上海大学-离散数学2-图部分试题
《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。
A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。
答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。
答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。
答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。
答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。
离散数学第2章习题解答

F(x) F(x)),也可能不存在其值不确定的解释。
2.10(1)
xA(x)
(A(a)
A(b)
A(c))
(消去量词等值式)
A(a)
A(b)
A(c)
(德·摩根律)
x A(x)
(消去量词等值式)
2)
xA(x)
(A(a)
A(b)
A(c))
( H (b,a) H (b,b) H (b, c)
(H(c,a) H(c,b) H (c,c)
分析 在有穷个体域内消去量词时, 应将量词的辖域尽量缩小, 例如,在(2) 中,首先将量词辖域缩小了(因为yG(y)中不含x,所以,可以缩小)。否则,演算是相当麻烦的。见下面的演算:
x(F(x) yG(y)
x(F(x) (G(x) H (x))
(2)令F(x):x是人,G(y):y是化,H (x) : x喜欢,命题符号化为x(F(x) y(G(y) H ( x, y)))
(3)令F(x):x是人,G(x) : x犯错误,命题符号化为
x(F(x) G(x)),
或另一种等值的形式为
x(F(x) G(x)
(4)令F(x): x在北京工作,G( x) : x是北京人,命题符号化为
在一阶逻辑中,将命题符号化时,当引入特性谓词(如题中的F(x))之后,
全称量词后往往使用联结词→而不使用,而存在量词 后往往使用 ,而不使用→,如果用错了,会将真命题变成假命题,或者将假命题变成真命题。
2.6在解释R下各式分别化为
(1)x( x 0);
(2)x y(x y x);
(3)x y z(x y) (x z y z));
离散数学(第二版)最全课后习题答案详解

-
(10)
p:天下大雨
q:他乘车上班
-
(11)
p:下雪
q:路滑
r:他迟到了
(12)
p:2 是素数
q:4 是素数
-
(13)
p:2 是素数
q:4 是素数
-
15.设 p:2+3=5. q:大熊猫产在中国. r:太阳从西方升起. 求下列符合命题的真值:
(1)
(2)
(3) (4) 解:p 真值为 1,q 真值为 1,r 真值为 0. (1)0,(2)0,(3)0,(4)1 16.当 p,q 的真值为 0,r,s 的真值为 1 时,求下列各命题公式的真值: (1) (2) (3) (4)
24.已知 的类型.
解:∵
是重言式,试判断公式
及
是重言式,而要使该式为重言式,其成真赋值只有
11,∴ 25.已知
解:∵
的类型.
都是重言式。
Hale Waihona Puke 是矛盾式,试判断公式及
是矛盾式,而要使该式为矛盾式,其成假赋值
只有 00,∴
都是重言式。
26. 已 知 解:
是重言式, 及
是矛盾式,试判断 的类型.
是矛盾式。
是重言式。
q:老王是河北人
-
(3)
p:天气冷
p:王欢与李乐组成
(4)
一个小组
p:李辛与李末是兄
(5)
弟
q:我穿羽绒服 -
-
p:王欢与李乐组成一个
-
小组
-
p:李辛与李末是兄弟
(6) p:王强学过法语
q:刘威学过法语
-
(7)
p:他吃饭
q:他听音乐
-
离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。
A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。
A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。
A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。
A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。
A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。
A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。
A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。
A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。
A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。
A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。
A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。
大学离散数学试卷二及答案

大学离散数学试卷二及答案一、单项选择题 (2分×10=20分)1、下列语句是命题的有[ B ]。
A. 122>+y x ;B. 2010年的国庆节是晴天;C. 青年学生多么朝气蓬勃呀!D. 学生不准吸烟!2、在命题逻辑中,任何命题公式的主合取范式都 [ C ]。
A. 不一定存在;B. 不存在;C. 存在且唯一;D. 存在但不唯一.3、设S={1,2,3,4},R={<1,1>,<3,3>,<4,4>},则R 满足的性质是 [ C ]A. 自反、对称、传递的 ;B. 自反、对称、反对称的;C. 对称、反对称、传递的;D. 只有对称性.4. 与命题p ∧(p ∨q)等值的公式是 [ A ]。
A. p ;B. q ;C. p ∨q ;D. p ∧q.5. 设M={a,b,c},M 上的等价关系R={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>}确定的集合M 的划分是[ D ]。
A.{{a},{b},{c}}B.{{a,c},{b,c}}C.{{a,c},{b}}D.{{a},{b,c }}6. 设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“每个人都喜欢某种花”的逻辑符号化为[ C ]。
A. )),()(()((y x H y F y x M x →∃∧∀;B. )),()(()((y x H y F y x M x →∃→∀;C. )),()(()((y x H y F y x M x ∧∃→∀;D. )),()(()((y x H y F y x M x ∧∀→∃.7. 下列图中,不是哈密顿图的为[ A ]。
A B C D8. 下列四组数据中,能作为某个4阶无向简单图的度序列的为[ D ]。
A. 1,2,3,4 ;B. 2,2,2,3;C. 1,1,2,3;D. 1,1,1,3.9. 一棵无向树T 有8个顶点,4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T 中有[ C ]片树叶。
上海大学-离散数学2-图部分试题

离散数学图论部分综合练习一、单项选择题1.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、哈密顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路..v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。
离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。
B. 有向图中的边无方向性,无向图中的边有方向性。
C. 无向图和有向图都是由顶点和边组成的。
D. 无向图和有向图都只由边组成。
答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。
B. 若集合A和B相交为空集,则A和B相等。
C. 若集合A和B相等,则A和B互相包含。
D. 若集合A和B相等,则A和B相交为空集。
答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。
答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。
答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。
答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。
答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。
答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。
证明过程:假设A和B互相包含,即A包含于B且B包含于A。
设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。
同理,对于集合B中的任意元素y,y也属于集合A。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学图论部分综合练习一、单项选择题1.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( ). A .6 B .5 C .4 D .32.已知图G 的邻接矩阵为,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ). A .deg(V )=2E B .deg(V )=EC .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .οο ο ο οcab edο f图一图二A.{(a, e)}是割边B.{(a, e)}是边割集C.{(a, e) ,(b, c)}是边割集D.{(d, e)}是边割集图三7.设有向图(a)、(b)、(c)与(d)如图四所示,则下列结论成立的是( ).图四A.(a)是强连通的B.(b)是强连通的C.(c)是强连通的D.(d)是强连通的应该填写:D8.设完全图Kn 有n个结点(n≥2),m条边,当()时,Kn中存在欧拉回路.A.m为奇数B.n为偶数C.n为奇数D.m为偶数9.设G是连通平面图,有v个结点,e条边,r个面,则r= ( ).A.e-v+2 B.v+e-2 C.e-v-2 D.e+v+210.无向图G存在欧拉通路,当且仅当( ).A.G中所有结点的度数全为偶数B.G中至多有两个奇数度结点C.G连通且所有结点的度数全为偶数D.G连通且至多有两个奇数度结点11.设G是有n个结点,m条边的连通图,必须删去G的( )条边,才能确定G的一棵生成树.A.1m n-+B.m n-C.1m n++D.1n m-+ 12.无向简单图G是棵树,当且仅当( ).A.G连通且边数比结点数少1 B.G连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 .9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题ο ο οο ο c a b e dο f 图四1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、哈密顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路..图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题 1.设图GV ,E ,其中V a 1, a 2, a 3, a 4, a 5,E a 1, a 2,a 2, a 4,a 3, a 1,a 4, a 5,a 5, a 2(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2,v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;v 1v 2v 3v 4v 5v 6v 1v 2 v 3v d bae fghn 图六οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图八(2)求出每个结点的度数;(4)画出图G的补图的图形.3.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.4.图G=<V, E>,其中V={ a, b, c, d, e},E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.5.用Dijkstra算法求右图中A点到其它各点的最短路径。
6.设有一组权为2,3,5,7,11,13,17,19,23,29,31,试(1)画出相应的最优二元树;(2)计算它们的权值.7.给出右边所示二元有序树的三种遍历结果.五、证明题1.若无向图G中只有两个奇数度结点,则这两个结点一定是连通的.2.设G是一个n阶无向简单图,n是大于等于2的奇数.证明图G与它的补图G中的奇数度顶点个数相等.k条边才能3.设连通图G有k个奇数度的结点,证明在图G中至少要添加2使其成为欧拉图.参考解答一、单项选择题1.B 2.D 3.C 4.C 5.A 6.D 7.D 8.C 9.A 10.D 11.A 12.A二、填空题1.15 2.{f },{c ,e } 3.W|S|4.所有结点的度数全为偶数 5.等于出度 6.n 为奇数 7.v -e +r =2 8.3 9.e=v -1 10.4 11.512.3 13.0三、判断说明题1.解:正确.因为图G 为连通的,且其中每个顶点的度数为偶数. 2.解:(1)图G 1是欧拉图. 因为图G 1中每个结点的度数都是偶数.图G 2是汉密尔顿图.因为图G 2存在一条汉密尔顿回路(不惟一):a (a ,b )b (b , e ) e (e , f ) f (f , g ) g (g , d ) d (d ,c ) c (c , a )a问题:请大家想一想,为什么图G 1不是汉密尔顿图,图G 2不是欧拉图。
(2)图G 1的欧拉回路为:(不惟一):v 1(v 1, v 2) v 2 (v 2, v 3) v 3 (v 3, v 4) v 4 (v 4, v 5)v 5 (v 5, v 2) v 2 (v 2, v 6)v 6 (v 6, v 4) v 4 (v 4, v 1)v 1 3.解:图G 是平面图.因为只要把结点v 2与v 6的连线(v 2, v 6)拽 到结点v 1的外面,把把结点v 3与v 6的连线 (v 3, v 6)拽到结点v 4, v 5的外面,就得到一个平 面图,如图九所示.4.解:错误.不满足“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”οοο ο οv 5v 1 v 2 v 4v 6 ο v 3图九四、计算题1.解:(1)图G 是有向图: (2)邻接矩阵如下:,0001010000000010100000010)(⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=D A(3)图G 是单侧连通图,也是弱连通图. 2.解:(1)图G 如图十(2)邻接矩阵为 图十⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110010110110110110100110(3)deg(v 1)=2deg(v 2)=3 deg(v 3)=4 deg(v 4)=3 deg(v 5)=2(4)补图如图十一图十一 3.解:(1)G 的图形如图十二οο οο ο a 1a 2a 3 a 4 a 5 v 1 v 2 v 3 v 4 v 5 ο ο ο ο οv 1 v 2 v 3v 4v 5οοο ο ο(2)邻接矩阵: 图十二⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0110010110110110110000100 (3)v 1,v 2,v 3,v 4,v 5结点的度数依次为1,2,4,3,2 (4)补图如图十三:图十三4.解:(1)G 的图形表示如图十四:图十四 (2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110110110011100110110 (3)粗线表示最小的生成树,如图十五如图十五最小的生成树的权为1+1+2+3=7: 5. 解:注意算法执行过程的数据要完整的表示。
6.解:(1)最优二叉树如图十六所示: 方法(Huffman ):从2,3,5,7,11,13,17 ,19,23,29,31中选2,3为最低层结点,并 从权数中删去,再添上他们的和数,即5,5,7,11,13,17,19,23,29,31; 再从5,5,7,11,13,17,19,23,29,31中选 5,5为倒数第2层结点,并从上述数列中删去,再添上他们的和数,即7,10,11,13, 17,19,23,29,31;然后,从7,10,11,13,17,19,23,29,31中选7,10和11,13为倒数第3层结点,并从 如图十六 上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31; ……(2)权值为:26+36+55+74+114+134+173+193+233+293+312=12+18+25+28+44+52+51+57+69+87+62=5057.解:a)前根:a,b,d,g,e,h,i,c,fb)中根:g,d,b,h,e,i,a,c,f c)后根:g,d,h,i,e,b,f,c,a五、证明题1.证明:用反证法.设G 中的两个奇数度结点分别为u 和v .假设u 和vο ο ο ο οο ο ο ο 3 2 7 13 5 511 17 34 οο 160 29 10 ο ο ο 23 19 42 ο ο 17 ο 24 ο 5331ο οο 9565不连通,即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.这与定理3.1.2的推论矛盾.因而u 和v 一定是连通的.2.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于2的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.3.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数.又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.。