必修五第三章不等式模块练习题(c层)
(完整版)必修五第三章不等式练习题(含答案),推荐文档

等式练习题 第一部分1.下列不等式中成立的是(7.在R 上定义运算 :xy x(1 y),若不等式(x a)(x a) 1对任意实数x 成立,贝U 实数a 的取值范围是().A. {a| 1 a 1}B .{a| 0 a 2}1 3 C {a| 1 a £} D.{a| 3 11-a -}2 28已知正实数x,y 满足x 2y4,则丄 4x 丄的最小值为y•9 .设x, y 为正实数,aJ x 22xy y ,bpjxy,c xy .试比较a 、c 的大小.A. b a C. D. a cB. b c a b ca c bA.若a 则ac 2 bc 2 .若 a b ,贝U a 2b 2 C.若aab b 21.若 a b 0,贝U -a2.已知a 1 3,b14,(A). c a3.已知a,b,c 满足c (B)3 5a b3 4,则a,b,c 的大小关系是()(C) b a c a 且ac 0,下列选项中不一定(D) c成立的是((A ) ab ac(B )(C) cb 2 ab 2(D) ac(a c) 04 .规定记号“O”表示一种运算,定义若1O k 2<3,则k 的取值范围为A . 1 k 1B aO b^/ab a (a , b 为正实数),5 .若a,b,c 为实数, 则下列命题正确的是(A.若a 则ac 2bc 2B.若a ab b 2C.若aD.若a 1bab6.设a0.5. I,b log 3,c log 4 2,则(6.226函数y = 3x + x^+1的最小值是()A.10 .已知不等式ax 2 5x 2 0的解集是M .(1)若2 M ,求a 的取值范围;(2)若 M x2x2,求不等式ax 2 5x a 2 10的解集.第二部分1.给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>|b|,则 a>b ; ④若 a>b ,则 a 2>b 2.其中正确的是(A.②④ B .②③ C .①② D ①③2.设 a , b € R, A. b -a>0 B若a -1 b|>0,贝U 下列不等式中正确的是( .a 3+ b 2<0)C . b + a>0D . a — b <0 3.在下列函数中,最小值是 2的是() A.x + 2 .y =尸(x >0)C. y = sin x + cscx , x € (0 ,ny )4. 已知log a (a 2+ 1)vlog a 2a<0,则a 的取值范围是( A. (0,1) B ・(扌,1)C. (0, 2)5. f (x) = ax 2+ ax - 1 在 R 上满足 f (x)<0, 则a 的取值范围是( )A. (-X, 0]B. (-X,- 4)C. (-4,0)D. (-4,0]B.C.6.41 17.设a>0, b>0.若{3是3与3的等比中项,则o +b 的最小值为( )A. 8D-4&已知当x>0时,不等式x 2— m)+ 4>0恒成立,则实数m 的取值范围是 9.已知 A = {x|x 2— 3x + 2<0},{x|x 2— (a + 1)x + a <0}.⑴若A B,求a 的取值范围; ⑵若B? A 求a 的取值范围1 910.已知x>0, y>0,且x + y = 1,求X + y 的最小值.11.已知a , b , c 都是正数,且a +b + c = 1.求证:(1 — a)(1 — b)(1 — c) >8abc. 证明•/ a 、b 、c 都是正数,且a +b + c = 1,•-1 — a = b + c 寸 bc>0, 1—b=a+c >2ac>0, 1 — c = a + b 寸 ab>0.••• (1 — a)(1 — b)(1 — C) •^Oc •2ab= 8abc.212.不等式 kx — 2x + 6kv0(k 工0).(1) 若不等式的解集为{x|x< — 3或x> — 2},求k 的值; (2) 若不等式的解集为R,求k 的取值范围.B. 4C. 11. D. 【解析】对于A ,若c 不成立;对于C,若a2. D 【解析】 参考答案 第一部分,显然ac 2b 0,则 a 2;故选Dbc 2不成立;对于B ,若b a 0,则a 2ab b 2b 2,所以C 错;对于D,若a b33 4 2 3. C 【解析】 1所以c 综上,所以答案为:D.Qa c, ac 0, 0,a (1) Qb c,a 0,ab ac;⑵ Q b a,0,0, c b 0 ;(3) Q c a,,Q ac 0, ac a0 ■⑷b a 且c 0, a 0, 0或b 0或b 0, cb 2和ab 2的大小不能确定,即C 选项不一定成立■故选C.4. A 【解析】根据题意1e k 2 1 k 2 3化简为k 2绝对值如下: 原不等式为 k 2k 2 0解得2 0时, 原不等式为 0成立,所以k k 2 0 ,对k 分情况去 k 1,所以0 k 原不等式为 k 2k 2 0,解得 1 k 2,所以1 综上, 5. B 【解析】对于 所以选择 A. 当c 0时, 0,所以1a 所以a b,故D 错,所以选b a两边同时除以 A, ab 故A 错;对于C, 不等式不成立, 11,故C 错;对于D,因为a b 0 , b因为a 1bB .6. A【解析】••• a 20.5, b log 3 , c log42 , 1>2 0.51log 3 >1, Iog 42= -b >a >c .故选: 27. C8. 1 【解析】【解析】根据题意化简不等式为(X a )(1 (X a)) 1,即 X 2 X(a 2 a 1) 0 对任意实数X 成立,所以根据二次恒成立 0,解得(当且仅当“X y 4”时,取“ ”),故最小值为1.39.a 2 X 22 2 2 22 2xy y 2, c 2X 22xy y 2c 2 a 2xy ;X 0, y0, xy 0,即 c a ;10. (1) a12 (2) X3 X 1【解析】(1)由2 M ,说明元素2满足不等式ax 2 5x 2 0,代入即可求出a的取值范围; (2)由M x2 X 2,2,2是方程ax 25x 20的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;(1)v 2 M 2,二 a 2 5 2 20,••• a 2(2)v Mx1 X 2 ,••• 1,2是方程ax 2 5x 20的两个根,11 y X 8 yX y 1 4 5 25 21 / y X 4点 1 -1 8尸y4x A.由X 2y 4化为4x4 X 2 4x1 2x1 2xX 2y 4,因为o,y所以1 8所以 X + y = (x+ y)( 1+ 9) = y+ — + 10>2 ' 八 X y X y y 9x 1 9当且仅当x =—时,等号成立,又因为X +y = 1.所以当 x = 4, y = 12 时,(X + y) min = 16.•••由韦达定理得2 1/•不等式ax 2 5x a0即为:2x 2 5x 3 0其解集为X第二部分2.解析 由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C.3.解析X 2y=- + -的值域为(一X,— 2] U [2,+X);X + 2 --- 1y〒=也〒 + k >2(X >0);1y = SinX + CSCX = SinX + 茹>2(0<Sin X <1);y = 7x + 7—x>2(当且仅当x = 0时取等号).7.解析 V s 是 3a 与 3b 的等比中项? 3a •3b= 3a + b= 3? a + b = 1, v a>0,b>0, /^ab1 1 a + b 1 1 「a +萨石=Ob ^ 1=4.411.解析因为 x>0, y>0, X + 9= 1,9X-—+ 10= 16. y。
数学必修五不等式基础测试(不包含线性规划)

《必修五》第三章不等式测试卷姓名:一、选择题(每题4分,共32分。
)( )1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是A .c b c a +≥+B .bc ac >C .ba 11< D .0)(2≥-cb a ( )2.若41,21<<-<<b a ,则b a -的取值范围为A .60<-<b aB .02<-<-b aC .20-<-<b aD .33<-<-b a ( )3.不等式0)3)(1(>--x x 的解集为A. }1|{<x xB. }3|{>x xC. }31|{><x x x 或D. }31|{<<x x ( )4.不等式0322>-+x x 的解集是A .}31|{<<-x xB .}31|{>-<x x x 或C .}13|{<<-x x D. }13|{>-<x x x 或 ( )5.二次不等式20ax bx c ++>的解集是全体实数的条件是A.⎩⎨⎧>∆>00aB.⎩⎨⎧<∆>00aC.⎩⎨⎧>∆<00aD.⎩⎨⎧<∆<00a ( )6.下列结论正确的是 A .当2lg 1lg ,10≥+≠>xx x x 时且 B .21,0≥+>x x x 时当 C .x x x 1,2+≥时当的最小值为2 D .当xx x 1,42+<<时无最小值 ( )7.已知正数x 、y 满足811x y+=,则2x y +的最小值是 A.18 B.16 C .8 D .10( )8.一元二次不等式220ax bx ++>的解集是(21-,31),则a b +的值是 A .10 B .10- C .14 D .14-二、填空题(每小题4分,共16分)9. 已知10<<x ,则函数)21(x x y -=的最大值是_____ __.10.已知2>x ,则y =21-+x x 的最小值是_____ __. 11.已知0<x ,则x x y 4+=得最大值是_____ __. 12.14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是_____ __.三、解答题(6小题,共52分,解答应写出文字说明,证明过程或演算步骤。
北师大版高中数学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .12.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B .4C .8D .93.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .4.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( )A .1[13)2B .1[,13)4C .5[13) D .1[,13)55.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .96.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-7.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .18.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94C .52D .29.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .411.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1+∞ C .(1,3)D .(3,+∞)12.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭二、填空题13.0a >,0b >,且21a b +=,不等式1102m b a b+-≥+恒成立,则m 的范围为_______.14.西气东输工程把西部的资源优势变为了经济优势,实现了气能源需求与供给的东西部衔接,同时该项工程的建设也加快了西部及沿线地区的经济发展.在输气管道工程建设过程中,某段直线形管道铺设需要经过一处平行峡谷,勘探人员在峡内恰好发现一处四分之一圆柱状的圆弧拐角,用测量仪器得到此横截圆面的圆心为O ,半径OM ON =且为1米,而运输人员利用运输工具水平横向移动直线形输气管不可避免的要经过此圆弧拐角,需从宽为38米的峡谷拐入宽为16米的峡谷.如图所示,位于峡谷悬崖壁上的两点A ,B 的连线恰好与圆弧拐角相切于点T (点A ,T ,B 在同一水平面内),若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过______________米.15.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 16.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()243220x x θ-+<和不等式()224sin210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.17.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF xAB yAC =+,则xy 的最大值为________.19.已知实数,x y 满足11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值是________________.20.若函数32()1f x x x mx =+++是R 上的增函数,则实数m 的取值范围是__________.三、解答题21.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题: (1)已知正数x 、y 满足21x y +=,求12x y+的最小值. 甲给出的解法是:由2122x y xy +=≥22xy ,则128x y +≥=≥,所以12x y +的最小值为8.而乙却说这是错的.请你指出其中的问题,并给出正确解法; (2)结合上述问题(1)的结构形式,试求函数()1310122f x x x x ⎛⎫=+<< ⎪-⎝⎭的最小值. 22.已知函数2(1)2f x x x =++(1)求关于x 的不等式2()(0)f x b b ≥≥的解集;(2)若不等式22[()]2()10f x mf x m -+-≥对于任意[2,1]x ∈-都成立,求m 的取值范围.23.已知函数()251f x x x =--+. (1)解不等式()3f x x <;(2)当[]1,2x ∈时,2()3f x ax x -+恒成立,求实数a 的取值范围. 24.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1. (1)求f(x)的解析式; (2)解不等式f(x)>2x +5.25.若实数0x >,0y >,且满足8x y xy +=-. (1)求xy 的最大值; (2)求x y +的最小值26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B化简22211()44u mn v m n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.3.C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a ca a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.4.D解析:D 【详解】 根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=22001521⨯+-=+,O 与(2,3)C 的距离最大为222313+=,∵可行域不包含(2,3)C ∴21135r ≤<,即22x y +的取值范围是1[,13)5故选:D 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】由约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150x x y =⎧⎨+-=⎩,解得A (1,4),化目标函数z =x +2y ﹣1为y 1222x z =-++,由图可知,当直线y 1222x z =-++过A 时,z 有最大值为8. 故选C .【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.6.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.7.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122zy x=-过点C时,直线122zy x=-的截距最大,此时z最小,420xx y=⎧⎨--=⎩,解得()4,2A.代入目标函数2z x y=-,得4220z=-⨯=,∴目标函数2z x y=-的最小值是0.故选:C.【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.8.B解析:B【分析】根据等差数列的性质和前n项和公式求得26a a+,然后由“1”的代换应用基本不等式求得最小值.【详解】由题意172677()7()1422a a a aS++===,∴264a a+=,∴26262614114()()4t a aa a a a=+=++6622262644119(5)(52)444a aa aa a a a=++≥+⋅=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.9.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 11.A解析:A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A .考点:简单线性规划的应用. 【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.12.D解析:D【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围.【详解】作出可行域如下:由221z x y =--得12z y x +=-, 平移直线12z y x +=-, 由平移可知当直线12z y x +=-,经过点C 时, 直线12z y x +=-的截距最小,此时z 取得最大值,由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12z y x +=-,经过点A 时, 直线12z y y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3 代入221z x y =--得125221333z =⨯-⨯-=-, 故5[3z ∈-,5) 故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中档题.二、填空题13.【分析】由可得然后利用基本不等式可求出而不等式恒成立等价于小于等于最小值从而可求出的范围【详解】解:因为所以当且仅当即时取等号因为不等式恒成立所以小于等于最小值所以故答案为:【点睛】易错点睛:利用基解析:32m ≤ 【分析】由21a b +=可得1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭322a b b b a b +=+++,然后利用基本不等式可求出11322b a b +≥++1102m b a b +-≥+恒成立,等价于m 小于等于112b a b++最小值,从而可求出m 的范围 【详解】解:因为21a b +=, 所以1111()22a b b b a b b a b ⎛⎫+=+++ ⎪++⎝⎭ 1122a b b b a b+=++++322a b b b a b +=+++ 331322222222a b b b a b +≥+⋅=+=++, 当且仅当2a b b b a b+=+,即(21)a b =-时,取等号, 因为不等式1102m b a b+-≥+恒成立, 所以m 小于等于112b a b ++最小值, 所以322m ≤+, 故答案为:322m ≤+ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.75【分析】设则可得AB 长度的表达式利用凑1法结合基本不等式即可求得答案【详解】设其中延长OM 交AB 于D 过B 做SB 垂线交DO 于G 延长ON 交AB 于E 过A 做SA 垂线交NO 于F 如图所示:在中AF=39则即解析:75【分析】设=MOT θ∠,则可得AB 长度的表达式,利用凑“1”法,结合基本不等式,即可求得答案.【详解】设=MOT θ∠,其中(0)2πθ∈,,延长OM ,交AB 于D ,过B 做SB 垂线,交DO 于G ,延长ON ,交AB 于E ,过A 做SA 垂线,交NO 于F ,如图所示:在Rt AEF 中,AEF θ∠=,AF =39,则sin AF AE θ=,即39sin AE θ=, 在Rt BDG 中,DBG θ∠=,17BG =,则cos BG BD θ=,即17cos BD θ=, 在Rt DOE 中, OT DE ⊥,OT=1,所以11,cos sin DO EO θθ==, 又1122DO EO DE OT ⨯⨯=⨯⨯,所以1sin cos DE θθ=, 所以39171()sin cos sin cos AB f AE BD DE θθθθθ==+-=+-=39cos 17sin 1sin cos θθθθ+-, 因为4sin 3cos 5sin()5θθθϕ+=+≤,其中3tan 4ϕ=,当且仅当2πθϕ+=时,等号成立, 所以1(4sin 3cos )(39cos 17sin )139cos 17sin 15()sin cos sin cos f θθθθθθθθθθθ++-+-=≥ 22221(68sin 207sin cos 117cos )(sin cos )5sin cos θθθθθθθθ++-+= =2263207112sin sin cos cos 716207555(9tan )sin cos 5tan 5θθθθθθθθ++=++72077555≥⨯=, 当且仅当169tan tan θθ=,即4tan 3θ=时等号成立, 所以若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过75米.故答案为:75.【点睛】解题的关键是根据题意,得到AB 长度的表达式,难点在于需利用凑“1”法,将表达式化简成齐次式,结合基本不等式求解,考查计算化简的能力,属中档题.15.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出 解析:8【解析】由题意可得:()2111821211161102111029,a b a b a b a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛≥+ ⎝= 则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.16.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=,即可得解.【详解】设不等式()2220x x θ-+<和不等式()224sin210x x θ++<的解集分别为(),a b 和11,b a ⎛⎫ ⎪⎝⎭, 则a ,b为方程()2220x x θ-+=的两个根, 1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,2sin 2θ=-即tan 2θ=, 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.17.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =,所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF xAB yAC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 19.【分析】画出可行域再分析直线取最大值的最优解即可【详解】由约束条件作出可行域如图联立目标函数由图可知过A 时直线在y 轴上的截距最小z 有最大值为故答案为:【点睛】本题主要考查了线性规划求最大值的问题考查 解析:12【分析】画出可行域,再分析直线2z x y =-取最大值的最优解即可.【详解】由约束条件11y x x y y ≥⎧⎪+≤⎨⎪≥-⎩作出可行域如图,联立11(,)122y x A x y =⎧⇒⎨+=⎩. 目标函数22z x y y x z =-⇒=-由图可知,过A 时,直线在y 轴上的截距最小, z 有最大值为12. 故答案为:12【点睛】本题主要考查了线性规划求最大值的问题,考查运算求解能力和数形结合思想,属于基础题. 20.【分析】由题意知在上恒成立从而结合一元二次不等式恒成立问题可列出关于的不等式进而可求其取值范围【详解】解:由题意知知在上恒成立则只需解得故答案为:【点睛】本题考查了不等式恒成立问题考查了运用导数探究 解析:1,3⎡⎫+∞⎪⎢⎣⎭【分析】由题意知2()320f x x x m '=++≥在R 上恒成立,从而结合一元二次不等式恒成立问题,可列出关于m 的不等式,进而可求其取值范围.【详解】解:由题意知,知2()320f x x x m '=++≥在R 上恒成立,则只需22430m ∆=-⨯⨯≤,解得13m ≥. 故答案为:1,3⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在R 上恒成立问题,如若()200ax bx c a ++≥≠在R 上恒成立,可得00a >⎧⎨∆≤⎩ ;若()200ax bx c a ++≤≠在R 上恒成立,可得00a <⎧⎨∆≤⎩. 三、解答题21.(1)答案见解析;(2)最小值为5+【分析】(1)本题可通过两次基本不等式取等号的情况不能同时成立判断出甲的解法错误,然后将12x y+转化为2214y x x y +++,通过基本不等式即可求出最值; (2)本题首先可令x m =、12x n -=,将题意转化为“已知21m n +=,求min13m n ⎛⎫+ ⎪⎝⎭”,然后将13+m n 转化为65n m m n ++,通过基本不等式即可求出最值. 【详解】(1)甲的解法错误,原因是:使用了两次基本不等式,两次基本不等式取等号的情况不能同时成立. 正确解法:()12122221459y x x y x y x y x y⎛⎫+=++=+++≥+= ⎪⎝⎭, 当且仅当13x y ==时等号成立. (2)令x m =,12x n -=,则0m >,0n >,即可将“求函数()1312f x x x =+-最小值”转化为“已知21m n +=,求min 13m n ⎛⎫+ ⎪⎝⎭”, 因为()13136255n m m n m n m n m n ⎛⎫+=++=++≥+ ⎪⎝⎭m =立,所以当x =时,函数()1312f x x x =+-取最小值,最小值为5+ 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)答案见解析;(2)(,1][5,)-∞-⋃+∞.【分析】(1)根据条件即[(1)][(1)]0x b x b +++-≥,再分0b >和0b =两种情况写出不等式的解集.(2)令()t f x =,则[0,4]t ∈,即22210t mt m -+-≥在[0,4]t ∈上恒成立,从而求出答案.【详解】解:(1)由2()f x b ≥得:22210x x b ++-≥,∴[(1)][(1)]0x b x b +++-≥, ①当0b >时,11b b -+>--,所以不等式的解集为{1 1}x x b x b ≥-+≤--∣或; ②当0b =时,111b b -+=--=-,2(1)0x +≥,所以不等式的解集为R . (2)函数22()[()]2()10g x f x mf x m =-+-≥对于任意[2,1]x ∈-都成立等价于min ()0g x ≥,令()t f x =,又∵[2,1]x ∈-,∴[0,4]t ∈,则题意等价于22210t mt m -+-≥,即[(1)][(1)]0t m t m -+--≥,所以1t m ≥+或1t m ≤-,由1t m ≥+对[0,4]t ∈恒成立知:1m ≤-,由1t m ≤-对[0,4]t ∈恒成立知:5m ≥, 综上所述,m 的取值范围为(,1][5,)-∞-⋃+∞.【点睛】关键点睛:本题考查解含参数的二次不等式和二次不等式恒成立求参数的范围问题,解答本题的关键是令()t f x =,[0,4]t ∈,则题意等价于22210t mt m -+-≥,即[(1)][(1)]0t m t m -+--≥,所以1t m ≥+或1t m ≤-,属于中档题.23.(1)23x x ⎧⎫>⎨⎬⎩⎭;(2)3,4⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)分别在1x ≤-、512x -<<、52x ≥去除绝对值符号可得到不等式;综合各个不等式的解集可求得结果;(2)根据x 的范围可转化为2433x ax x -≤-+在[]1,2x ∈上恒成立,通过分离变量可得2max 12a xx ⎛⎫≥- ⎪⎝⎭,通过求解最大值可得到结果. 【详解】(1)当1x ≤-时,()()25163f x x x x x =-+++=-+<,解集为∅ 当512x -<<时,()251343f x x x x x =-+--=-+<,解得:25,32x ⎛⎫∈ ⎪⎝⎭ 当52x ≥时,()25163f x x x x x =---=-<,解得:52x ≥ 综上所述,()3f x x <的解集为:23x x ⎧⎫>⎨⎬⎩⎭ (2)当[]1,2x ∈时,()43f x x =- ∴不等式可化为:2433x ax x -≤-+,即:212a x x ≥- 当[]1,2x ∈时,11,12x ⎡⎤∈⎢⎥⎣⎦当112x =,即2x =时,2max 1234xx ⎛⎫-=- ⎪⎝⎭ 34a ∴≥- 即a 的取值范围为:3,4⎡⎫-+∞⎪⎢⎣⎭ 【点睛】本题考查绝对值不等式的求解、含绝对值不等式的恒成立问题的求解;解绝对值不等式的关键是能够通过分类讨论的方式得到函数在每个区间上的解析式;常用的恒成立问题的处理方法是通过分离变量的方式将问题转化为所求变量与函数最值之间的关系.24.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.25.(1)4;(2)4.【分析】(1)由于0x >,0y >,根据基本不等式得出8xy x y -=+≥不等式的解法,即可求出xy 的最大值;(2)根据题意,由0x >,0y >,根据基本不等式得出28()()2x y x y xy +-+=≤,通过解一元二次不等式,即可求出x y +的最小值.【详解】解:(1)∵0x >,0y >,∴8xy x y -=+≥80xy +≤,即2)0≤,解得:02<≤,04xy ∴<≤(当且仅当2x y ==时取等号),∴xy 的最大值为4.(2)∵0x >,0y >,28()()2x y x y xy +∴-+=≤, 即2()()802x y x y +-++≥, 整理得:2()()3204x y x y +++-≥,∴()()840x y x y +++-⎡⎤⎡⎤⎣⎦⎦≥⎣, ∴4x y +≥(当且仅当2x y ==时取等号),所以x y +的最小值为4.【点睛】本题考查基本不等式的应用,考查利用基本不等式求和的最小值和积的最大值,以及一元二次不等式的解法,考查转化思想和运算能力.26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数;(2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论.【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用,即需4y ≥,则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y , 则()1220(8)26 16168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦, 当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L .【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
(易错题)高中数学必修五第三章《不等式》检测卷(答案解析)

一、选择题1.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-2.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D .24.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .55.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+6.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .67.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣148.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.9.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( ) A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a > 10.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________17.已知1,1,1,x y x y ≤⎧⎪≤⎨⎪+≥⎩当z x y =+取到最小值时,xy 的最大值为________.18.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.19.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.某位病人为了维持身体的健康状态,需要长期服用药物类营养液以补充食物难以提供的两种微量元素α和β.根据医学建议:病人每天微量元素α的摄入量应控制在[]300,330(单位:微克),微量元素β的摄入量应控制在[]250,280(单位:微克).目前,市面上可供选择的营养液主要是A 和B .已知1毫升营养液A 中含微量元素α是30微克,含微量元素β是10微克,每毫升费用5元;1毫升营养液B 中含微量元素α是15微克,含微量元素β是20微克,每毫升费用4元.(1)若该病人每天只吃单价较便宜的营养液B ,判断他的两种微量元素的摄入量能否同时符合医学建议,并说明理由;(2)如果你是医生,为了使得该病人两种微量元素的摄入量同时符合医学建议,且每天所需的费用最低,应该推荐病人每天服用营养液A 和营养液B 各多少毫升?该病人每天所需的营养液最低费用是多少元?22.解关于x 的不等式2(41)40ax a x -++>. 23.选修4-5 不等式选讲已知函数f (x )=|x -1|-2|x +1|的最大值为m . (1)求m ;(2)若a ,b ,c ∈(0,+∞),a 2+2b 2+c 2=2m ,求ab +bc 的最大值. 24.已知函数()243f x ax ax =--(1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围.25.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1. 26.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.2.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为d ==小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.5.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y tt (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .6.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.7.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.8.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.已知正数a 、b 满足1a b +=,则411a b a b +--的最小值是( ) A .1 B .2 C .4 D .82.已知正实数a ,b 满足231a b +=,则12a b +的最小值为( ) A .15 B.8+C .16 D.8+3.若正实数a ,b 满足lg a +lg b =1,则25a b +的最小值为( ) AB .CD .24.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得2020ax x b ++=成立,则22a b a b +-的最小值为( ) A .1 BC .2 D.5.已知x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .3B .3-C .1D .326.已知0x >,0y >,21x y +=,若不等式2212m m x y +>+恒成立,则实数m 的取值范围是( )A .4m ≥或2m ≤-B .2m ≥或4m ≤-C .24m -<<D .42m -<<7.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .78.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( ) A.1[2 B .1[,13)4 C. D .1[,13)59.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( )A .6B .7C .8D .910.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-11.设,,a b c ∈R ,且a b >,则( )A .ac bc >B .11a b <C .22a b >D .33a b >12.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .12二、填空题13.已知x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,则3z x y =+的最大值为___________.14.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.15.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.16.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________. 17.若实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则1x y x ++的取值范围为_____. 18.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.若函数32()1f x x x mx =+++是R 上的增函数,则实数m 的取值范围是__________.三、解答题21.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围; (2)求公司年利润()R x 的最大值.22.已知函数()f x = (1)若()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,求实数a 的值; (2)若()f x 的定义域为R ,求实数a 的取值范围.23.已知关于x 的不等式2430ax x -+<的解集为{}|1x x b <<.(1)求a ,b 的值;(2)求关于x 的不等式()20ax ac b x bc +--<的解集. 24.已知集合(){}2log 421x A xy ==-+∣,1,11B y y x a x x ⎧⎫==++>-⎨⎬+⎩⎭∣. (1)求集合A 和集合B ; (2)若“R x B ∈”是“x A ∈”的必要不充分条件,求a 的取值范围.25.已知0a >,0b >. (1)求证:()2232a b b a b +≥+; (2)若2a b ab +=,求ab 的最小值.26.已知定义在R 上的函数2()f x x x k =-+,其中k 为常数.(1)求解关于x 的不等式()f x kx <的解集;(2)若()2f 是()f a 与f b 的等差中项,求+a b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 化简得出441511a b a b b a +=+---,将代数式14a b +与+a b 相乘,展开后利用基本不等式可求得411a b a b+--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a b a a b b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭, 当且仅当2b a =时,等号成立, 因此,411a b a b+--的最小值是4. 故选:C.【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即13,46a b -==时等号成立,故12a b +的最小值为8+ 故选:D.【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值; (3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.D解析:D【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25a b +≥. 【详解】∵lg lg 1a b +=,即lg 1ab =,∴10ab =,而0,0a b >>,∴252a b +≥=当且仅当2,5a b ==时等号成立. ∴25a b+的最小值为2. 故选:D【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.D解析:D【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可. 【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩, 又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=,即0,0,1a b ab >>=, 所以222()2222a b a b ab a b a b a b a b+-+==-+≥---, 当且仅当2a b a b-=-时取得最小值. 故选:D.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 5.A解析:A【分析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:11y x y =-⎧⎨+=⎩,可得点A 的坐标为:()2,1A -, 据此可知目标函数的最大值为:max 2213z =⨯-=.故选:A【点睛】方法点睛:求线性目标函数()0z ax by ab =+≠的最值,当0b >时,直线过可行域且在y轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.6.D解析:D【分析】 先根据已知结合基本不等式得218x y +≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<.故实数m 的取值范围是:42m -<<.故选:D.【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题. 7.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z , 由024y x y =⎧⎨-=⎩,解得B (2,0) 当此直线经过图中B 时,在y 轴的截距最大,z 最小,所以z 的最小值为3×2﹣2×0=6;故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.D解析:D【详解】根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=22001521⨯+-=+, O 与(2,3)C 222313+=∵可行域不包含(2,3)C∴21135r ≤<,即22x y +的取值范围是1[,13)5故选:D【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.9.C解析:C【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.10.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.11.D解析:D【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立.【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b <,故不正确;C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b ab a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题. 12.C解析:C【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x z y =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】 画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2x y =-,由图可知当直22x z y =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩, 所以2z x y =+的最大值为0248+⨯=.故选:C.【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.二、填空题13.-2【分析】根据条件作出可行域由目标函数表示的几何意义可得答案【详解】由xy 满足约束条件作出可行域如图将化为表示直线在轴上的截距由图可知当直线过点时直线在轴上的截距最大此时最大由解得所以的最大值为故 解析:-2【分析】根据条件作出可行域,由目标函数表示的几何意义可得答案.【详解】由x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,作出可行域,如图.将3z x y =+化为3y x z =-+,z 表示直线3y x z =-+在y 轴上的截距.由图可知,当直线3y x z =-+过点时,直线3y x z =-+在y 轴上的截距最大,此时z 最大.由210340x y x y ++=⎧⎨-+=⎩,解得()1,1C - 所以z 的最大值为()3112⨯-+=-故答案为:-2【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 14.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值 解析:23【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出.【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c ,则由图可知12c ≥,即2c ≥, 将2z y x =-化为122z y x =+, 观察图形可知,当直线122z y x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23.【点睛】方法点睛:线性规划常见类型,(1)y b z x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a z y x b b =-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.15.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利 解析:(1,2].【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解.【详解】设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯,所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m nm n t t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2]. 故答案为:(1,2].【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键. 16.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】作出可行域如图所示,11xzy-=+可以看做1PMk,其中()1,1P-,M为可行域(阴影区域)内一点,因为()1121PAk--==-,()0.511314PAk---==-,所以(]1,2,4PMk⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PMk∈,所以z的最大值为4,故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义:(1)y bzx a-=-:表示点(),x y与点(),a b连线的斜率;(2)()()22z x a y b=-+-(),x y到点(),a b的距离;(3)z Ax By C=++:表示点(),x y到直线0Ax By C++=22A B+倍. 17.【分析】作出不等式组对应的平面区域然后化简目标函数利用不等式的几何意义利用线性规划的知识进行求解即可【详解】解:实数满足不等式组的可行域如图三角形的三边及其内部部分:它的几何意义是可行域内的点与连线解析:5,53⎡⎤⎢⎥⎣⎦【分析】作出不等式组对应的平面区域,然后化简目标函数,利用不等式的几何意义,利用线性规划的知识进行求解即可.【详解】解:实数x,y满足不等式组2025040x yx yx y-+≥⎧⎪--≤⎨⎪+-≥⎩,的可行域如图,三角形ABC的三边及其内部部分:111x y y x x+++=+,它的几何意义是可行域内的点与()0,1D -连线的斜率加1, 由图象知BD 的斜率最小,CB 的斜率最大,由4020x y x y +-=⎧⎨-+=⎩解得()1,3C ,此时DC 的斜率:3141+=, 由25040x y x y --=⎧⎨+-=⎩得()3,1B ,此时BD 的斜率:11233+=, 则1x y x ++的取值范围为是5,53⎡⎤⎢⎥⎣⎦, 故答案为:5,53⎡⎤⎢⎥⎣⎦.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题. 18.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出 解析:8【解析】由题意可得:()211182121116110211161102219,a b a b a b a b b a a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛+≥+⨯ +⎝= 则2a b +的最小值为918-=.当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.19.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围.【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭, 因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】 本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题. 20.【分析】由题意知在上恒成立从而结合一元二次不等式恒成立问题可列出关于的不等式进而可求其取值范围【详解】解:由题意知知在上恒成立则只需解得故答案为:【点睛】本题考查了不等式恒成立问题考查了运用导数探究 解析:1,3⎡⎫+∞⎪⎢⎣⎭【分析】由题意知2()320f x x x m '=++≥在R 上恒成立,从而结合一元二次不等式恒成立问题,可列出关于m 的不等式,进而可求其取值范围.【详解】解:由题意知,知2()320f x x x m '=++≥在R 上恒成立,则只需22430m ∆=-⨯⨯≤, 解得13m ≥.故答案为:1,3⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在R 上恒成立问题,如若()200ax bx c a ++≥≠在R 上恒成立,可得00a >⎧⎨∆≤⎩ ;若()200ax bx c a ++≤≠在R 上恒成立,可得00a <⎧⎨∆≤⎩. 三、解答题21.(1)1030x ;(2)480.【分析】(1)令21()202504002R x x x =-++,解之即可; (2)利用二次函数的最值和基本不等式分别求出()R x 两段函数的最大值,再比较大小即可.【详解】(1)当035x <时,令21()202504002R x x x =-++, 即2403000x x -+≤,解得1030x ,所以生产量x 的范围是1030x ;(2)当035x <时,222111()20250(40)250(20)450222R x x x x x x =-++=--+=--+, 故此时()R x 在(0,20)上单调递增,在(20,35)上单调递减,则此时()R x 最大值为(20)450R =;当35x >时,116001()()52052048022R x x x =-++≤-⨯=, 当且仅当160040x x==时,等号成立, 则此时()R x 最大值为(40)480R =,综上公司年利润()R x 的最大值为480万元.【点睛】本题考查了函数的应用,利用二次函数的性质和基本不等式求最值是解题的关键,考查了推理能力与计算能力,属于中档题.22.(1) 2a = (2) 7,19a ⎡⎤∈-⎢⎥⎣⎦【分析】(1)根据题意定义域为2,13⎡⎤-⎢⎥⎣⎦,可知不等式()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦,根据一元二次不等式解集与一元二次方程根的关系即可求解. (2)()f x 的定义域为R ,可知不等式()()221120ax a x ---+≥恒成立,然后讨论二次项系数,借助二次函数的性质即可求解.【详解】解:(1)()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,即()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦, 故()()()()22210221120931120a a a a a ⎧-<⎪⎪⎛⎫-⋅---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =; (2)()f x 的定义域为R ,即()()221120a x a x ---+≥恒成立, 当210a -=时,1a =±,经检验只有1a =满足条件;当210a -≠时,()()222101810a a a ⎧->⎪⎨∆=---≤⎪⎩,解得7,19a ⎡⎫∈-⎪⎢⎣⎭, 综上,7,19a ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题主要考查函数的定义域、一元二次不等式的解法、一元二次不等式与二次函数的关系,综合性比较强. 23.(1)13a b =⎧⎨=⎩;(2)分类讨论,答案见解析. 【分析】(1)根据题意利用根与系数的关系列方程求出a 、b 的值;(2)不等式化为2(3)30x c x c +--<,求出对应方程的解,利用分类讨论写出不等式的解集.【详解】(1)由题意知:0a >且b 和1是方程2430ax x -+=的两根,由根与系数的关系有4131b a b a⎧=+⎪⎪⎨⎪=⨯⎪⎩, 解得13a b =⎧⎨=⎩. (2)不等式2()0ax ac b x bc +--<可化为2(3)30x c x c +--<,即(3)()0x x c -+<.其对应方程的两根为13x =,2x c =-①当3c ->即3c <-时,原不等式的解集为{|3}x x c <<-;②当3c -<即3c >-时,原不等式的解集为{|3}x c x -<<;③当3c -=即3c =-时,原不等式的解集为∅;综上所述:当3c <-时,原不等式的解集为{|3}x x c <<-;当3c >-时,原不等式的解集为{|3}x c x -<<;当3c =-时,原不等式的解集为∅;【点睛】本题考查一元二次不等式的解法与应用问题,考查运算求解能力,求解时注意进行分类讨论.24.(1)(,2)A =-∞,[1,)B a =++∞;(2)1a >.【分析】(1)由对数函数的性质求对数型复合函数的定义域,即集合A ,利用基本不等式求函数的值域可得集合B ;(2)根据必要不充分条件与集合包含之间的关系确定a 的范围.【详解】(1)4202x x ->⇒<,所以(,2)A =-∞,因为1x >-,所以10x +>,所以11(1)11111y x a x a a a x x =++=+++-≥-=+++,当且仅当111x x +=+,即0x =时等号成立. 所以[1,)B a =++∞. (2)由(1)(,1)R B a =-∞+,因为“R x B ∈”是“x A ∈”的必要不充分条件,所以A 是B R 的真子集,所以12a +>,所以1a >.【点睛】本题考查求函数的定义域和值域,考查充分必要条件与集合包含之间的关系,考查对数函数、指数函数性质,考查基本不等式求最值,考查由集合包含关系求参数取值范围.知识点较多,但内容较基础.属于中档题.25.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得2ab a b =+≥1,进而求得1≥ab ,注意等号成立的条件,得到结果.【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+. (2)∵0a >,0b >, ∴2ab a b =+≥2ab ≥ ∴1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.26.(1)详见解析;(2)[]2,4-【分析】(1)不等式转化为()()10x x k --<,然后分类讨论解不等式;(2)由条件转化为224a b a b +--=,再转化为关于+a b 的一元二次不等式.【详解】(1)()2210x x k kx x k x k -+<⇔-++<, 整理为()()10x x k --<,当1k <时,不等式的解集是{}1x k x <<,当1k =时,不等式的解集是∅,当1k >时,不等式的解集是{}1x x k <<;(2)由条件可知()()()22f a f b f +=,即2242a a k b b k k -++-+=+,即()()222424a b a b a b ab a b +--=⇔+--+=, ()222a b ab +≤,()()()2242a b a b a b +∴+--+≤,()()2280a b a b +-+-≤ ,即()()240a b a b +++-≤,解得:24a b -≤+≤,所以+a b 的范围是[]2,4-.【点睛】本题考查含参一元二次不等式的解法,基本不等式,重点考查转化与化归的思想,讨论的思想,计算能力,属于基础题型.。
(常考题)北师大版高中数学必修五第三章《不等式》测试(包含答案解析)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .13.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .94.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .325.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,36.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .27.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<8.已知集合{}24120A x x x =--≤,{}440B x x =->,则A B =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-9.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .410.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭11.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.20.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?23.近年来,某市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,其景区成功创建国家5A 级旅游景区填补了该片区的空白,某投资人看到该市旅游发展的大好前景后,打算在该市投资甲、乙两个旅游项目,根据市场前期调查, 甲、乙两个旅游项目五年后可能的最大盈利率分别为01000和0080,可能的最大亏损率分别为0040和0020,投资人计划投资金额不超过5000万,要求确保亏损不四超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大? 24.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 25.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能. 26.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.B解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】由约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150x x y =⎧⎨+-=⎩,解得A (1,4),化目标函数z =x +2y ﹣1为y 1222x z =-++,由图可知,当直线y 1222x z =-++过A 时,z 有最大值为8.故选C .【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.4.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.5.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.6.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.7.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的8.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.9.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案. 【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.10.D解析:D【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围.【详解】作出可行域如下:由221z x y =--得12z y x +=-, 平移直线12z y x +=-, 由平移可知当直线12z y x +=-,经过点C 时, 直线12z y x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12z y x +=-,经过点A 时, 直线12z y y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3 代入221z x y =--得125221333z =⨯-⨯-=-, 故5[3z ∈-,5) 故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中11.A解析:A【分析】 由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】 解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.12.C解析:C【分析】根据条件作出可行域,根据图形可得出答案.由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11.故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】作出可行域如图所示,11xzy-=+可以看做1PMk,其中()1,1P-,M为可行域(阴影区域)内一点,因为()1121PAk--==-,()0.511314PAk---==-,所以(]1,2,4PMk⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PMk∈,所以z的最大值为4,故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义:(1)y bzx a-=-:表示点(),x y与点(),a b连线的斜率;(2)()()22z x a y b=-+-(),x y到点(),a b的距离;(3)z Ax By C=++:表示点(),x y到直线0Ax By C++=22A B+倍. 15.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积, 由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案.【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭, 实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题. 17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知 解析:9【分析】 将已知等式变形为111a b +=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得.【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b +=. 又a ,b为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+=⎪⎝⎭, 当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9.故答案为:9【点睛】 本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2.故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭ 当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩. 所以,a +3c 的最小值为3故答案为:3【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.20.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围.【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭, 因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】 本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.三、解答题21.(1)见解析(2)512b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-551122254b =+⇒>+-. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠ ()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -;②当1a =-时,原不等式的解集为φ;③当10a -<≤时,原不等式的解集为()1,a -;④当0a >时,原不等式的解集为()()1,00,a -⋃.(2)当,2b c a ==时,()2211x f x bx b +<⇔<+ 22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()22211512214x t g x t x t t t +===≤=+=+-++-,时取等号,故12b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可.max 2.():,()a f x x D a f x >∈>即可.22.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+;(2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()()16991699178291782291002929x x x x ⨯⨯⎡⎤=-++≤-+⋅=⎢⎥++⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 23.甲乙两项目投资额分别为1000 万元和4000万元【解析】试题分析:设投资人对甲,乙两个项目分别投资,x y 万元.根据已知条件可列出可行域为5000{0.40.212000,0x y x y x y +≤+≤≥≥,目标函数为0.8z x y =+,画出可行域,根据图像可知目标函数在点()1000,4000处取得最大值.试题设投资人对甲,乙两个项目分别投资,x y 万元5000{0.40.212000,0x y x y x y +≤+≤≥≥求0.8z x y =+最大值如图作出可行域当目标函数结果点()1000,4000A 时,0.8z x y =+取得最大值为4200 万元,此时对甲乙两项目投资额分别为1000 万元和4000 万元盈利最大.24.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.25.(1)sin θ=;(2)视角30达到最佳. 【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB == 10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-= (2)1sin 2θ=≤=,当且仅当2290000x x=,即x =,sin θ取到最大值12因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等. 26.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立, 因为113()326x x x x+≥⨯⋅=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.。
高中数学必修五第三章不等式复习知识点与例题

一对一个性化辅导教案例1:解下列不等式题型2:简单的无理不等式的解法例1 :解下列不等式(2) x 2x 2 1题型3 :指数、对数不等式2例1 :若log a 1,则a 的取值范围是()3A. a 1B . 0 a —C - — a 133练习:1 2x 1 .x 1 ;(1) x 3 4x 0 ;2 2(2) (x 1) (x 5x 6) 0 ;(3)2x 2 x 1 2x 1练习: 解不等式(1)3x 5 x 2 2x 3(2) (2x 1)2(x 7)3(3 2x)(x 4)6D. 0 a -或 a 131、不等式2x 3 4x的解集是__________________ 。
2、不等式log1(x 2) 0的解集是_____________ 。
22e x 1x 23、设f(x)=‘1则不等式f(x) 2的解集为( )log3(x2 1),x 2,A. (1,2) (3, ) B . (710, ) C. (1,2) ) D . (1,2)题型4 :不等式恒成立问题1 2例1:若关于x的不等式一X 2x mx的解集是{x |0 x 2},则m的值是2练习:2 1 1一元二次不等式ax bx 2 0的解集是(一,—),贝U a b的值是( )2 3A. 10 B . 10 C. 14 D . 14例2:已知不等式x2 (a 1)x a 0,(1)若不等式的解集为(1,3),则实数a的值是_________________ 。
(2) __________________________________________________________ 若不等式在(1,3)上有解,则实数a 的取值范围是 _______________________________________________________ 。
(3) ____________________________________________________________ 若不等式在(1,3)上恒成立,则实数a的取值范围是 _____________________________________________________ 。
成都市七中育才学校必修五第三章《不等式》检测题(含答案解析)

一、选择题1.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-2.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R4.当x ,y 满足不等式组11y xy x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .325.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+6.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b=+,则m n +的最小值是( ) A .3B .4C .5D .67.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .28.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<9.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<-10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若,x y 满足约束条件5,5,25,x y x y x y +⎧⎪-≥-⎨⎪-≤⎩则25x y +=的整数解的个数为___________.14.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 15.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______. 16.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________. 17.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.18.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.19.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .20.设x ,y 满足约束条件33,1,0,x y x y y +≥⎧⎪-≥⎨⎪≥⎩则z x y =+的最小值为__________.三、解答题21.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 22.已知函数()251f x x x =--+. (1)解不等式()3f x x <;(2)当[]1,2x ∈时,2()3f x ax x -+恒成立,求实数a 的取值范围.23.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能. 24.已知关于x 的不等式2430ax x -+<的解集为{}|1x x b <<. (1)求a ,b 的值;(2)求关于x 的不等式()20ax ac b x bc +--<的解集.25.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.26.解关于x 的不等式:()2230x a a x a -++>.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为z =题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.2.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x+)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min , 当x >0时,x 9x +≥=6(当且仅当x =3时取“=”), 因此(x 9x+)min =6, 所以m <6, 故选A . 【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+,即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A.点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.4.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.5.C解析:C 【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y t t (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .244x x y e e -≥⋅=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .6.B解析:B 【分析】由等比中项定义得1ab = ,再由基本不等式求最值. 【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ =2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B . 【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.7.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B .代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.8.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的9.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.D解析:D 【分析】先由不等式230ax bx a --≥的解集是[]4,1-求出a 、b ,再求b a 【详解】∵不等式230ax bx a --≥的解集是[]4,1-,∴23y ax bx a =--图像开口向下,即a <0,且23=0ax bx a --的两根为-4和1.∴12312034a b x x a a x x a ⎧⎪<⎪⎪+==-⎨⎪⎪-==-⎪⎩,解得:=26a b -⎧⎨=⎩∴()6=2=64b a -故选:D 【点睛】不等式的解集是用不等式对应的方程的根表示出来的.二、填空题13.4【分析】先画出约束条件所表示的平面可行域然后根据画出所表示的直线确定边界再求解满足上整数点的个数【详解】作出不等式组表示的平面区域如图中阴影部分所示作出直线直线与可行域的边界交于两点由解得又且当时解析:4 【分析】先画出约束条件所表示的平面可行域,然后根据画出25x y +=所表示的直线确定边界,再求解满足25x y +=上整数点的个数. 【详解】作出不等式组表示的平面区域如图中阴影部分所示,作出直线25x y +=,直线52y x =-与可行域的边界交于,B D 两点,由25,25,x y x y +=⎧⎨-=⎩解得3,(3,1)1,x D y =⎧∴-⎨=-⎩, 又(0,5),[0,3],[1,5]B x y ∴∈∈-,且,x y Z ∈,当0x =时,5y =;当1x =时3y =; 当2x =时,1y =;当3x =时,1y =-, ∴整数解的个数为4. 故答案:4. 【点睛】关键点点睛:该题考查线性规划问题,考查最优解的整数点的个数问题,正确解题的关键是画出可行域.14.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y xx y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果. 【详解】因为正实数x ,y 满足1x y +=,所以1222()2212347 yx y x y y x y xx y x y x y x y++++=+=+++≥+⋅=,当且仅当y xx y=,即1212xy⎧=⎪⎪⎨⎪=⎪⎩时,等号成立.故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积, 由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 2=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 16.①③【分析】结合基本不等式对四个函数逐个分析可得出答案【详解】对于①函数是定义域为的偶函数当时当且仅当时等号成立根据对称性可知函数的最小值为2满足题意;对于②因为所以则当且仅当即时等号成立所以即函数 解析:①③【分析】 结合基本不等式,对四个函数逐个分析,可得出答案.【详解】对于①,函数1y x x =+是定义域为()(),00,-∞+∞的偶函数, 当()0,x ∈+∞时,12x x +≥=,当且仅当1x =时等号成立, 根据对称性可知,函数1y x x =+的最小值为2,满足题意; 对于②,11123214124212112y x x x x x x ⎛⎫=++=-++=--+- ⎪---⎝⎭, 因为12x <,所以120x ->, 则11244212x x -+-≥=--,当且仅当11212x x -=-,即0x =时等号成立, 所以1124212y x x ⎛⎫=--+-≤ ⎪-⎝⎭,即函数1123212y x x x ⎛⎫=++< ⎪-⎝⎭的最大值为2,没有最小值,不满足题意;对于③,222114144141x x x y x x x x x +⎛⎫=++=+ ⎪++⎝⎭, 因为1x >,所以2104x x+>,所以2214241x x y x x +=+≥=+,当且仅当221441x x x x +=+,即2x = 所以()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭的最小值为2,符合题意; 对于④,22221sin cos sin cos y x x x x =+, 因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以sin cos 0x x >,所以22221sin cos 2sin cos x x x x +≥=,当且仅当22221sin cos sin cos x x x x=,即sin cos 1x x =时等号成立, 因为11sin cos sin 222x x x =≤,所以sin cos 1x x ≠, 即函数22221sin cos sin cos y x x x x=+的最小值不是2,不符合题意; 故答案为:①③.【点睛】 本题考查函数的最值,考查基本不等式的应用,考查学生的推理能力与计算能力,属于中档题.17.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题 解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可. 【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y =, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤. 故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】 本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.18.1【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则表示直线在轴的截距当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划问题意在考查学生的 解析:1【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y =+,则y x z =-+,z 表示直线在y 轴的截距,当直线过点()0,1时,即0,1x y ==时,z 有最大值为1.故答案为:1.【点睛】本题考查了线性规划问题,意在考查学生的应用能力,画出图像是解题的关键. 19.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.20.2【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】画出表示的可行域如图由可得将变形为平移直线由图可知当直经 解析:2【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出3310x y x y y +≥⎧⎪-≥⎨⎪≥⎩约束条件表示的可行域,如图,由10330x y x y --=⎧⎪⎨⎪+-=⎩可得3212x y ⎧=⎪⎪⎨⎪⎪=⎩,将z x y =+变形为y x z =-+,平移直线y x z =-+,由图可知当直y x z =-+经过点31,22⎛⎫⎪⎝⎭时, 直线在y 轴上的截距最小, 最大值为31222z =+=,故答案为2. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 三、解答题21.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负, 则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.22.(1)23x x ⎧⎫>⎨⎬⎩⎭;(2)3,4⎡⎫-+∞⎪⎢⎣⎭. 【分析】(1)分别在1x ≤-、512x -<<、52x ≥去除绝对值符号可得到不等式;综合各个不等式的解集可求得结果;(2)根据x 的范围可转化为2433x ax x -≤-+在[]1,2x ∈上恒成立,通过分离变量可得2max 12a x x ⎛⎫≥-⎪⎝⎭,通过求解最大值可得到结果. 【详解】(1)当1x ≤-时,()()25163f x x x x x =-+++=-+<,解集为∅ 当512x -<<时,()251343f x x x x x =-+--=-+<,解得:25,32x ⎛⎫∈ ⎪⎝⎭ 当52x ≥时,()25163f x x x x x =---=-<,解得:52x ≥ 综上所述,()3f x x <的解集为:23x x ⎧⎫>⎨⎬⎩⎭ (2)当[]1,2x ∈时,()43f x x =- ∴不等式可化为:2433x ax x -≤-+,即:212a x x ≥- 当[]1,2x ∈时,11,12x ⎡⎤∈⎢⎥⎣⎦当112x =,即2x =时,2max 1234xx ⎛⎫-=- ⎪⎝⎭ 34a ∴≥- 即a 的取值范围为:3,4⎡⎫-+∞⎪⎢⎣⎭【点睛】本题考查绝对值不等式的求解、含绝对值不等式的恒成立问题的求解;解绝对值不等式的关键是能够通过分类讨论的方式得到函数在每个区间上的解析式;常用的恒成立问题的处理方法是通过分离变量的方式将问题转化为所求变量与函数最值之间的关系.23.(1)sin θ=;(2)视角30达到最佳. 【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB ==10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=- 2222222230103010x x x x =⋅-⋅++++ 42100090000x x =++ (2)421sin 21600100090000x x θ=≤=++, 当且仅当2290000x x=,即103x =时,sin θ取到最大值12 因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒ 即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等. 24.(1)13a b =⎧⎨=⎩;(2)分类讨论,答案见解析. 【分析】(1)根据题意利用根与系数的关系列方程求出a 、b 的值;(2)不等式化为2(3)30x c x c +--<,求出对应方程的解,利用分类讨论写出不等式的解集.【详解】(1)由题意知:0a >且b 和1是方程2430ax x -+=的两根, 由根与系数的关系有4131b a b a⎧=+⎪⎪⎨⎪=⨯⎪⎩,解得13a b =⎧⎨=⎩. (2)不等式2()0ax ac b x bc +--<可化为2(3)30x c x c +--<,即(3)()0x x c -+<.其对应方程的两根为13x =,2x c =-①当3c ->即3c <-时,原不等式的解集为{|3}x x c <<-;②当3c -<即3c >-时,原不等式的解集为{|3}x c x -<<;③当3c -=即3c =-时,原不等式的解集为∅;综上所述:当3c <-时,原不等式的解集为{|3}x x c <<-;当3c >-时,原不等式的解集为{|3}x c x -<<;当3c =-时,原不等式的解集为∅;【点睛】本题考查一元二次不等式的解法与应用问题,考查运算求解能力,求解时注意进行分类讨论.25.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值; (2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题. 26.见解析【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案.【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->. 当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >;当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五第三章不等式练习题
一、选择题
1.若a <0,-1<b <0,则下列不等式中正确的是( )
A .a <ab 2<ab
B .ab 2<a <ab
C .a <ab <ab 2
D .ab 2<ab <a
2.设0<a <b ,则下列不等式中正确的是( )
A .a <b <ab <a +b 2
B .a <ab <a +b 2<b
C .a <ab <b <a +b 2 D.ab <a <a +b 2<b 3.不等式组⎩⎨⎧
x 2-1<0,x 2-3x <0
的解集是( ) A .{x |-1<x <1}
B .{x |0<x <3}
C .{x |0<x <1}
D .{x |-1<x <3} 4.设a >0,b <0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A .4 B .8 C .1 D.14
5.已知x >0,y >0.若2y x +8x y >m 2+2m 恒成立,则实数m 的取值范围是 ( )
A .m ≥4或m ≤-2
B .m ≥2或m ≤-4
C .-2<m <4
D .-4<m <2 6.若函数ƒ(x )=x +
1x -2(x >2)在x =a 处取最小值,则a =( ) A .1+ 2
B .1+ 3
C .3
D .4 7.二次不等式ax 2+bx +1>0的解集为{x |-1<x <13},则ab 的值为( )
A .-6
B .6
C .-5
D .5
8.对任意实数x ,不等式2(2)2(2)40a x a x -+--<恒成立,则a 的取值范围是( )
A .(2,2]-
B .[2,2]-
C .(,2)[2,)-∞-+∞
D .(,2](2,)-∞-+∞
9.若函数()f x =
3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )
A 、(-∞,+∞)
B 、(0,43]
C 、(43,+∞)
D 、[0, 4
3) 10、若角βα,满足22π
βαπ
<<<-,则βα-的取值范围是 ( )
A )0,(π-
B ),(ππ-
C )2,23(ππ-
D ),0(π 11、设实数x ,y 满足不等式组⎩⎨⎧ x +2y -5>0,2x +y -7>0,
x ≥0,y ≥0.
若x ,y 为整数,则3x +4y 的最小值是( ) A .14 B .16 C .17 D .19
12、某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓
储时间为x 8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓
储费用之和最小,每批应生产产品( )
A .60件
B .80件
C .100件
D .120件 二、填空题
13、不等式1x < 12 的解集是________.
14、已知M =2(a 2+b 2),N =2a -4b +2ab -7,且a ,b ∈R ,则M 、N 的大小关系为________. 15、关于x 的不等式2680kx kx -+<的解集为空集,实数k 的取值范围是 .
16、下列函数中最小值为4的是 ①x x y 4+= ②)0(sin 4sin π<<+=x x
x y ③.x x y -⨯+=343 ④10log 4lg x x y +=(x>0且x ≠1)
三、解答题(解答应写出必要的文字说明、证明过程或演算步骤)
17、解不等式组⎩⎨⎧ 3
x -2x -6≤1,2x 2-x -1>0.
18、求下列函数的最值.
(1)已知0,0x y >>,满足191x y
+=,求2x y +的最小值; (2)已知0<x <12,求y =12x (1-2x )的最大值.
19、若不等式20ax bx c ++≥的解集是1|23x x ⎧⎫-≤≤⎨⎬⎩⎭
,求不等式20cx bx a ++<的解集。
20、解关于x 的不等式2(1)10ax a x -++<
21、一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?
(附加题)22、已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.。