高层建筑结构的风振控制技术综述

合集下载

结构振动控制技术综述

结构振动控制技术综述

结构振动控制技术综述课程名称:工程振动与检测姓名: X X X学号:X X X指导教师: X X X完成日期:2015年1月20日结构振动控制技术综述XXX(XXXX大学土木工程系,南京 210094)摘要本文对结构振动控制领域的研究、应用以及发展做出了综合评述。

文中首先指出了近年来结构振动控制发展的概况,再根据结构振动控制的分类介绍了被动控制、主动控制、半主动控制和混合控制,然后介绍了振动控制的控制理论并应用实例,最后提出了一些未来结构振动控制发展所需要解决的问题。

关键词振动控制调谐质量阻尼器(TMD)主动质量阻尼器(AMD)Summary About Structural Vibration Control TechnologyZhang lifeng(Department of Civil Engineering, Nanjing University of Since and Technology,Nanjing 210094, China)Abstract This article reviews recent research,applications and progress in the field of structural vibration control.firstly,it points out recent development overview of structural vibration control and then introduces passive control, active control, semi-active control and hybrid control.After that ,it introduces the theory and applications of structural vibration control.Finally,some question needed be solved about structural vibration control are asked.Keyword structural vibration control t uned mass damper active mass damper1 前言近十几年来,结构振动控制的研究在国内外都十分的活跃,其研究成果和在抗风抗震中的应用具有重大的意义。

浅谈高层建筑抗风设计及风振有效控制方法

浅谈高层建筑抗风设计及风振有效控制方法
载的试验中 , 型风洞试验是必不可少 的。 模 22风荷载分类 . 221 风向荷 载 ..顺 顺 风向风荷载 , 即与风的方向一致的风力作用 , 是高层建筑承受 的
构 的动力反应 。被动 控制的 主要思想 就是通过增加结 构阻尼 , 高构 提 件 延性 以及采用 附加的耗能 系统来 提高建筑 的抗振 能力以及舒适 性。 对 于钢结构而言重量 轻 、 阻尼小 , 以更易采用结构 振动控制措施 , 所 以
开发 了具有多种耗能机制的复合型耗 能器 。 耗能减振系统可分 为两类 : 1耗能构件减振体系 , ) 利用结构 的非承重构件作 为耗能装置 , 常用 的耗能构件包括耗能支撑 、 耗能剪力墙等 。 2 阻尼 器减振系统 , ) 包括摩擦阻尼器 、 软钢和合金 阻尼器 、 阻尼 铅 器、 粘弹性阻尼器 V D 油阻尼器等 。 E 、
1前 言 .
T MD 系统
31 制的概念 .控 ’ 控制最早是 由 K b r M n i 16 年 提出的 。与结 构 自身 的加 ao 和 i 在 9 0 i a 固和加强相 比 , 结构 中引进 附加控制系统具 有明显 的优势 。从 策略上
随着全球经济 的迅速发展 , 在世 界各地 区都 兴建了大量 的( ) 超 高 层建筑 , 超 ) 在( 高层建筑结构抗侧力体系设计 中, 一般风荷载和地震荷 载是主要 的荷 载。风压会造成 高层建筑产生 过大的变形 和振 动 , 如果 建筑抗 风设 计不当 , 或者导致建筑产生过大的变形 , 会致使建筑产生局
提高结构 的抗风抗震能力 。 3 .耗能减振系统 .1 2 耗 能减振 技术 主要通过在 结构 的某些部 位增设 耗能 器或耗 能部
件, 为结构提供一定 的附加 刚度 或附加阻尼 。在风荷 载作用 时 , 阻尼器 产生较大 的阻尼 , 大量耗散能量 , 使主体结构 的动力反应减小 , 从而更 好地保护 主体 结构的安全 , 一种有效 、 是 安全 、 经济且 日 成熟的工程 渐 减振技术。 目前开发的耗能装置主要有金属耗能器 、 摩擦耗能器 、 粘弹

超高层建筑结构风振响应及控制

超高层建筑结构风振响应及控制
列 阵 ;【() 为结 构上 的 L×1阶控 制 力 向量列 阵 , { £) , L 为控 制力数 ;H] [ 为控 制力作用 位置 矩阵 。
形 ; 构在反 复风振 作 用 下产 生 疲 劳破 坏 ; 结 构气 结 使 动弹性 不稳定 ; 结构 震动加 剧 , 响高层 住宅舒适 度 。 影
有被 动控制 ( 如安 装黏 滞阻尼 器 、 弹性阻尼 器 、 频 黏 调
质量 阻 尼 器 、 频 液 体 阻 尼 器 ) 智 能 控 制 和 主 动 调 、
控 制 ] 。
结 构风振 控制 的原理是 在结 构发 生风振 反应时 , 由设 置在 结构 上 的一些 控 制装 置 主 动或 者 被 动地 施 加 一组控 制力 , 以达 到减少 和抑制风 振反应 的一 种方
数相同。
置在 结构顶 部 以控 制 风 振 反 应 , 结 构第 一 、 二 振 使 第
型 的阻尼水 平从 1 %和 0 4 . %增加 到 1 2 和 1 5 , .% .%
( )在伸 臂桁 架 层 的斜 撑 替 换 为 人 字 形 安 装 的 3
2 风 振控 制 应 用
结 构 体系 中, 风振 控 制装 置 属非 承 重构 件 , 功 其
能仅在 结构 中发 挥 耗 能 作 用 , 不 承担 导 荷 承 载 作 而 用, 即增 加风振 控制装 置不 改变主 体结构 竖 向受力 体 系 。一 般情 况下 , 构 越 高 、 柔 、 结 越 跨度 越 大 、 振动 越 强 、 压越 高 , 控制效 果越显 著 。 风 则
器对 其进 行风振 控制 , 使结 构阻 尼 比从 0 8 . %提 高到
作者简介: 国军( 9 3 , , 徐 1 7 一)男 江苏南通人 , 合肥工大建设监理有限责任公 司工程师 22 《 1 工程与建设》 2 1 年第 2 01 5卷第 2期

超高层建筑结构风振响应分析与抑制技术研究

超高层建筑结构风振响应分析与抑制技术研究

超高层建筑结构风振响应分析与抑制技术研究超高层建筑是现代城市的标志性建筑之一,然而,随着建筑高度的增加,其在强风环境下存在严重的风振问题。

风振现象不仅会导致超高层建筑剧烈的摇摆,甚至可能引发结构破坏和安全隐患。

因此,研究超高层建筑结构风振响应分析与抑制技术具有重要的工程应用价值。

首先,针对超高层建筑结构风振问题的研究,需要进行风洞试验和数值模拟分析。

风洞试验可以通过模拟真实的风场环境,获取结构在风力作用下的响应。

通过风洞试验可以确定结构的风荷载分布及其对结构的力学性能的影响。

同时,数值模拟分析也是研究超高层建筑结构风振响应的重要手段。

基于ANSYS等有限元软件,可以对超高层建筑进行模拟,预测结构的风振响应。

其次,为了减小超高层建筑的风振响应,需采取有效的抑制技术。

目前,常用的抑制技术主要包括被动控制、主动控制和半主动控制。

被动控制技术是通过优化结构的刚度和阻尼特性,减小结构对风荷载的响应。

常见的被动控制技术包括质量调节、增加剪力墙等。

主动控制技术则是通过使用传感器和执行器,对结构进行实时监测和调节,以抑制结构的振动。

而半主动控制技术则是被动和主动控制的结合,兼具两者的优点。

在具体研究超高层建筑结构风振响应分析与抑制技术的过程中,需要考虑多方面的因素。

首先,要充分地了解超高层建筑的结构特点和风动力学特性。

超高层建筑的结构比较复杂,一般由钢结构和混凝土结构组成。

其风动力学特性则受到结构形态和风洞效应的影响。

因此,在进行风振响应分析时,需要综合考虑这些因素,并建立准确的数学模型。

此外,对于超高层建筑的风振响应抑制技术研究,还需考虑经济性和可行性。

抑制技术的实施会增加工程的投资成本,因此,需要权衡抑制效果与成本。

同时,超高层建筑已经建成,抑制技术的实施需要考虑施工的可行性和结构的可操作性。

因此,在研究过程中还需要充分考虑这些实际问题,并提出合理的解决方案。

总结而言,超高层建筑结构风振响应分析与抑制技术研究是一个复杂且具有挑战性的课题。

超高层建筑的风振与地震响应分析

超高层建筑的风振与地震响应分析

超高层建筑的风振与地震响应分析随着城市化进程的不断加速,超高层建筑的兴起成为现代城市的一道亮丽风景线。

然而,由于其高度和结构特点,超高层建筑在面临风振和地震的时候存在一定的风险。

因此,进行针对性的风振与地震响应分析显得十分必要。

一、风振分析1.风振现象超高层建筑受到风力作用时,会产生风振现象。

当风通过建筑物引起周围气流幅度的波动时,会导致建筑物产生共振,进而引起建筑物的摇晃现象。

2.风振原因风振是由于风对建筑物的作用力引起的。

一方面是由于风对建筑物的外表面产生的压力差,另一方面则是由于建筑物自身的气动力引起的。

3.风振测量为了对超高层建筑的风振进行分析,一种常用的方法是通过安装风力测量仪器进行实时监测。

风力测量仪器可以记录下风的方向、风速和风力周期等数据,有助于建筑师了解到风对建筑物的影响。

4.风振抑制为了减少超高层建筑的风振,可以采取一系列的措施,如增加建筑物的整体刚度、合理设计建筑物外形,或者采用风洞试验等方法。

二、地震响应分析1.地震现象地震是地壳发生剧烈震动的自然现象。

当地震发生时,超高层建筑会受到地震波的作用,并产生相应的响应。

2.地震原因地震是由地壳运动引起的,可以分为板块运动引起的地震和火山地震两种。

超高层建筑所在地的地壳活动程度,决定了其面临地震风险的大小。

3.地震分析方法为了对超高层建筑的地震响应进行分析,可以采用有限元方法。

该方法可以把建筑物分为很多小块,通过计算每个小块的振动特性,并将其耦合起来,从而得到整个建筑物的地震响应。

4.地震设计超高层建筑在设计的时候,需要考虑到地震的影响,因此需要进行地震设计。

地震设计包括选择合适的地震烈度、确定地震力的作用方向和大小、设计合理的抗震结构等等。

结语超高层建筑的风振与地震响应分析是对其结构稳定性和安全性进行评估的重要手段。

通过对风振和地震的分析,可以发现并解决存在的问题,确保超高层建筑在面对自然灾害时能够安全稳定。

因此,在超高层建筑的规划和设计过程中,应该重视风振与地震响应分析的重要性,并采取相应的措施保障建筑物的安全。

高层建筑的风振控制研究

高层建筑的风振控制研究

高层建筑的风振控制研究摘要:高层建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。

文中分析了高层建筑的外部风环境、内部风环,以及风振控制中的被动控制、主动控制和混合控制系统,这一研究对于高层建筑安全设计具有一定意义。

关键词:风振控制;建筑风环境;控制系统0 引言高层建筑和高耸结构正向着日益增高和高强轻质的方向发展,使得结构的刚度和阻尼不断下降,直接影响了高层建筑和高耸结构的正常使用。

建筑在风振作用下可能产生显著的振动,引起居住者或使用人员的不舒适感,降低生活质量或生产效率,因此结构抗风设计还必须满足舒适度的要求。

本文基于人员不舒适感分析了高层建筑风振控制,这一研究对于高层建筑安全设计具有一定意义。

1 高层建筑的风环境1.1 外部风环境根据高层建筑物的外形,相互布局情况及风的相对方向,有可能测得的建筑物外部环境的不舒适参数Ψ值,在风振舒适感控制中都是基于下述效应为基础。

(1)压力连通效应:当风垂直吹向错开排列的高层建筑物时,若建筑物间的距离小于建筑物的高度,则有部分压力较高的风流向背面压力较低的区域,形成街道风,在街道上形成不舒适区域。

(2)间隙效应:如图2所示,当风吹过突然变窄的剖面时(如底层拱廊),在该处形成不舒适区域。

图2 间隙效应(3)拐角效应:如图3所示,当风垂直吹向建筑物时,在拐角处由于迎面风的正压与背面风的负压连通形成一个不舒适的拐角区域;有时,当两幢并排建筑物的间距L≤2d(d为建筑物沿风向的长度)时,两幢间也形成不舒适区域。

图3 拐角效应(4)尾流效应:如图4所示,在高层建筑物尾流区里,自气流分离点的下游处,形成不舒适的涡流区。

图4 尾流效应(5)下洗涡流效应:如图5所示,当风吹向高层建筑物时,自驻点向下冲向地面形成涡流。

图5下洗涡流效应2.2内部风环境高层建筑的内部风环境是指,由于风荷载的作用,高层建筑受到脉动风影响而发生振动现象,这种振动会给生活或者工作在高层建筑内部人带来不舒适感,对高层建筑物的正常使用造成影响。

高层建筑结构的风致振动控制

高层建筑结构的风致振动控制

高层建筑结构的风致振动控制在高层建筑结构设计和建造过程中,风致振动是一个重要的问题。

高楼居住者经常会感受到建筑物在强风中的晃动,这不仅影响住户的生活质量,还可能对建筑的结构稳定性产生负面影响。

因此,高层建筑结构的风致振动控制成为了研究的热点之一。

一、引言在引言中,我们将介绍高层建筑结构的风致振动控制的重要性,并提出本文研究的目的和意义。

二、背景这一部分将介绍高层建筑结构的基本特点和存在的挑战,特别是在面对大风时的振动问题。

我们还将简要讨论目前已有的研究成果和现有的风振控制方法。

三、风致振动现象的原理在这一部分,我们将解释高层建筑结构在风力作用下发生振动的原理。

这涉及到风荷载的作用机制以及结构的固有频率等基础知识。

四、风振控制方法本部分将介绍目前常用的风振控制方法,包括质量阻尼、刚度控制和主动控制等。

针对每种方法,我们将详细说明其工作原理和应用范围,并给出实例进行说明。

五、质量阻尼方法质量阻尼是一种被广泛应用于高层建筑结构的振动控制方法。

我们将介绍质量阻尼器的工作原理和种类,并分析其在不同情况下的有效性和适用性。

六、刚度控制方法刚度控制作为另一种常见的风振控制方法,可以通过调整结构的刚度来减小振动幅值。

我们将介绍刚度调整的原理和方法,并探讨其在实际工程中的应用情况。

七、主动控制方法相较于质量阻尼和刚度控制,主动控制是一种更加先进和灵活的振动控制方法。

我们将介绍主动控制方法的原理和实现方式,并分析其在高层建筑结构中的潜在应用前景。

八、结论在本文的结尾,我们将总结不同风振控制方法的优缺点,并对未来的研究方向进行展望。

我们还将强调高层建筑结构的风致振动控制对于建筑的安全性和居住者的舒适性的重要意义。

通过以上的分节论述,我们全面而系统地介绍了高层建筑结构的风致振动控制方法。

这些方法旨在减小建筑物在强风作用下的振动幅值,提高建筑物的稳定性和居住者的生活质量。

随着技术的不断进步和研究的深入,我们相信未来会有更多创新的方法和技术用于风振控制。

高层建筑结构施工中的振动控制

高层建筑结构施工中的振动控制

高层建筑结构施工中的振动控制高层建筑是现代城市发展的标志之一,其建设不仅涉及到设计、施工等方面的问题,还需要考虑到建筑的振动控制。

因为高层建筑的振动会对周围环境和人的生活产生一定的影响,因此在施工过程中采取有效的措施进行振动控制是非常重要的。

首先需要了解高层建筑施工过程中所产生的振动。

在高层建筑的施工过程中,各种机械设备的运行、钢筋混凝土的浇筑以及施工车辆的行驶等都会产生振动。

这些振动会通过建筑结构传递到地面和周边环境中,给周边建筑物和人的生活带来不利影响。

因此,如何有效控制这些振动成为了亟待解决的问题。

其次,针对高层建筑的振动问题,可以采取的措施有很多。

其中一种常用的方法是在建筑结构中设置阻尼器。

阻尼器是一种能够吸收和消散振动能量的装置,通过引入阻尼器可以有效地降低建筑结构的振动幅度。

在高层建筑的结构设计中,可以考虑使用液体阻尼器、摩擦阻尼器等不同类型的阻尼器来控制振动。

这些阻尼器的设计和选择需要考虑到建筑的结构特点和工程要求,以达到最佳的振动控制效果。

除了阻尼器之外,还可以通过改变建筑结构的刚度来控制振动。

建筑结构的刚度是指结构对外力响应的能力,其大小决定了结构的振动特性。

通过在结构设计中合理选择材料和断面尺寸,可以控制建筑结构的刚度,从而降低振动的幅度。

例如,在高层建筑的设计中,选择高刚度的结构体系和使用高强度的材料,可以有效地提升结构的抗震性能和减小振动。

此外,合理安排施工工艺和施工过程也是控制振动的重要手段之一。

在高层建筑的施工中,可以采取一些措施来降低振动的产生。

例如,在混凝土浇筑时采用渐进式施工方法,避免一次性浇筑过大的体积,可以有效地减小振动的产生。

同时,在运输大型设备和材料时,可以采用缓慢行驶、减速等措施,减小振动的强度。

这些施工措施需要在施工方案中细化和明确,并在实际的施工过程中严格执行。

总之,高层建筑结构施工中的振动控制是一个复杂而重要的问题。

通过合理选择阻尼器、调整结构刚度以及优化施工工艺和过程,可以有效地控制振动的产生和传播。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[5]张月香.高层建筑AVS控制的多模态法与优化布置研究[D].同济大学,2004.
[6]李爱群,陈鑫,张志强.大跨楼盖结构减振设计与分析[J].建筑结构学报,2010.
表1风致振动的类型
二、主动控制技术
主动控制技术常是在结构关键部位应用作动器拖动附加质量块或在结构内部安装作动器与弹性元件施加控制力,通过实时观测追踪技术从而分析结构的动力响应,由伺服装置对结构施加控制,实现主动的调节功能,将结构在风、地震等激励下的响应控制在规范允许范围之内。主动控制对于能量的消耗较大,且依赖于控制算法,尚未得到广泛应用[3]。
2.1 AMD系统
AMD系统主要由质量块、导向系统、弹簧系统、阻尼器系统和作动器系统组成[4]。在结构产生振动响应时,作动器首先驱动质量块,使质量块发生运动,进而质量块带动弹簧、阻尼器和作动器对结构产生作动力,实现对于结构的主动控制。
(a)悬吊式(b)支撑式
图1
AMD系统主要分为悬吊式和支撑式两类。悬吊式是将质量块悬吊在结构上,阻尼装置设置在质量块和结构之间,如图1(a)所示。支撑式是将质量块支撑在结构层上,阻尼装置设置在支撑质量块和结构之间,如图1(b)所示。
广义的振动控制主要包括两方面的内容[2]:(1)振动的利用,即充分利用有利的振动:(2)振动的抑制,即尽量减小有害的振动。土木工程领域的振动控制一般属于后者,即采用某种措施使结构在动力荷载作用下的响应不超过某一限量,以满足使用的要求,风振即是如此。
依据是否需要外界输入能量,结构的减振控制分为主动控制,被动控制和智能控制等。
图2
三、被动控制技术
被动控制技术是通过附加在结构上的控制装置来增大结构的阻尼、提高结构的延性以吸收和耗散外界输入的能量,包括阻尼减振装置如粘弹性阻尼器、粘滞阻尼器、摩擦阻尼器等以及吸能减振装置如TMD、TLD、MTMD、TLMD等。
3.1质量调频阻尼器(TMD)系统
TMD是一种调频减振装置,当减振装置的自振频率和结构的受控频率相互调谐时,可将结构的振动能量转移到调频装置上,从而耗散外界输入的能量流,控制结构动力响应。TMD的自振频率是减振性能的关键[6]。
3.2液体调频阻尼器(TLD)系统
3.2.1矩形浅水TLD
TLD是一种矩形浅水水箱。当结构因外力作用产生振动时会带动水箱一起运动,从而激起水箱中水的晃动,而水晃动对水箱侧壁的动压力又反向作用在结构上,通过设置水箱的参数调整动压力的大小,抑制结构的振动[7],反动压力的计算公式为:
图3矩形浅水TLD
式中,a为水箱的宽度;h为水深;为水面波高;为水的密度;为水箱振动方向二端及n等分点处的无量纲化波高液面。
2.2 AVS系统
AVS系统是通过可变刚度装置使受控结构的刚度在每一采样周期内按照特定的控制律在不同的刚度值间切换,使受控结构避免共振,实现减震的目的[5]。系统首先将结构的响应反馈至控制器,控制器按照事先设定的控制算法并结合结构响应,判断主动变刚度控制装置的刚度状态,然后将控制信号发送至电液伺服阀并操纵电液伺服阀的开、关状态,以实现不同的变刚度状态。
关键词:高层建筑;风荷载;风振控制;结构体系
一、高层建筑结构的风振控制概述
风荷载是一种持续时间较长的随机荷载,成为高层建筑结构设计的控制荷载。风荷载使结构产生振动,作用机理复杂,主要原因有:(1)有与风向一致的风力作用,包括平均风和脉动风,其中脉动风产生结构的顺风向振动;(2)背风面的漩涡会产生结构横风向的振动;(3)相邻建筑物的尾流引起的振动。表1中列举了常见的风致振动类型,需准确地确定风荷载通常采用模型风洞试验[1]。
参考文献:
[1]张相庭.结构风压和风振计算.同济大学出版社.1985.
[2]徐赵东,马乐为.结构动力学[M].北京:科学出版社,2016.
[3]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002.
[4]幸厚冰.高柔结构AMD振动控制系统实施的相关方法研究[D].哈尔滨工业大学,2014.
3.2.2矩形深水TLD
TLD对结构的控制力就是水对水箱壁液动压力的合力,即TLD左右水箱上液动压力的总的合力为:
式中,b为水箱的高度;为水晃动的自振频率;为水箱方向的运动速度;为矩形TLD中某点处的液压压力;
图4矩形深水TLD
四、结构减振控制体系
结构减振控制体系的发展为振动控制提供了新思路。巨型框架减振结构分为主结构和次结构。主结构为主要的抗侧力体系和承重体系,次结构仅为辅助和耗能作用。如图5所示,为了减轻巨型框架在地震和风振下的响应,在主次框架间设置了减振耗能装置,使各次框架如同巨大的质量块,与主框架共同形成一个大型调谐质量系统。由于可有多个质量较大的质量块,可对多个振型进行有效控制,即对频带较宽的外部激励进行有效控制[8]。
图5巨型框架
五、总结
高层建筑结构减振的思路主要有两类:一是增加结构的延性,被动控制中的阻尼器便是基于此。二是主动控制,采用作用器带动质量块运动,抵消外界激励输入的能量。此外,新材料、新结构的发展也对结构减振耗能起着较大的作用。
对高层建筑减振控制方案的选择,提出如下设计思路供工程师们参考:(1)对于较复杂的超高层建筑,多种减振类型的组合方案效率更高,更为有效,如采用阻尼器与TMD的结合。(2)高层建筑可将消防水箱设计为TLD,造价较低,减振效果良好。(3)AMD减振技术是目前高层结构减振效率最高的技术体系,但其计算理论尚不成熟,可预留一定的空间或采用ATMD混合减振。(4)创新研究新型减振结构体系,可通过在构件之间设置相对变位控制阻尼器来耗能减振。
高层建筑结构的风振控制技术综述
摘要:高层建筑结构的风振控制是指在结构发生风振反应时,通过在结构上增设控制装置,主动或被动地产生一组控制力,以达到减少或抑制结构风振响应的目的。结构的风振控制理论经过长期的发展,日益成熟,包括主动控制技术、被动控制技术、半主动控制技术以及结构体系创新等。此外,还从高层建筑工程风振控制的最新进展出发,对TMD、TLD、AMD及巨型框架体系做技术研讨。
相关文档
最新文档