2015年北京市初三数学一模试题分类(第10题)共4页
2015年北京市石景山区初三一模数学试题及答案

三、解答题(本题共 30 分,每小题 5 分)
D 在同一条直线上, C, BC 与 AE 交于点 F ,AE AC , AD BC , FA FC . 17. 如图, 点 A,
求证: B D .
B F A
E C D
3
2015 石景山一模
1 ( ) 18.计算 1 27 2 cos 30 . 0
C
A
O
D
B
26.阅读下面材料: 小红遇到这样一个问题:如图 1,在四边形 ABCD 中, A C 90 , D 60 ,
AB 4 3 , BC 3 ,求 AD 的长.
A
A
B
E
B
C
D
图1ห้องสมุดไป่ตู้
C
D
图2
小红发现,延长 AB 与 DC 相交于点 E ,通过构造 Rt△ ADE ,经过推理和计算能够使问 题得到解决(如图 2) . 请回答: AD 的长为 .
G F B C A E D
24.为了解大学生参加公益活动的情况,几位同学设计了调查问卷,对几所大学的学生进行了随机 调查.问卷如下:
2014—2015 学年度第一学期你参加过几次公益活动? A.没有参加过公益活动 B.参加过一次公益活动 C.参加过二次至四次公益活动 D.参加过五次或五次以上公益活动
参考小红思考问题的方法,解决问题: 如图 3, 在四边形 ABCD 中,tan A 和 AD 的长.
B C
1 ,B C 135 ,AB 9 ,CD 3 , 求 BC 2
A
D
图3
6
2015 石景山一模
五、解答题(本题共 22 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分) 27.在平面直角坐标系 xOy 中,抛物线 y mx 2mx 3(m 0) 与 x 轴交于 A(3, 0) , B 两点.
2015年北京市通州区初三数学一模试题(word版含答案)

通州区2015年初三模拟考试一、选择题(每题只有一个正确答案,共10个小题,每小题3分,共30分) 1.2-的绝对值是( )A .2±B .2C .12D .12-2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320万人次.数据1320万用科学计数法表示正确的是( )A .113210⨯万 B .213.210⨯万 C .31.3210⨯万 D .41.3210⨯万 3.某几何体的三视图如图所示,这个几何体是( ) A .圆柱 B .三棱柱 C. 长方体D .圆锥4.下列等式一定成立的是( ). A .22a a a ⋅=B .22=÷a aC .22423a a a +=D .()33a a -=-5.如图,点A 、D 在射线AE 上,直线AB ∥CD ,∠CDE =140°, 那么∠A 的度数为( ) A .140° B .60° C .50° .40°6.一个多边形的每一个内角均为108°,那么这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是( )A .85, 90B .85, 87.5C .90, 85D .95, 908.物理某一实验的电路图如图所示,其中K 1,K 2,K 3 为电路开关,L 1 ,L 2为能正常发光的灯泡.任意闭合开关K 1, K 2, K 3中的两个,那么能让两盏灯泡同时..A .31B .32C .21D .619.如图,AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,那么sin ∠ABD 的值是( )A .43B .34C .35D .4510.如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为( )A .4B .6二、填空题:(每题3分,共18分)11.分解因式:2a 2-4a +2=________________.12.使得分式321x -有意义的x 的取值范围是 . 13.燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有1300多年历史.燃灯塔距运河300米,是通州的象征.某同学想利用相似三角形的有关知识来求燃灯塔的高度. 他先测量出燃灯塔落在地面上的影长为12米,然后在同一时刻立一根高2米的14.生物学研究表明在8—17岁期间,男女生身高增长速度 规律呈现如下图所示,请你观察此图,回答下列问题:男生 身高增长速度的巅峰期是 岁,在 岁时男生女 生的身高增长速度是一样的.15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在AB 上的点D 处,折痕交OA 于点C ,则AD 的长等于 .16.如图,在平面直角坐标系xOy 中,四边形ABOC 是正方形,点A 的坐标为(1,1). ¼1AA 是以点B 为圆心,BA 为半径的圆弧;¼12A A 是以点O 为圆心,1OA 为半径的圆弧,¼23A A 是以点C 为圆心,2CA 为半径的圆弧,¼34A A 是以点A 为圆心,3AA 为半径的圆弧,继续以点B 、O 、C 、A 为圆心按上述做法得到的曲线12345AA A A A A ……称为“正方形的渐开线”,那么点5A 的坐标是 , 点2015A 的坐标是 .如图(1)AB2通州区2013年至2014年三期自行车投放数量统计图(单位:辆)通州区2013年至2014年三期所投放的 自行车租赁点百分比统计图第15题图 第16题图 三、解答题(每题5分,共25分)17.如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D . 求证:AC =OD .18()1201512tan 6012-⎛⎫--︒-- ⎪⎝⎭19.解不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩,并把不等式组的解集在数轴上表示出来.20.已知:2450x x +-=,求代数式22(1)(1)(2)x x x +---的值.21.如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x 的不等式 6x>kx +b四、解答题(每题5分,共25分)22.为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.23.已知菱形ABCD 的对角线AC 与BD 相交于点E ,点F 在BC 的延长线上,且CF=BC ,连接DF ,点G 是DF 中点,连接CG .求证:四边形 ECGD 是矩形.24.为倡导“1公里步行、3公里单车、5公里汽车(地铁、轻轨)”出行模式, 2013年5月环保公共自行车正式“驶入”通州,通州区分三期投放白绿环保公共自行车.第一期投放租赁点以八通线通州北苑、梨园站为中心,共投放21个租赁点。
2015年北京初三一模数学分类汇编------几何综合(含答案)

E
A
C
B
H
C
图2
A
1
O B
2
D H
E
C
图 1-1
E
B
H
C
1 2, AH BH, 4 3,
∴△AHE≌△BHF,„„„„„„„„„3 分 ∴EH=FH. ∵∠FHE=90°,∴△FHE 是等腰直角三角形, ∴∠BEH=45°.„„„„„„„„„4 分
图 1-2
D
1 DCB 30 .………………………2 分 2
A
F G D
EDC 180 DEC DCA 100 .
E
H
C
由菱形的对称性可知, BEC DEC 50 , EBC EDC 100 . B ……………………………………………3 分 FBC 50 ,图 3 EBG EBC FBC 50 BEC .………………………………………………4 分 BH EH . 在 △GEH 与 △CBH 中,
1(燕山一模) △ABC 中,∠ABC=45°,AH⊥BC 于点 H,将△AHC 绕点 H 逆时针旋转 90°后,点 C 的对应 点为点 D,直线 BD 与直线 AC 交于点 E,连接 EH.
A D B H
图1 (1)如图 1,当∠BAC 为锐角时, ①求证:BE⊥AC; ②求∠BEH 的度数; (2)当∠BAC 为钝角时, 请依题意用实线补全图 2,并用等式表示出线段 EC,ED,EH 之间的数量关系. (1)①证明:∵AH⊥BC 于点 H,∠ABC=45°, ∴△ABH 为等腰直角三角形, ∴AH=BH,∠BAH=45°, ∴△AHC 绕点 H 逆时针旋转 90°得△BHD, 由旋转性质得,△BHD≌△AHC, ∴∠1=∠2.„„„„„„„„„1 分 ∵∠1+∠C=90°, ∴∠2+∠C=90°, ∴∠BEC=90°,即 BE⊥AC.„„„„„„„„„2 分 ②解法一:如图 1-1, ∵∠AHB=∠AEB=90°, ∴A,B,H,E 四点均在以 AB 为直径的圆上,„„„„„„„„„3 分 ∴∠BEH=∠BAH=45°.„„„„„„„„„4 分 A 解法二:如图 1-2, 过点 H 作 HF⊥HE 交 BE 于 F 点,∴∠FHE=90°, 1 即∠4+∠5=90°. D 又∵∠3+∠5=∠AHB=90°, F ∴∠3=∠4. 4 5 在△AHE 和△BHF 中, 2 3
2015年北京房山初三数学一模试卷及答案.

( 1)求一次函数和反比例函数的表达式;
( 2)若点 P 是 x 轴上一点,且满足△ AMP 是以 AM 为直角边
的直角三角形 , 请直接写出点 P 的坐标.
O
B
x
A
4
第 21 题图
22. 列方程或方程组解应用题
为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”
(总电费 =第一阶梯电费 +第二阶
小明是这样思考问题的: 如图 2, 以 BC 为直径做半⊙ O ,则点 F 、 E 在⊙ O 上,
∠BFE +∠ BCE =180° ,所以∠ AFE =∠ACB .
请回答:若∠ ABC= 40 ,则∠ AEF 的度数是
.
参考小明思考问题的方法,解决问题:
如图 3,在锐角△ ABC 中, AD 、BE、 CF 分别为△ ABC 的高,求证:∠ BDF =∠ CDE .
小明用学生卡乘车,上车时站名上对应的数字是 那么,小明乘车的费用是 ________________ 元 .
5,下车时站名上对应的数字是 22,
3
16.如图 , 在平面直角坐标系中放置了 5 个正方
y
A1
形,点 B1 ( 0, 2)在 y 轴上,点 C1 , E1, E2 , B1 C2 , E3 , E4 , C3 在 x 轴上, C1 的坐标是( 1,
B. 25°
C. 30° D. 40°
D b
2 C
第 4 题图
5. 右图是某几何体的三视图 , 该几何体是
主视图
左视图
A. 圆柱
俯视图
B. 正方体
1
C. 圆锥
D.长方体
6.某地为了缓解旱情进行了一场人工降雨,现测得
2014-2015学年北京市朝阳区2015年初三数学一模试题(附答案)

北京市朝阳区九年级综合练习(一)数学试卷 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界 平均水平,至少需要8 000 000 000 000美元基建投资.将8 000 000 000 000用科学记数法表示应为A .0.8×1013B .8×1012C .8×1013D .80×10112. 如图,下列关于数m 、n 的说法正确的是A .m >nB .m =nC .m >-nD .m =-n3.如图,直线a ,b 被直线c 所截,a ∥b ,∠2=∠3,若∠1=80°,则∠4等于 A .20° B .40° C .60° D .80°4.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 7 5.下列图形中,既是中心对称图形又是轴对称图形的是A B C D6.为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是 A .平均数 B .中位数 C .众数 D .方差7为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为 A.16 B. 51C. 310D. 12 8. 若正方形的周长为40,则其对角线长为A .100B .C .D .10 9.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 在一条直线上,且直线PS 与河 垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60 m , ST =120 m ,QR =80 m ,则河的宽度PQ 为A .40 mB .60 mC .120 mD .180 m10.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米C. 甲从起点到终点共用时83秒D. 乙到达终点时,甲、乙两人相距68米二、填空题(本题共18分,每小题3分) 11.若分式21x 有意义,则x 的取值范围是 .12.分解因式:2236+3m mn n -= .13.如图,⊙O 的直径CD 垂直于弦AB ,∠AOC =40°,则∠CDB 的度数为 .14.请写出一个图象从左向右上升且经过点(-1,2)的函数,所写的函数表达式是 .15.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是 (填“一类、二类、三类”中的一个).16.一组按规律排列的式子:a 2,25a -,310a ,417a-,526a ,…,其中第7个式子是 ,第n 个式子是 (用含的n 式子表示,n 为正整数).三、解答题(本题共30分,每小题5分)17.已知:如图,E 是BC 上一点,AB =EC ,AB ∥CD , BC =CD .求证:AC =ED .18.计算:1012sin 45(2015)3-⎛⎫+--︒+- ⎪⎝⎭π.19.解不等式组:⎪⎩⎪⎨⎧>+->.31222x x x x ,20.已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.21.已知关于x 的一元二次方程2630x x k -++=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为大于3的整数,且该方程的根都是整数,求k 的值.22.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁 于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18 分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?四、解答题(本题共20分,每小题5分)23. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D作DE ∥AC 且DE=12AC ,连接 CE 、OE ,连接AE 交OD 于点F .(1)求证:OE =CD ;(2)若菱形ABCD 的边长为2,∠ABC=60°,求AE 的长.24.为防治大气污染,依据北京市压减燃煤相关工作方案,2014年全市燃煤数量比2012年压减450万吨,到2015年、2017年要比2012年分别压减燃煤800万吨、1300万吨.以下是根据相关数据绘制的统计图的一部分:(1)据报道,2012年全市燃煤由四部分组成,其中电厂用煤920万吨,则2012年全市燃煤数量为 万吨;(2)请根据以上信息补全2012-2017年全市燃煤数量的折线统计图,并标明相应数据; (3)某地区积极倡导“清洁空气,绿色出行”,大力提升自行车出行比例,小颖收集了该地区近几年公共自行车的有关信息(如下表),发现利用公共自行车出行人数与 公共自行车投放数量之间近似成正比例关系.2012-2015年公共自行车投放数量与利用公共自行车出行人数统计表年份 公共自行车投放数量(万辆) 利用公共自行车出行人数(万人) 2012 1.4 约9.9 2013 2.5 约17.6 2014 4 约27.6 2015 5 约根据小颖的发现,请估计,该地区2015年利用公共自行车出行人数(直接写出结果, 精确到0.1)25.如图,△ABC 内接于⊙O ,AB 为直径,点D 在⊙O 上,过点D 作⊙O切线与AC 的延长线交于点E ,ED ∥BC ,连接AD 交BC 于点F . (1)求证:∠BAD =∠DAE ;(2)若AB =6,AD =5,求DF 的长.26.阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2).请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.如图,将抛物线M 1: x ax y 42+=向右平移3个单位,再向上平移3个单位,得到抛物线M 2,直线x y =与M 1 的一个交点记为A ,与M 2的一个交点记为B ,点A 的 横坐标是-3. (1)求a 的值及M 2的表达式;(2)点C 是线段AB 上的一个动点,过点C 作x 轴的垂线,垂足为D ,在CD 的右侧作正方形CDEF . ①当点C 的横坐标为2时,直线n x y +=恰好经过 正方形CDEF 的顶点F ,求此时n 的值;②在点C 的运动过程中,若直线n x y +=与正方形CDEF 始终没有公共点,求n 的 取值范围(直接写出结果).28.在△ABC 中,∠C =90°,AC =BC ,点D 在射线BC 上(不与点B 、C 重合),连接AD ,将AD 绕点D 顺时针旋转90°得到DE ,连接BE . (1)如图1,点D 在BC 边上.①依题意补全图1;②作DF ⊥BC 交AB 于点F ,若AC =8,DF =3,求BE 的长;(2)如图2,点D 在BC 边的延长线上,用等式表示线段AB 、BD 、BE 之间的数量关系(直接写出结论).图1图2图329.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”. (1)若P (1,2),Q (4,2) .①在点A (1,0),B (25,4),C (0,3)中,PQ 的“等高点”是 ; ②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值.(2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图1 图2北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2015.5一、选择题(本题共30分,每小题3分)二、填空题 (本题共18分,每小题3分) 11. 2≠x12. 2)(3n m -13. 20°14. 3+=x y (答案不惟一)15. 二类16. 750a,nn a n 1)1-(21+⋅+(第一个空1分,第二个空2分)三、解答题(本题共30分,每小题5分) 17. 证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,⎪⎩⎪⎨⎧=∠=∠=分分3-----------------------------------------------2-----------------------------------------------CD BC DCEB EC AB ∴△ABC ≌△ECD . ……………………………………………………………4分 ∴AC =ED . ……………………………………………………………………5分18. 解:原式 =122232+⨯--………………………………………………………4分 =2-.…………………………………………………………………………5分19. ⎪⎩⎪⎨⎧>+->.31222x x x x ,解:解不等式①,得2->x . ………………………………………………………………2分解不等式②,得x <1. ………………………………………………………………4分 ∴不等式组的解集是x <-2<1. …………………………………………………5分20. 解:)2)(2()3()1(2-++---x x x x x=4312222-++-+-x x x x x …………………………………………………3分 =32-+x x . ……………………………………………………………………4分 ∵052=-+x x , ∴52=+x x .∴原式=5-3=2. ……………………………………………………………………5分 21. 解:(1))3(4)6(2+--=∆k ………………………………………………………1分① ②12436--=k 244+-=k∵原方程有两个不相等的实数根, ∴0244>+-k .解得 6<k . ………………………………………………………………2分(2)∵6<k 且k 为大于3的整数,∴=k 4或5. ………………………………………………………………………3分 ① 当=k 4时,方程0762=+-x x 的根不是整数.∴=k 4不符合题意. ………………………………………………………… 4分 ② 当=k 5时,方程0862=+-x x 根为21=x ,42=x 均为整数. ∴=k 5符合题意. ……………………………………………………………5分 综上所述,k 的值是5.22. 解:设京张高铁最慢列车的速度是x 千米/时. …………………………………………1分由题意,得60182029174-174=x x . ……………………………………………2分 解得 180=x . ……………………………………………3分 经检验,180=x 是原方程的解,且符合题意. ………………………………4分答:京张高铁最慢列车的速度是180千米/时. ……………………………………5分四、解答题(本题共20分,每小题5分) 23. (1)证明:在菱形ABCD 中,OC=12AC . ∴DE=OC . ∵DE ∥AC ,∴四边形OCED 是平行四边形.…………………………………………1分 ∵AC ⊥BD ,∴平行四边形OCED 是矩形. …………………………………………2分 ∴OE =CD .…………………………………………………………………3分(2)在菱形ABCD 中,∠ABC=60°,∴AC=AB=2. ∴在矩形OCED 中,CE =………………4分 在Rt △ACE 中,.………………………………………………………5分24.(1)2300. ………………1分 (2)如图. …………… 3分(3)35.0±0.5. ……………5分25.解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED.……………………………………………………………………………1分∵AB为⊙O的直径,∴∠ACB=90°. ……………………………………………………………… 2分∵BC∥ED,∴∠ACB=∠E=∠EDO.∴AE∥OD.∴∠DAE=∠ADO.∵OA=OD,∴∠BAD=∠ADO.∴∠BAD=∠DAE. ………………………………3分(2)连接BD,∴∠ADB=90°.∵AB=6,AD=5,∴BD=……………………………………………………………4分∵∠BAD=∠DAE=∠CBD ,∴tan∠CBD = tan∠BAD.在Rt△BDF中,∴DF=BD·tan∠CBD =115. ……………………………………………………………5分26. 解:PDAP 的值为23 . …………………………………………………………………1分 解决问题:(1)过点A 作AF ∥DB ,交BE 的延长线于点F ,……………………………………2分设DC =k ,∵DC ︰BC =1︰2,∴BC =2k .∴DB =DC +BC =3k .∵E 是AC 中点,∴AE =CE .∵AF ∥DB ,∴∠F =∠1.又∵∠2=∠3,∴△AEF ≌△CEB . ……………………………………………………………3分∴AF =BC =2k .∵AF ∥DB ,∴△AFP ∽△DBP . ∴DB AF PDAP =. ∴32=PD AP . …………………………………………………………………4分 (2) 6. ……………………………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 解:(1)∵ 点A 在直线x y =,且点A 的横坐标是-3,∴ A (-3,-3) . ………………………………………………………………1分把A (-3,-3)代入x ax y 42+=,解得a =1. … …………………………………………………………………2分∴M 1 : x x y 42+=,顶点为(-2,-4) .∴M 2的顶点为(1,-1) .∴M2的表达式为x x y 2-2=. …………3分(2)①由题意,C (2,2),∴F (4,2) . ………………………………4分∵直线n x y +=经过点F ,∴2=4+n .解得n =-2. ………………………5分② n >3,n <-6. …………… …7分28.解:(1)①补全图形,如图1所示. ………………………1分②由题意可知AD =DE ,∠ADE =90°.∵DF ⊥BC ,∴∠FDB =90°.∴∠ADF =∠EDB . ……………………………………2分∵∠C =90°,AC =BC ,∴∠ABC =∠DFB =90°.∴DB =DF .∴△ADF ≌△EDB . ……………………………………3分∴AF =EB .在△ABC 和△DFB 中,∵AC =8,DF =3,∴AC=,DF=. ………………………………………………………………4分AF =AB -BF=即BE= …………………………………………………………………………5分(2BD =BE +AB. ……………………………………………………………………7分29. 解:(1)A 、B ……………………………………………………………………………2分(2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长. ………………………3分∵P (1,2),∴ P ′ (1,-2).设直线P ′Q 的表达式为b kx y +=,根据题意,有 ⎩⎨⎧=+-=+242b k b k ,解得⎪⎩⎪⎨⎧-==31034b k . 图1∴直线P ′Q 的表达式为31034-=x y . ……………4分 当0=y 时,解得25=x . 即25=t . ………………………………………………………………………5分 根据题意,可知PP ′=4,P Q =3, P Q ⊥PP ′, ∴5''22=+=PQ PP Q P . ∴“等高距离”最小值为5. …………………………………………………6分(3)Q (554,552)或Q (554-,552). ………………………………8分。
2015北京市通州区初三(一模)数学

圆心, AA3 为半径的圆弧, 继续以点 B、O、C、A 为圆心按上述作法得到的曲线 AA1A2A3A4A5…称为 “正方形的渐开线 ”,来自那么点 A5 的坐标是
,点 A2015 的坐标是
.
三、解答题(每题 5 分,共 25 分) 17.( 5 分)如图,点 O 是直线 l 上一点,点 A、 B 位于直线 l 的两侧,且∠ AOB=90°,OA=OB,分别过 A、 B 两点作 AC⊥ l,交直线 l 于点 C, BD⊥ l,交直线 l 于点 D.求证: AC=OD.
.
13.( 3 分)燃灯佛舍利塔(简称燃灯塔)是通州八景之一,该塔始建于南北朝北周宇文时期,距今已有
1300 多年
历史.燃灯塔距运河 300 米,是通州的象征.某同学想利用相似三角形的有关知识来求燃灯塔的高度.他先测量出
燃灯塔落在地面上的影长为 12 米, 然后在同一时刻立一根高 2 米的标杆, 测得标杆影长为 0.5 米,那么燃灯塔高度
A( m, 3), B(﹣ 3 ,n)两点. ( 1)求一次函数的表达式; ( 2)观察函数图象,直接写出关于
x 的不等式 > kx+b 的解集.
四、解答题(每题 5 分,共 25 分) 22.(5 分)为了把通州区打造成宜居的北京城市副中心,区政府对地下污水排放设施进行改造.某施工队承担铺设 地下排污管道任务共 2200 米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设 管道的长度比原计划多 10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度. 23.(5 分)已知菱形 ABCD的对角线 AC 与 BD 相交于点 E,点 F 在 BC的延长线上,且 CF=BC,连接 DF,点 G 是 DF 中点,连接 CG.求证:四边形 ECGD是矩形.
2015年北京市初三数学一模试题分类(阅读材料)
类型一:添加辅助线,构造全等或相似推理证明1.(朝阳一模26)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC 中,∠ACB =90°, BE 是AC 边上的中线,点D 在BC 边上,CD :BD =1:2,AD 与BE 相交于点P ,求APPD的值. 小昊发现,过点A 作AF ∥BC ,交BE 的延长线于点F ,通过构造△AEF ,经过推理和 计算能够使问题得到解决(如图2). 请回答:APPD的值为 .参考小昊思考问题的方法,解决问题:如图 3,在△ABC 中,∠ACB =90°,点D 在BC 的延长线上,AD 与AC 边上的中线BE 的延长线交于点P ,DC :BC :AC =1:2:3 . (1)求APPD的值; (2)若CD=2,则BP = .2.(门头沟毕业考试26)阅读下面材料:小明遇到这样一个问题:如图1,在Rt △ABC 中,∠ACB =90°,∠A =60°,CD 平分∠ACB ,试判断BC 和AC 、AD 之间的数量关系.小明发现,利用轴对称做一个变化,在BC 上截取CA ′=CA ,连接DA ′,得到一对全等的三角形,从而将问题解决(如图2).A'DDCB CBAA图1 图2请回答:(1)在图2中,小明得到的全等三角形是△ ≌△ ;(2)BC 和AC 、AD 之间的数量关系是 .参考小明思考问题的方法,解决问题:如图3,在四边形ABCD 中,AC 平分∠BAD ,BC =CD =10,AC =17,AD =9. 求AB 的长.图1图2图3图3DCBA3.(燕山毕业考试26)阅读下面材料:小军遇到这样一个问题:如图1,△ABC中,AB=6,AC=4,点D为BC的中点,求AD的取值范围.小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.如图3,△ABC中,E为AB中点,P是CA延长线上一点,连接PE并延长交BC于点D.求证:PA•CD=PC•BD.4.(怀柔一模26)阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠A CB,AD=2.2,AC=3.6求BC的长.小聪思考:因为CD平分∠A CB,所以可在BC边上取点E,使EC=AC,连接DE. 这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请回答:(1)△BDE是_________三角形.(2)BC的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC中,AB=AC, ∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.图1 AB D CAB D C图2图3EABPCEDCBAB C类型二:添加辅助线,构造特殊四边形,利用解直等方法推理证明.5.(海淀一模26)阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).图1 图2图3请回答:BC+DE的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.类型三:一般四边形的解法,添加辅助线,构造直角三角形进行解直.6.(石景山一模26)阅读下面材料:小红遇到这样一个问题:如图1,在四边形ABCD中,︒=∠=∠90CA,︒=∠60D,34=AB,3=BC,求AD的长.小红发现,延长AB与DC相交于点E,通过构造Rt△ADE,经过推理和计算能够使问题得到解决(如图2).请回答:AD的长为.参考小红思考问题的方法,解决问题:如图3,在四边形ABCD中,21tan=A,︒=∠=∠135CB,9=AB,3=CD,求BC和AD的长.图3图1图2E类型四:利用全等三角形的判定方法画图,构造全等三角形,对SSA是否全等推理验证.7.(平谷一模26)阅读下面材料:学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E .小聪想:要想解决问题,应该对∠B 进行分类研究.∠B 可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B 是直角时,如图1, 在△ABC 和△DEF 中,AC =DF ,BC =EF , ∠B =∠E =90°,根据“HL”定理,可以知道 Rt △ABC ≌Rt △DEF . 第二种情况:当∠B 是锐角时,如图2,BC =EF ,∠B =∠E<90°,在射线EM 上有点D ,使DF =AC ,画出符合条件的点D ,则△ABC 和△DEF 的关系是 ;A .全等B .不全等C .不一定全等 第三种情况:当∠B 是钝角时,如图3,在△ABC 和△DEF 中,AC =DF ,BC =EF , ∠B =∠E >90°,求证:△ABC ≌△DEF .类型五:利用圆周角的性质画圆,根据圆内接四边形的性质及三角形外角性质进行推理证明.8.(房山一模26)阅读材料小明遇到这样一个问题:如图1,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠AFE =∠ACB . 小明是这样思考问题的:如图2,以BC 为直径做半⊙O ,则点F 、E 在⊙O 上,∠BFE +∠BCE =180°,所以∠AFE =∠ACB .请回答:若∠ABC =40,则∠AEF 的度数是 . 参考小明思考问题的方法,解决问题:如图3,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠BDF =∠CDE .图2图1图3图1 图2 图3BAC类型六:利用特殊四边形的性质,构造全等或相似推理证明.9.(东城一模26)阅读材料在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AF BE的值.A图1 图2类型七:利用等边三角形性质,构造全等,利用割补法求一般图形的面积.10.(延庆毕业考试26) 阅读下面资料: 问题情境:(1)如图1,等边△ABC ,∠CAB 和∠CBA 的平分线交于点O ,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点与点O 重合,已知OA =2,则图中重叠部分△OAB 的面积是 . 探究:(2)在(1)的条件下,将纸片绕O 点旋转至如图2所示位置,纸片两边分别与AB ,AC 交于点E ,F ,求图2中重叠部分的面积.(3)如图3,若∠ABC =α(0°<α<90°),点O 在∠ABC 的角平分线上,且BO =2,以O 为顶点的等腰三角形纸片(纸片足够大)与∠ABC 的两边AB ,AC 分别交于点E 、F ,∠EOF =180°﹣α,直接写出重叠部分的面积.(用含α的式子表示)类型八:利用网格,构造直角三角形,进行解直.11.(西城一模26)阅读下面的材料:小敏在数学课外小组活动中遇到这样一个问题:如果α,β都为锐角,且1tan 2α=,1tan 3β=,求αβ+的度数. 小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得ABD α∠=,CBE β∠=,且BA ,BC 在直线BD 的两侧,连接AC ,可证得△ABC 是等腰直角三角形,因此可求得αβ+=∠ABC = °.请参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tan 4α=,3tan 5β=时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=αβ-,由此可得αβ-=______°.类型九:利用特殊四边形及相似的性质求解.12.(通州一模26)阅读材料(1)请你根据下面画图要求,在图①中完成画图操作并填空.如图①,△ABC 中,∠BAC =30°,∠ACB =90°,∠P AM =∠A . 操作:(1)延长BC . (2)将∠P AM 绕点A 逆时针方向旋转60°后,射线AM 交BC 的延长线于点D . (3)过点D 作DQ//AB .(4)∠P AM 旋转后,射线AP 交DQ 于点G . (5)连结BG .结论:ABAG= . 图1图2图3(2)如图②,△ABC 中,AB =AC =1,∠BAC =36°,进行如下操作:将△ABC 绕点A 按逆时针方向旋转α度角,并使各边长变为原来的n 倍(n >1),得到△''AB C . 当点B 、C 、'B 在同一条直线上,且四边形''ABB C 为平行四边形时(如图③),求α和n的值.类型十:通过拼图,利用等面积法推理证明勾股定理公式.13.(丰台一模26)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍 的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到 , 整理,得 , 所以 .图1图 2a图① 图② 图③。
2015北京怀柔区初三一模数学试题及答案(Word打印版)
北京市怀柔区2015年高级中等学校招生模拟考试(一)数学试卷一、选择题(本题共30分,每小题3分) 1.把8000用科学计数法表示是A .28010⨯ B .3810⨯ C .40.810⨯ D .4810⨯ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是 A.点A 与点D B. 点A 与点C C. 点B 与点C D. 点B 与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为 A .101 B .51 C .41D .215. 如图,AD 是∠EAC 的平分线,AD∥BC,∠B=30°,则∠C 为A .30°B .60°C .80°D .120°6.如图,已知⊙O 的半径为10,弦AB 长为16,则点O 到AB 的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的A .平均数B .众数C .中位数D .方差 8.如图,已知正方形ABCD 中,G 、P 分别是DC 、BC 上的点,E 、F 分别 是AP 、GP 的中点,当P 在BC 上从B 向C 移动而G 不动时, 下列结论成立的是A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定G FE PD CBA9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为A .x≥ B. x≤3 C. x ≤D.x≥310.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x的取值范围是_________________.12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第个.14.如图,在矩形ABCD中,=,以点B为圆心,BC长为半径画弧,交边AD于点E.若AE•ED=16,则矩形ABCD的面积为.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2014年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2014年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为立方米,本期用水天数104天,日均用水量为立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到元(一年按365天计算).①②③④⑤PED CBA图1三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18.计算:011(20152014)2cos 45()2--+︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b =,求代数式2243(3)9a ba b a b ++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.FEDCA22.已知:关于x 的一元二次方程错误!未找到引用源。
2015年北京燕山初三一模数学试题及答案整理版
2015年北京燕山初三一模数学试题及答案整理版D从中任意抽出一个家庭进行用水情况调查,则抽到的家庭月用水量为6吨的概率为A .41B .52C .103D .201以上两位同学的对话反映出的统计量是A .众数和方差B .平均数和中位数C .众数和平均数D .众数和中位数7.在多项式x 2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是A .xB .3xC .6xD .9x 8.如图,⊙O 的半径长6cm ,点C 在⊙O 上,弦AB垂直平分OC 于点D ,则弦AB 的长为A .9 cmB .36cmC .29cm D .33cm 9.在△ABC 中,按以下步骤作图:①分别以A ,B为圆心,大于21AB 的长为半径画弧,相交于两点M ,N ;②作直线MN 交AC 于点D ,连接BD .若CD =BC ,∠A =35°,则 ∠C = A .40° B .50° C .60° D .70°10.李阿姨每天早晨从家慢跑到小区公园,锻炼一阵y (单位:)点表示李阿姨家的位置)A .B .C .NM ABD C第9第8题分第10二、填空题(本题共18分,每小题3分)11.若代数式23-x 有意义,则x 的取值范围是 .12.分解因式:a ab -2= .13.如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =45cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为 cm . 14.已知某函数图象经过点(-1,1),且当x >0时,y 随x的增大而增大.请你写出一个..满足条件的函数解析式:y = .15.为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费 元.16.定义:对于任意一个不为1的有理数a ,把a-11称为a 的差倒数,如2的差倒数为1211-=-,1-的差倒数为)1(11--=21.记211=a ,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,ABEF依此类推,则2a = ;2015a = .三、解答题(本题共30分,每小题5分)17.如图,点E ,F 在线段AC 上,AB ∥CD ,AB =CD ,AE =CF .求证:BE =DF .18.计算:01)3(30tan 3|3|)31(π-+︒--+-.19.解不等式组:⎩⎨⎧≤-<-.21512x x ,20.已知022=--x x ,求代数式)1)(1()12(-+--x x x x 的值. 21.列方程或方程组解应用题:赵老师为了响应市政府“绿色出行”的号召,改骑自行车上下班,结果每天上班所用时间比自驾车多53小时.已知赵老师家距学校12千米,上下班高峰时段,自驾车的速度是自行车速度的2倍.求赵老师骑自行车的速度.22.已知关于x 的方程03)32(22=-+--k k x k x .(1)求证:方程总有两个不相等的实数根; (2)已知方程有一个根为0,请求出方程的另DO FECAB一个根.四、解答题(本题共20分,每小题5分)23.如图,菱形ABCD 中,对角线AC ,BD 交于O点,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为矩形;(2)在BC 上截取CF =CO ,连接OF ,若AC=8,BD =6,求四边形OFCD 的面积.24.根据国家邮政局相关信息,2014年我国快递业务量达140亿件,比2013年增长52%,跃居世界第一,而快递产生的包装垃圾也引起了邮政管理部门的重视.以下是根据相关数据绘制的统计图的一部分.根据以上信息,解答下列问题:(1)请补全条形统计图并标明相应数据;(结果保留整数) 市民收到快递后对包装处理方式统计图D :其他C :留着下次寄件 使用;B :收集整理后作 为废品卖掉;A:直接丢弃;60%20%8%12%AB C D1601401208060100402002014140年)业务量(亿件2012201120132357372010-2014年全国快递业务量统计图(2)每件快递专用包装的平均价格约为1.2元,据此计算2014年全国直接丢弃的快递包装造成了约多少亿元的损失? (3)北京市2014年的快递业务量约为6亿件,预计2015年的增长率与近五年全国快递业务量年增长率的平均值近似相等,据此估计2015年北京市快递业务量将达到 亿件.(直接写出结果,精确到0.1)25.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E .(1)求证:∠CDE =90°; (2)若AB =13,sin ∠C =135,求CE 的长.26.阅读下面材料:小军遇到这样一个问题:如图1,△ABC 中,AB =6,AC =4,点D 为BC的中点,求AD 的取值范围.AB DC E ABP小军发现老师讲过的“倍长中线法”可以解决这个问题.他的做法是:如图2,延长AD 到E ,使DE =AD ,连接BE ,构造△BED ≌△CAD ,经过推理和计算使问题得到解决.请回答:AD 的取值范围是 .参考小军思考问题的方法,解决问题: 如图3,△ABC 中,E 为AB 中点,P 是CA 延长线上一点,连接PE 并延长交BC 于点D .求证:PA •CD =PC •BD .五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.抛物线cbx x y C ++=2121:与y 轴交于点C (0,3),其对称轴与x 轴交于点A (2,0). (1)求抛物线1C 的解析式; (2)将抛物线1C 适当平移,使平移后的抛物线2C 的图ABC图顶点为D (0,k ).已知点B (2,2),若抛物线2C 与△OAB 的边界总有两个公共点,请结合函数图象,求k 的取值范围.28.△ABC 中,∠ABC =45°,AH ⊥BC 于点H ,将△AHC 绕点H 逆时针旋转90°后,点C 的对应点为点D ,直线BD 与直线AC 交于点E ,连接EH .AB H CA BHCED(1)如图1,当∠BAC 为锐角时,①求证:BE ⊥AC ;②求∠BEH 的度数; (2)当∠BAC 为钝角时,请依题意用实线补全图2,并用等式表示出线段EC ,ED ,EH 之间的数量关系29.在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如点(1,1),(31-,31-),(2-,2-),…,都是和谐点.(1)分别判断函数12+-=x y 和12+=x y 的图象上是否存在和谐点,若存在,求出其和谐点的坐标; (2)若二次函数)0(42≠++=a c x ax y 的图象上有且只有一个和谐点(23,23),且当m x ≤≤0时,函数)0(4342≠-++=a c x axy 的最小值为-3,最大值为1,求m 的取值范围.(3)直线2:+=kx y l 经过和谐点P ,与x 轴交于点D ,与反比例函数xny G =:图图的图象交于M,N两点(点M在点N 的左侧),若点P的横坐标为1,且+DNDM,请直接写出n的取值范围.32<燕山地区2015年初中毕业考试数学试卷参考答案与评分标准 2015年4月一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2≠x 12.)1)(1(-+b b a ; 13.90; 14.答案不唯一:xy 1-=,2x y =,2+=x y ,… 15.48; 16.2;2.三、解答题(本题共30分,每小题5分)17.证明:∵AB ∥CD ,∴∠A =∠C . ………………………1分在△BAE 和△DCF 中,⎪⎩⎪⎨⎧∠=∠=,=,CF AE C A CD AB ,∴△BAE ≌△DCF(SAS ), ………………………4分∴BE =DF . ………………………5分18.解:原式=133333+⨯-+ ………………………4分=4.………………………5分 19.解:解不等式①,得3<x , ………………………2分解不等式②,得1-≥x , ………………………4分∴原不等式组的解集为31<≤-x . ………………………5分20.解:)1)(1()12(-+--x x x x=)1(222---x x x ………………………2分=1222+--x x x =12+-x x . ………………………3分∵022=--x x ,即22=-x x . ………………………4分∴原式=1)(2+-x x =2+1=3. ………………………5分21.解:设赵老师骑自行车的速度为x 千米/小时, ………………………1分依题意得5321212=-x x , ………………………2分解方程得 x =10. ………………………3分经检验,x =10是原方程的解且符合实际意义. ………………………4分答:赵老师骑自行车的速度是10千米/小时. ………………………5分22.解:(1)Δ=)3(14)32(22k k k -⨯⨯-- ………………………1分=k k k k 124912422+-+-=9>0,∴ 原方程总有两个不相等的实数根. ………………………2分(2)解法一: 把0=x 代入方程03)32(22=-+--k k x k x中, 得 032=-k k , 解得=k ,或3=k . ………………………3分当0=k 时,原方程化为032=+x x ,解得31-=x ,2=x ; ………………………4分当3=k 时,原方程化为032=-x x ,解得31=x ,02=x.综上,原方程的另一个根3-=x ,或3=x . ………………………5分解法二:∵Δ=9,由求根公式,得 23)32(129)32(21±-=⨯±-=k k x ,, ∴原方程的根为kx =1,32-=k x . ………………………3分当1==k x 时,332-=-=k x ; ………………………4分当032=-=k x时,31==k x.综上,原方程的另一个根3-=x ,或3=x . ………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. ………………………1分又∵四边形ABCD 是菱形, ∴AC ⊥BD .∴∠DOC =90°.∴四边形OCED 为矩形. ………………………2分(2)解法一:∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O ,∴OD =OB =21BD =3,OA =OC =21AC =4, ∴S △DOC=OC OD ⋅21=4321⨯⨯=6. ………………………3分在Rt △OBC 中,BC =22OC OB +=5,sin ∠OCB =BCOB =53.作FH ⊥OC 于点H ,在Rt △CFH 中,CF =CO =4,sin ∠HCF=FCFH =53,HB ACDE FO∴FH=53CF =512. ………………………4分∴S △OCF =FH OC ⋅21=512421⨯⨯=524.∴S四边形OFCD =S △DOC +S △OCF =6+524=554. ………………………5分解法二:∵菱形ABCD ,∴AC 与BD 互相垂直平分于点O , ∴OD =OB =21BD =3,OA =OC =21AC =4, ∴S △DCB=OC DB ⋅21=4621⨯⨯=12. ………………………3分在Rt △OBC 中,BC =22OCOB +=5,sin ∠OCB =BCOB =53.作OG ⊥BC 于点G ,∵CF =CO =4,∴BF =BC − CF =5− 4=1. 在Rt △OCG 中,sin ∠OCG =OCOG =53,∴OG =53OC=GB ACDE FO512. ………………………4分∴S △OBF =OGBF ⋅211211⨯⨯6∴S 四边形OFCD =S=56=554. …………5分24.解:(1)140÷(1+52%)=92;补全条形统计图如图; …………2分(2)140×60%×1.2=100.8亿元; …………4分答:2014年全国直接丢弃的快递包装造成了约100.8亿元的损失.(3)9.1,9.2,9.3,9.4,9.5,9.6,9.7其中之一. ………………………5分 25.(1)证明:如图,连接OD ,∵DE 切⊙O 于D ,OD 是⊙O 的半径, ∴∠EDO =90°. ……(年)(亿件)…………………1分∵OD=OB错误!未找到引用源。
【初中数学】北京市各区县2015年中考一模数学试题集(共15套) 通用4
东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5学校 班级 姓名 考号一律填涂或书写在答题卡上一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。
其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的 中位数和众数分别是5. 在六张卡片上分别写有π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D. 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A.B.2C.D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 12 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.图1 图216.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1AO 为 边做正方形111AOC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 . 三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()1136043-⎛⎫--︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?F(1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b≥时,{}min a b b =,;当a b <时, {}min a b a =,.如:{}m i n 122-=-,,{}min 121-=-,. (1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.517. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分根据题意,列方程得:200=120(25)x x -,…………3分 解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E . ∵CE x ⊥轴,AB x ⊥轴,()4,2A -, ∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分) 23.(1)证明:∵DE BC ∥,CE AB ∥,∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线,∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分 (2)解:作CF AB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =. 在Rt ABC △中,根据勾股定理可求得AB =. ∵1122AB CF AC BC ⋅=⋅,∴AC BC CF x AB ⋅==.∵12CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生; (2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.26. 解:(1)AF =BE ; …………1分(2)AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=.∴AF BE = …………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B , ∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A '⊥仍然成立;------------3分(3)猜想BD A A '⊥仍然成立.证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠.∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中,90,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△. 图2图1∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=.∵AB A B '=,∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥. ∵2min{2,3}3x x k -+-=-, ∴13k --≥. ∴2k -≥. ┉┉5分(337m -≤≤. ┉┉8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015初三数学一模题分类——第10题
1.(平谷一模)已知:如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC =12cm ,BD =16cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,直线EF 从点D 出发,沿DB 方向匀速运动,速度为1cm/s ,EF ⊥BD ,且与AD ,BD ,CD 分别交于点E ,Q ,F ;当直线EF 停止运动时,点P 也停止运动.连接PF ,设运动时间为t (s )(0<t <8).设四边形APFE 的面积为y (cm 2
),则下列图象中,能表示y 与t 的函数关系的图象大致是
2.(房山一模10
)如图,已知抛物线2
+23y x x =-,把此抛物线沿y 轴向上平移,平移后的抛物线和原
抛物线与经过点()0
,2-,()0,2且平行于y 轴的两条直线所围成的阴影部分的面积为s ,平移的距离为
m ,则下列图象中,能表示s 与m 的函数关系的图象大致是
3. (东城一模)如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与
点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是
A .
B .
D .
C .
y
A B C D
4.(延庆一模10)如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是
5.(海淀一模10)小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是
6.(朝阳一模10)甲、乙两人在一条长400米的直线跑道上同起点、同终点、
同方向匀速跑步,先到终点的人原地休息.已知甲先出发 3秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的 时间t (秒)之间的关系如图所示,则下列结论正确的是 A. 乙的速度是4米/秒
B. 离开起点后,甲、乙两人第一次相遇时,距离起点12米
C. 甲从起点到终点共用时83秒
D. 乙到达终点时,甲、乙两人相距68米
A .
B .
C .
D .
A B C
D
7.(通州一模10)如图,在Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动.如图(1)所示,设S △DPB = y ,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则△ABC 的面积为( )
A
A .4
B .6
C .12
D .14
8.(丰台一模)如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是
9.(石景山一模)在平面直角坐标系xOy 中,四边形OABC 是矩
形,且A ,C 在坐标轴上,满足OA =1OC =.将矩形
OABC 绕原点O 以每秒15︒的速度逆时针旋转.设运动时间为
t 秒(
)06t ≤≤,旋转过程中矩形在第二象限内的面积为S ,
表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC
的初始位置是
A B
C D 10.(燕山一模)李阿姨每天早晨从家慢跑到小区公园,锻炼一阵后,再慢跑回家.表示
李阿姨离开家的距离y (单位:米)与时间t (单位:分)的函数关系的图象大致如上图所示,则李阿姨跑步的路线可能是(用P 点表示李阿姨家的位置)
如图(1)
分
A .
B .
C .
D .
11.(怀柔一模)如图1,在等边△ABC 中,点E 、D 分别是AC ,BC 边的中点,点P 为AB 边上的一个动点,连接PE ,PD ,PC ,DE .设AP =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的
A .线段PD
B .线段P
C C .线段PE
D .线段DE
P
E
D
C
B
A
图1。