,可以通过最小化(4.7.3)式的目标函数(V)获得 的第 个分位点回归估计量。例如,用 作为正误差项的权重, 用(1− ) 作为负误差项的权重的非对称绝对值误差加权平均: