Adaptive multigrid solution for mixed finite elements in 2-dimensional linear elasticity, t

合集下载

Modular Robotics PowerCube系列产品说明书

Modular Robotics PowerCube系列产品说明书

PGElectrical · Principle of Function · Universal Gripper1044Modular RoboticsModular-Standardized interfaces for mechatronics and control for rapid and simple assembly without complicated designs-Cube geometry with diverse possibilities for creating individual solutions from the modular systemIntegrated-The control and power electronics are fully integrated in the modules for minimal space requirements and interfering contours-Single-cable technology combines data transmission and the power supply for minimal assembly and start-up costs Intelligent-Integrated high-end microcontroller for rapid data processing -Decentralized control system for digital signal processing -Universal communication interfaces for rapid incorporation in existing servo-controlled conceptsYour advantages and benefitsThe modules of the PowerCube series provide the basis for flexible combinatorics in automation. Complex systems and multiple-axis robot structures with several degrees of freedom can be achieved with minimum time and expenditure spent on design and programming.Module overviewThe innovative technology of the PowerCube modules already forms the basis of numerous applications in the fields of measuring and testing systems, laboratory automation, service robotics and flexiblerobot technology.PGServo-electric2-Finger Parallel Gripper PRServo-electric Rotary Actuators PWServo-electricRotary Pan Tilt ActuatorsPSMServo-motors with integrated position controlPDUServo-positioning motor with precision gearsPLSServo-electric Linear Axes withball-and-screw spindle drivePG·Universal Gripper1045Method of actuationThe PowerCube modules work completely independently. The master control system is only required for generating the sequential program and sending it step by step to the connected modules. Therefore, only the current sequential command is ever stored in the modules, and the subsequent command is stored in the buffer. The current, rotational speed and positioning are controlled in the module itself. Likewise, functions such as temperature and limit monitoring are performed in the module itself. Real-time capability is not absolutely essential for the master control or bus system. For the communication over Bus-System the SMP - SCHUNK Motion Protocol - is used. This enables you to create industrial bus networks,and ensures easy integration in control systems.Control version AB Hardware Control with PLC (S7)Control with PC Interface Profibus DP CAN bus / RS-232SoftwareWindows (from Windows 98) operating systemLINUX operating systemDevelopment platforms MC-Demo Operating Software PowerCube (LabView, Diadem)with Online documentation, standard softwaregsd-file, programming examples(gsd file, programming examples)on requeston requestIncluded with the ''Mechatronik DVD'' (ID 9949633): Assembly and Operating Manual with manufacturer's declaration, MCDemo software and description and gsd-file for S7 use.1234567889ᕃ24VDC / 48VDC power supply provided by the customerᕄControl system provided by the customer (see control versions A, B and C)ᕅPAE 130 TB terminal block for connecting the voltage supply, the communication and the hybrid cable (Option for easy connection)ᕆPDU servo-motorᕇLinear axis with PLS ball-and-screw spindle drive and PSM servo-motorᕈHybrid cable (single-cable technology) for connecting the PowerCube modules (voltage supply and communication). Not recommended for the use in Profibus applications ᕉPW Servo-electric Rotary Pan Tilt Actuator ᕊPG Servo-electric 2-Finger Parallel Gripper ᕋPR Servo-electric Rotary ActuatorPG· Universal Gripper1046Size 70Weight 1.4 kg Gripping force up to 200 N Stroke per finger 35 mm Workpiece weight1 kgApplication exampleDouble rotary gripper module for loading and unloading of sensitive componentsPG 70 Servo-electric 2-Finger Parallel Gripper PR 70 Servo-electric Rotary ActuatorPGUniversal Gripper1047Gripping force control in the range of 30 - 200 N for the delicate gripping of sensitive workpieces Long stroke of 70 mm for flexible workpiece handlingFully integrated control and power electronics for creating a decentralized control systemVersatile actuation optionsfor simple integration in existing servo-controlled concepts via Profibus-DP, CAN bus or RS-232Standard connecting elements and uniform servo-controlled conceptfor extensive combinatorics with other PowerCube modules (see explanation of the PowerCube system)Single-cable technology for data transmission and power supplyfor low assembly and start-up costsServo-electric 2-finger parallel gripper with highly precise gripping force control and long strokeUniversal GripperArea of applicationUniversal, ultra-flexible gripper for great part variety and sensitive components in clean working environmentsYour advantages and benefitsGeneral information on the seriesWorking principle Ball screw driveHousing materialAluminum alloy, hard-anodized Base jaw materialAluminum alloy, hard-anodized ActuationServo-electric, by brushless DC servo-motorWarranty 24 monthsScope of deliveryGuide centering sleeves and ‘’Mechatronik DVD’’ (contains an Assembly and Operating Manual with manufacturer’s declarartion and MC-Demo software withdescription)PG· Universal Gripper1048Control electronicsintegrated control and power electronics for controlling the servo-motorEncoderfor gripper positioning and position evaluationDrivebrushless DC servo-motorGear mechanismtransfers power from the servo-motor to the drive spindleSpindletransforms the rotational movement into the linear movement of the base jaw Humidity protection cap link to the customer’s systemThe brushless servo-motor drives the ball screw by means of the gear mechanism.The rotational movement is transformed into the linear movement of the base jaw by base jaws mounted on the spindles.Function descriptionThe PG gripper is electrically actuated by the fully integrated control and power electronics. In this way, the module does not require any additional external control units.A varied range of interfaces, such as Profibus-DP, CAN-Bus or RS-232 are available as methods of communication. For the communication over Bus-System the SMP - SCHUNK Motion Protocol - is used. This enables you to create industrial bus networks, and ensures easy integration in control systems.If you wish to create combined systems (e.g. a rotary gripper module), various other modules from the Mechatronik-Portfolio are at your disposal.Electrical actuationSectional diagramPGUniversal Gripper1049Gripping forceis the arithmetic total of the gripping force applied to each base jaw at distance P (see illustration), measured from the upper edge of the gripper.Finger lengthis measured from the upper edge of the gripper housing in the direction of the main axis.Repeat accuracyis defined as the spread of the limit position after 100 consecutive strokes.Workpiece weightThe recommended workpiece weight is calculated for a force-type connection with a coefficient of friction of 0.1 and a safety factor of 2 against slippage of theworkpiece on acceleration due to gravity g. Considerably heavier workpiece weights are permitted with form-fit gripping.Closing and opening timesClosing and opening times are purely the times that the base jaws or fingers are in motion. Control or PLC reaction times are not included in the above times and must be taken into consideration when determining cycle times.General information on the seriesCentering sleevesElectrical accessories PAE terminal blockPAM standardconnecting elementsAccessoriesHybrid cableFor the exact size of the required accessories, availability of this size and the designation and ID, please refer to the additional views at the end of the size in question. You will find more detailed information on our accessory range in the …Accessories“ catalog section.PG 70· Universal Gripper1050Technical dataFinger loadMoments and forces apply per base jaw and may occur simultaneously. M y may arise in addition to the moment generated by the gripping force itself. If the max.permitted finger weight is exceeded, it is imperative to throttle the air pressure so that the jaw movement occurs without any hitting or bouncing. Service life may bereduced.Gripping force, I.D. grippingDescriptionPG 70Mechanical gripper operating data ID 0306090Stroke per finger [mm]35.0Constant gripping force (100 % continuous duty)[N]200.0Max. gripping force [N]200.0Min. gripping force [N]30.0Weight [kg] 1.4Recommended workpiece weight [kg] 1.0Closing time [s] 1.1Opening time [s] 1.1Max. permitted finger length [mm]140.0IP class20Min. ambient temperature [°C] 5.0Max. ambient temperature [°C]55.0Repeat accuracy [mm]0.05Positioning accuracy [mm]on request Max. velocity [mm/s]82.0Max. acceleration [mm/s 2]328.0Electrical operating data for gripper Terminal voltage [V]24.0Nominal power current [A] 1.8Maximum current [A] 6.5Resolution [µm] 1.0Controller operating data Integrated electronics Yes Voltage supply [VDC]24.0Nominal power current [A]0.5Sensor system EncoderInterfaceI/O, RS 232, CAN-Bus, Profibus DPPG 70Universal Gripper1051ᕃ24 VDC power supply provided by thecustomerᕄControl (PLC or similar) provided bythe customerᕅPAE 130 TB terminal block(ID No. 0307725) for connecting the power supply, the communication and the hybrid cableᕆHybrid cable for connecting thePowerCube modulesMain viewsThe drawing shows the gripper in the basic version with closed jaws, the dimensions do not include the options described below.ᕃGripper connection ᕄFinger connectionᕓᕗM16x1.5 for cable glandActuation DescriptionID Length PowerCube Hybrid cable, coiled 03077530.3 m PowerCube Hybrid cable, coiled03077540.5 mPowerCube Hybrid cable, straight (per meter)9941120The ‘Hybrid cable’ is recommended for the use in CAN-Bus- or RS232-systems. For Profibus applications we recommend to use a separate standardized Profibus cable for the communication.You can find further cables in the …Accessories“ catalog section.Interconnecting cablePG 70· Universal Gripper1052Special lengths on requestRight-angle standard element for connecting size 70 PowerCube modulesSpecial lengths on requestConical standard element for connecting size 70 and 90 PowerCube modulesSpecial lengths on requestStraight standard element for connecting size 70 PowerCube modules Right-angle connecting elements Description ID DimensionsPAM 120030782090°/70.5x98Conical connecting elements Description ID DimensionsPAM 110030781090x90/45/70x70 mm PAM 111030781190x90/90/70x70 mmStraight connecting elements Description ID DimensionsPAM 100030780070x70/35/70x70 mm PAM 101030780170x70/70/70x70 mmMechanical accessoriesYou can find more detailed information and individual parts of the above-mentioned accessories in the …Accessories“ catalog section.。

多元自适应回归样条法

多元自适应回归样条法

多元自适应回归样条法多元自适应回归样条法(Multivariate Adaptive Regression Splines,MARS)是一种常用的非参数回归方法,具有灵活性和高预测准确性。

它能够处理多个自变量之间的交互作用,并且能够自动选择最佳的样条节点和基函数,从而在建模过程中实现自适应。

在MARS中,样条函数由基函数和节点组成。

基函数是局部拟合的线性段,节点是样本数据中的一个切点,用于划分样本空间。

MARS算法通过逐步添加基函数和调整节点的位置来逼近真实的回归函数。

它的主要优势在于能够自动选择最佳的基函数和节点,从而在模型中实现非线性和交互作用。

MARS的主要步骤包括前向逐步回归(Forward Stage-Wise Regression)和后向逐步修剪(Backward Pruning)。

在前向逐步回归中,算法从一个空模型开始,逐步添加基函数和节点,直到达到停止准则。

然后,在后向逐步修剪中,算法通过删除无用的基函数和节点来提高模型的拟合效果和解释能力。

MARS的优点是能够处理非线性和交互作用,同时避免了过拟合问题。

它基于数据的自适应性能够提供更准确的预测结果,并且不需要事先设定回归函数的形式。

此外,MARS模型还能够提供变量的重要性评估,帮助分析人员在建模过程中了解自变量的影响程度。

MARS在各个领域都有广泛的应用。

在金融领域,MARS可以用于股票价格预测、风险评估等。

在医学领域,MARS可以用于疾病预测、药物反应分析等。

在工程领域,MARS可以用于产品质量控制、故障诊断等。

总之,MARS具有广泛的应用前景,并且能够为各行各业提供有效的数据分析工具。

要使用MARS进行回归分析,需要注意以下几点。

首先,需要选择合适的停止准则,以避免过拟合问题。

常见的停止准则有AIC准则、BIC准则等。

其次,需要选择适当的节点数和基函数数,一般可以通过交叉验证等方法进行选择。

最后,还需要考虑数据的预处理,如标准化、去除异常值等。

多智能体强化学习的几种BestPractice

多智能体强化学习的几种BestPractice

多智能体强化学习的几种BestPractice(草稿阶段,完成度40%)多智能体强化学习的几种Best Practice - vonZooming的文章 - 知乎 https:///p/99120143这里分享一下A Survey and Critique of Multiagent Deep Reinforcement Learning这篇综述里面介绍的多智能体强化学习Best Practice。

这部分内容大部分来自第四章,但是我根据自己的理解加上了其他的内容。

1.改良Experience replay buffer1.1 传统的Single-agent场景之下的Replay bufferReplay Buffer[90, 89]自从被提出后就成了Single-Agent强化学习的常规操作,特别是DQN一炮走红之后[72] 。

不过,Replay Buffer有着很强的理论假设,用原作者的话说是——The environment should not changeover time because this makes pastexperiences irrelevantor even harmful.(环境不应随时间而改变,因为这会使过去的experience replay变得无关紧要甚至有害)Replay buffer假设环境是stationary的,如果当前的环境信息不同于过去的环境信息,那么就无法从过去环境的replay中学到有价值的经验。

(画外音:大人,时代变了……别刻舟求剑了)在multi-agent场景下,每个agent都可以把其他的agent当作环境的一部分。

因为其他的agent不断地学习进化,所以agent所处的环境也是在不断变换的,也就是所谓的non-stationary。

因为multi-agent场景不符合replay buffer的理论假设,所以有的人就直接放弃治疗了——例如2016年发表的大名鼎鼎的RIAL和DIAL中就没有使用replay buffer。

the alternating direction method for multipliers

the alternating direction method for multipliers

交替方向乘子法(Alternating Direction Method of Multipliers,简称ADMM)是一种求解优化问题的迭代算法。

这种方法广泛应用于各个领域,如信号处理、图像处理、机器学习等。

它主要用于解决具有可分解性结构的优化问题,特别是某些包含约束条件和非凸非线性问题。

ADMM的基本思想是将原始问题转化为一个增广拉格朗日函数问题,并采用迭代方法不断更新乘子变量和优化变量,以逐渐逼近问题的最优解。

在每一次迭代中,ADMM分别对增广拉格朗日函数的乘子变量和优化变量进行更新,并在更新过程中保持其他变量的不变。

通过交替迭代,ADMM逐渐逼近问题的最优解。

ADMM的优势在于它能够将原始问题分解为多个子问题,这些子问题往往更容易求解。

此外,ADMM还具有可扩展性和并行性,能够方便地应用于大规模优化问题。

然而,ADMM也存在一些局限性,例如对于一些非凸优化问题,可能需要更多的迭代次数才能收敛,且收敛速度可能较慢。

总之,ADMM是一种有效的求解优化问题的迭代算法,尤其适用于具有可分解性结构的优化问题。

通过将原始问题分解为多个子问题,ADMM能够方便地应用于大规模优化问题,并具有可扩展性和并行性。

然而,对于一些非凸优化问题,ADMM可能需要更多的迭代次数才能收敛,且收敛速度可能较慢。

NX Flow CFD软件说明书

NX Flow CFD软件说明书

NX Flow uses computational fluid dynamics (CFD)to accurately and efficiently simulate fluid flow and convection.An element-based,finite volume CFD scheme is used to compute 3D fluid velocity,temperature and pressure by solving the Navier-Stokes equations.The NX Flow technology allows a user to model complex fluid flow problems.The solver and modeling features include:•Steady-state and transient analysis (adaptive correction multigrid solver)•Unstructured fluid meshes (supports tetrahedral,brick and wedge element types)•Skin mesh (boundary layer mesh)•Complete set of automatic and/or manual meshing options for the selected fluid domains•T urbulent (k-ε,mixing length),laminar and mixed flows•CFD solution intermediate results recovery and restart•Heat loads and temperature restraints on the fluid•Forced,natural and mixed convection•Fluid buoyancy•Multiple enclosures•Multiple fluids•Internal or external flows•Complete and seamless coupling to NX Thermal for simulation of conjugate heat transfer (handlesdisjoint meshes at fluid/solid boundaries)•Losses in fluid flow due to screens,filters and other fluid obstructions (including orthotropicporous blockages)•Head loss inlets and openings (fixed or proportional to calculated velocity or squared velocity)•Fluid swirl at inlet and internal fans NX FlowComputational fluid dynamics (CFD)to accurately and efficiently simulate fluid flowand convectionNX/plmfact sheetBenefitsAllows for investigation of multiple ‘what-if’scenarios involving complex assembliesAllows the selection of a bounding volume around complex geometry to specify external boundaries of the fluid domainProvides extensive set of tools for creating CFD analysis-ready geometryBy default,all 2D and 3D solids will transfer heat to the fluid they adjoin and serve as obstruction to the fluid ers can control the surface roughness and walls convective properties globally and locally Features Automatic connection between disjoint fluid meshes within an assembly Option for automatic fluid mesh created at run time NX integrated CFD solution toolset Geometry modeling and abstraction toolset All solid surfaces obstructing the fluid can automatically transfer heat to the fluid they adjoin Handling of disjoint meshes at the fluid/solid boundaries for conjugate heat transferSummaryNX ®Flow software is a computational fluid dynamics (CFD)solution that is fully integrated into the native NX Advanced Simulation environment.It provides sophisticated tools to simulate fluid flow and heat transfer for complex parts and assemblies.The integrated CFD solution allows fast and accurate fluid flow simulations and provides insight into product performance during all design development phases,limiting costly,time consuming prototype testing cycles.NX Flow simulation requirements and applications are typical to these industries:aerospace and defense,automotive,consumer products,high-tech electronics,medical,power generation and process.Siemens PLM Softwaresolid surfaces will automaticallyadjoin.Similarly,all volumes thatnot already defined as flowfrom their surfaces as well.suite of Advanced Simulation applications available within theeither NX Advanced FEM or NX Advanced Simulation as awith NX Thermal,NX Flow provides a coupled multi-physicsapplications.hardware platforms and operating systems including Unix,Windows ContactSiemens PLM SoftwareAmericas8004985351Europe44(0)1276702000Asia-Pacific852********/plm©2007Siemens Product Lifecycle Management Software Inc.All rights reserved.Siemens and the Siemens logo are registered trademarks of Siemens AG.T eamcenter,NX,Solid Edge,T ecnomatix,Parasolid,Femap,I-deas,JT,UGS Velocity Series and Geolus are trademarks or registered trademarks of Siemens Product Lifecycle Management Software Inc.or its subsidiaries in the United States and in other countries.All other logos,trademarks,registered trademarks or service marks used herein are the property of their respective holders.10/07。

混合自适应引力搜索优化的特征选择方法

混合自适应引力搜索优化的特征选择方法

1
引言
特征选择算法是从原始特征空间中找出最优特征
[1]
首次提出 GSA 算法的离散 bGSA 算法, 每个解的形式只 能为 0 或 1 , 引入函数将值转化到 [0 , 1] 之间。 2011 年 Papa J P 等 [9]用 bGSA 算法进行特征选择同时结合优化 路径森林 (OPF) 分 类 算 法 进 行 分 类 。 之 后 E.Rashedi 等 [10] 针对 bGSA 算法过早收敛的问题提出了改进算法 IBGSA。 综上分析可知, GSA 算法存在收敛速度较慢, 易陷 入局部极值, 局部搜索能力弱等不足, 不合理的参数设 置也会对特征选择结果造成影响。为了进一步提高算 法的综合性能, 更好地平衡 GSA 算法的全局搜索和局 部搜索能力, 提出一种新颖的基于混合自适应 GSA 特 征选择方法 HSA-GSA。
子集从而达到评估优化的过程 。特征选择问题是一个 NP 难问题, 因此研究者常采用启发式智能搜索算法找 出一个接近最优解的近似最优解
[2- 4]
。 2014 年蒋悦等
[6]
人 [5] 针对 GSA 算法易陷入局部极值问题提出引力搜索 和 分 布 估 计 混 合 的 离 散 算 法 GSEDA 。 同 年 赵 志 梅 提出基于代理模型和人工免疫系统的特征选择算法, 在 保证求解质量的同时显著减少了优化时间。 2015 年许 迪等人 提出基于改进混沌粒子群的特征提取方法, 引 入混沌变量避免局部最优。也有学者针对基于 GSA 的 特征选择方法, 具有代表性的如 2010 年 E.Rashedi 等
类精度的同时从数据样本中选出最小特征子集。算法设计两种解更新策略进行组合式搜索, 引入群体约简方法, 有 效地平衡算法的全局搜索和局部收敛能力, 同时提出自适应调控参数, 减少参数设置对算法性能的影响。在七组真 实数据集中的实验结果表明, 从分类精度、 特征子集大小和运行时间三方面比较, 提出的方法优于原始算法和已有 相近算法, 具有良好的综合性能, 是一种有效的特征选择方法。 关键词: 引力搜索 ; 特征选择 ; 自适应 ; 分类算法 ; 混合优化 文献标志码: A 中图分类号: TP391 doi: 10.3778/j.issn.1002-8331.1612-0137

变步长凸组合LMS自适应滤波算法及性能分析

变步长凸组合LMS自适应滤波算法及性能分析
辽宁省自然科学基金(20062024)
1
文献[4][5]分析了LMS算法的收敛性能,收敛速度与在时变 系统中的跟踪能力要求在稳定范围内尽量加大步长因子 μ 的
值;而为了降低由于系统主输入端引入随机干扰噪声 v(n) 所引 起的稳态失调,又需要步长因子 μ 的值越小越好。因此,基本
的基于最速下降法的LMS滤波算法在收敛速度、时变系统跟踪 性能与收敛精度方面对算法调整步长因子 μ 的要求存在着不 可协调的矛盾。为了协调此类矛盾,一些学者用变步长的方式 改进LMS算法[6]-[9]以期待最终实现快收敛性能和尽可能小的稳 态误差,取得了一定效果。文献[10]提出的凸组合最小均方 (Convex Combination of Least Mean Square,简称CLMS)滤波器 算法通过并联两种不同步长因子的LMS滤波器的方式提高算 法的收敛性能,也取得了不错的效果。但两种步长的并行计算 往往对于联合参数的要求非常精确,不利于算法在噪声环境中 保证良好的稳态性能。
由图 2 可以看出,通过收敛过程中误差 e(n) 的不断变化, 迭代步长 μ (n) 也在不断调整。在收敛初始阶段,误差 e(n) 往
往较大,此时迭代步长将无限趋近于能够保证算法收敛的最大 迭代步长 μmax 以保证最快的收敛速度;随着收敛过程的不断进
行,误差 e(n) 将不断减小,当收敛进入稳态邻域时,迭代步 长 μ (n) 也随之渐近到一个很小的值,保证算法有较小的稳态误
法有良好的稳定性。 由整个算法的原理与结构可以看出,联合在一起的LMS滤
波器组是以这样的一种很直观的方式工作的:当自适应刚刚开 始或者系统发生时变时,有较大 μ 参数的LMS滤波器的性能要
比 μ 参数较小的LMS滤波器好,通过使 λ (n) 取值接近于 1 而 使得 weq (n) ≈ w1 (n) 。同理在相反的条件下,如系统处于稳态过

人体肺功能生物电阻抗成像技术

人体肺功能生物电阻抗成像技术
在定解区域建立疏密不均匀网格 ,形成相应的 有限元离散方程 。利用多重网格算法 ,首先对细网 格利用迭代法 ,消去残量中的高频成分 ,然后将残量 中的低频成分转移到粗网格上进行校正 ,经过多次 循环后 ,获得满足精度要求的解[14] 。
为精确求解正问题 ,对均匀剖分网格所生成的 一组解中 ,选择后验误差较大的单元进行再细分 。
格法的混合算法 ,提高了正问题解的精确度及计算 效率 。
图 1 V 循环多重网格 Fig. 1 V cycle multigrid algorithm
基于自适应的多重网格法剖分 ,在第三次加密 剖分 时 得 到 957 个 节 点 和 1868 个 单 元 , 如 图 2 所示 。 112 正则化的高斯2牛顿法
Key words :medical electrical impedance tomography ( EIT) ; inverse problem ; image reconstruct ; lung functional imaging ; prior information 中图分类号 R318 文献标识码 A 文章编号 025828021 (2008) 0520663206
收稿日期 : 2008201220 , 修回日期 : 2008206220 。 基金项目 : (国家自然科学基金重点项目 (50337020) ;国家科技支撑计划 (2006BAI03A00) 。 3 通讯作者 。 E2mail : hxwang @tju. edu. cn
664
中 国 生 物 医 学 工 程 学 报
9< 9 n+
-
9< 9 n-
ds
k = 1 ,2 , …, m
(2)
式中 , n 是内部单元边界法线方向 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Adaptive multigrid solution for mixedfiniteelements in2-dimensional linear elasticityChristian WienersInstitut f¨u r Computeranwendungen III,Universit¨a t StuttgartPfaffenwaldring27,70569Stuttgart,GermanyAbstractWe explain the implementation of adaptive multigrid methods for mixedfinite element in its hybrid formulation using interelement Lagrange multipliers and staticcondensation.We apply this method to problems in linear elasticity using the stabi-lized BDM elements introduced by S TENBERG.Therefore,a new type of grid transferand a new error indicator is introduced.Numerical examples on unstructured locallyrefined grids are given.AMS Subject Classification:65N30Key words:multigrid methods,mixedfinite elements,Lagange multipliers,linearelasticity1IntroductionIn the last years the application of mixedfinite elements in linear elasticity was discussed intensively:Mechanical conditions for stability and optimal convergence where investigated by S TEIN-R OLFES[14].There,the numerical stability condition for mixed elements is interpreted by mechanical terms and is reduced to an condition which can be verified locally.The implementation of mixed elements is described in detail by K LAAS-S CH¨ODER-M IEHE-S TEIN[12].Here,the stability of the approximation for nearly incom-pressible materials is demonstrated and the performance is compared with other discretizations.An appropriate error indicator is introduced by B RAESS-K LAAS-N IEKAMP-S TEIN-W OBSCHAL[5].The advantage of locally refined grids is shown by several exam-ples.The coupling of mixedfinite elements with boundary elements is considered byB RINK-C ARSTENSEN-S TEIN[10].There,the numerical solving process for the resulting linear systems is not considered. Here,we want to continue the discussion and we introduce an adaptive multigrid solver for mixed elements on locally refined grids.This solver is of optimal complexity:the solution process has complexity,where is the number of degrees of freedom.Thus,our method can be applied effectively to very large problems or to linearized problems in a nonlinear time-dependent process.2 C.Wieners Multigrid methods for mixed and nonconformingfinite elements are considered e.g.by A RBOGAST-C HEN,B RENNER,V ERFUEHRT[1,8,9,15],but the these algorithms has to be adapted for systems in linear elasticity.We explain in detail the modifications for the standard multigrid method which are necessary for the application to mixed elements in elasticity on unstructured locally refined grids.Especially,the construction of the grid transfer is different for mixed elements.Furthermore,we modify the error indicator pro-posed in[5]to make it more efficient.The local components of the indicator build an error bound in the energy norm.The paper is organized as follows.In thefirst section we introduce our notation.Then,we summarize the local multigrid algorithm adapted to unknowns bounded to the edges.In the third section we explain the computation of error bounds for the stabilized BDM dis-cretization.Finally,we give numerical examples in planar linear elasticity.All computa-tions are done with UG,aflexible toolbox for adaptive multigrid methods on unstructured grids[4],using thefinite element library described in[17].2Mixed and hybrid formulations in linear elasticityIn linear elasticity,we want to compute a symmetric stress tensor such that the equilib-rium equationholds in a domain,where describes the body load.Let be a disjunct decomposition of the boundary.We requireonwhere describes the surface traction.Then,the solution will be inonThe stress tensor is coupled with the displacement vector by the constitutive equation where.The idea of interelement Lagrange multipliers is to relax the continuity requirements on .Furthermore,the symmetry and the boundary condition on will be claimed onlyMultigrid solution for mixedfinite elements in linear elasticity3 implicitly.Therefore,let be a polygonal resp.polyhedral domain approximating decomposed into elements and definefor allThen,if is continuous on every edge resp.side,of and is symmetric.Here,denotes the outer unit normal vector and is the approximation on on.The corresponding problem is equivalent tofind such that(3) under the constraints(2),(4)and(5)for all for all.Introducing Lagrange multipliers for the constraints,we get an equivalent saddle point formulation of the problem:find a saddle point of(6)i.e.for all.Since our problem is linear,the saddle point problem is equivalent to the variational equa-tion:find with(7) 3Local multigrid methodsThe standard multigrid method(see e.g.[11])can be applied to unstructured grids and local refinement,but it must be modified in order to avoid a deterioration of the complex-ity of the algorithm.In particular,the smoothing process must be performed only in the refined region.For linear conforming approximations this is investigated using different approaches e.g.by Y SERENTANT[18],B ANK-D UPONT-Y SERENTANT[2],B RAMBLE-P ASCIAK-X U[7],B RAMBLE-P ASCIAK-W ANG-X U[6].These algorithms has to be mod-ified for mixed elements.Here,we explain in detail the concept which was realized by B ASTIAN[3]and which forms the basis of UG.We use a multiplicative multigrid method with smoothing in a slightly enlarged refined region.Up to now,this is the only way of obtaining optimal complexity combined with robustness for a wide range of applications.4 C.Wieners3.1Grids and MultigridsA grid is a closed polygonal or polyhedral set and a decomposition into elements.For an element,the corresponding domain in,is denoted by and the boundary is denoted by.A grid is consistent,if is empty,a common node (corner),a common edge or a common side for all elements.Let be a domain.A multigrid is a sequence of consistent grids approximating.The set of elements is denoted by,. Elements of different grids will be distinguished.For,we assume that there exists a father element for all elements.In general,,but this property will be violated near curved boundaries.For,letbe the set of son elements of.The refinement of an element to can be of type regular,irregular or copy.The application of a refinement rule results in the gener-ation of elements of the corresponding type,e.g.application of an irregular refinement rule to results in being irregular elements.For copy elements we trivially have .Successive regular refinement of an element results in elements which satisfying a minimum angle condition independent of the number of refinements.Succes-sive irregular refinement,however,can decrease the interior angles arbitrarily;hence it is allowed only once.The copy elements are needed in order to cover the domain on all levels.Most of the copy elements can be omitted in thefinal implementation as will be explained below.In the following,we will speak of an element as refined if it is refined either regularly or irregularly(but not copy).Algorithms for refining and derefini ng grids of this type are described in detail in[13].3.2Geometrically based dataWe assume that a linear problem is given on and that we can define afinite dimen-sional solution approximating the continuous solution on for every grid approximat-ing.Therefore,vectors and matrices have to be defined on every grid.Here,we explain the data structure used for interelement Langrange multipliers in two dimension.Then, the unknowns are associated to the edges.The set of edges on level is denoted by. In the UG-context,an edge will be called point or interpolation point.The points on different levels will be distinguished.In general,father points cannot be defined for refined elements,but for all edges on copy elements there exists a well defined father edge.Furthermore,denotes the number of degrees of freedom associated to.resp.denotes the number of degrees of freedom per element resp.in.For the stabilized BDM-elements we consider triangular elements only where and.Let be a multigrid and letbe a vector for the grid on level,the restriction to an element andthe restriction to an interpolation point.On the grid of the top level,the discretized problemMultigrid solution for mixedfinite elements in linear elasticity5 is given by the global stiffness matrix and the global right hand side ,the global solution vector is denoted by.Afinite element discretization is constructed from element stiffness matrices and element right hand sides. The global stiffness matrix and the global right hand side vector are assembled from resp.and a modification due to boundary conditions for somepoints.For the lower levels,we need the stiffness matrix only, because in a multigrid algorithm,auxiliary problems are solved,where the right hand side is replaced by the defect and the solution vector is replaced by the correction vector.Example.The construction of the stiffness matrix for the stabilized BDM elements.The stress tensor on a triangle is approximated inwhere is a bubble function vanishing on,the Lagrange parameters are approximated infor every edgeThis leads to thefinite dimensional problemThe submatrix is a block matrix and can be eliminated in every ele-ment.Then,one has to solve the reduced system for the corresponding Schur complement only,which can be assembled elementwise.3.3Grid transferFor multigrid methods,the grid transfer is essential for the coupling of values on different levels.In general,the interpolation from level to level is given by matrices and can be constructed by local interpolation from a father element to a son element.For mixed elements we have to construct local interpolation matricesThen,the interpolated values on the edges will be different for the elements on the left and on the right side.Therefore,the global interpolation matrix is defined by6 C.Wieners where is a diagonal scaling matrix with. Furthermore,the grid transfer from afine level to a coarse level will be defined by the transposed matrix.Example.The construction of the interpolation a for the stabilized BDM elements. Given the Lagrange parameter on a coarse level,compute for every elementand the father elementandMultigrid solution for mixedfinite elements in linear elasticity7 Let be consistent and the defect.If for is changed,the new defect will change for points with.In order to compute the new defect,one needs for all points with.This motivates the following definition:the local grids are the smallest subsets of the surface grids,such that for all with,i.e.for someOn the base level we have.The local multigrid method will be defined such that the solution vector and the correction are always consistent.If the stiffness matrix and the right hand side are assembled on the local grids,they are not consistent.Thus,and for must not be used on local grids.Nevertheless,the defect on the surface grid can be constructed recursively from the local defects:for set for andfor.We do not need the values for,they will be set to zero in the smoothing step.Therefore,the restriction of must not change for such that .For a simple notation,we set if is a point on a copy element and if for a refined element.Then,the set of points where can be changed get.3.5Smoother and solverWe formulate the multigrid method for the surface grids,but all steps will be defined such that only points on the local grids are used.The basic step on every level is the smoothing.S set forsolve,set for,In the examples considered below,we use an incomplete block-LU decomposition ,where,respect the sparsity pattern of.A multigrid cycle is defined recursively and combines the grid transfer and several smooth-ing steps.8 C.Wieners MCifcall S until(coarse grid solver)elsefor call S(pre-smoothing)(restriction)forfor call MC(coarse grid correction)(prolongation)for call S(post-smoothing)In our examples we use a V-cycle()with one pre-and one post-smoothing step (and).For symmetric problems,the multigrid cycle can used as preconditioner of the conjugated gradient method.CG,,repeatcall MCuntil4Global error bounds and local error indicators for sta-bilized BDM-elementsLet be the exact solution of the problem,an approximation for the solution and resp.an approximation for stress tensor resp.the strain tensor in which satisfy the boundary condition.Then,we have the error bound in the energy normfor some constant(cf.[16]).In our examples,the body load is constant on every element.Thus can be fulfilled exactly.In addition,we assume that the boundary conditions are piecewise linear and that they can be approximate exactly. Using BDM elements,only conforming approximations for stress and stain tensor are available.In order to use this error bound as an error indicator for refinement,we define a conforming interpolation.Therefore,let be the set of all nodes and all midpoints of edges of the grid.Then,will be a piecewise quadraticMultigrid solution for mixedfinite elements in linear elasticity9 function represented by its values at the nodal points.The interpolation points for the Lagange parameter are the two Gaußpoints on every edge.They will be denoted by. The computation of consists of two steps:in thefirst step in every element a quadratic approximation is defined byHere,denotes the cubic bubble function in the component.In the second step,where the element contributionsare used as local indicators:all element whereare marked for refinement.In practice,for gives reasonable results.5Numerical examplesThe efficiency of our algorithm is demonstrated on the problems given in[5].As thefirst example,we consider Cook’s mebrane problem.conv,,,fixed onsurface traction onYoung modulus,Possion ratio10 C.Wienersmixed(Stenberg)nonconforming(Falk)conforming(P2)245122.76 4422722.626 6440222.618 8384922.608 105it1627.402325622.78443409622.61763it1622.1893617422.5375676322.60476154622.60996306222.610115635022.610The second example is a plane strain problem with Young Modulus and the Poisson ratio.We consider a punctured disc with a constant surface load on the top and on the bottom.Due to the symmetry of the problem we compute only a quarter of the domain.Young ModulusPoisson ratiosurface loadstress tensor,full refinement local refinement(Stenberg)P1Falk Stenbergstep it1600643-6.742563-7.9510243-9.5640963-11.15163843-12.35655363-13.0step16-07.4 1464-10.9 35218-13.3 55804-13.94 772322-13.938Multigrid solution for mixedfinite elements in linear elasticity11 References[1]T.A RBOGAST AND Z.C HEN,On the implementation of mixed methods as non-conforming methods for second-order elliptic problems,p.,64(1995), pp.943–972.[2]R.E.B ANK,T.F.D UPONT,AND H.Y SERENTANT,The hierarchical basis multi-grid method,Numer.Math.,52(1988),pp.427–458.[3]P.B ASTIAN,Parallele adaptive Mehrgitterverfahren,Teubner Skripten zur Nu-merik,Teubner-Verlag,1996.[4]P.B ASTIAN,K.B IRKEN,K.J OHANNSEN,S.L ANG,N.N EUSS,H.R ENTZ-R EICHERT,AND C.W IENERS,UG–aflexible software toolbox for solving partial differential equations,Computing and Visualization in Science,1(1997),pp.1–30.[5]D.B RAESS,O.K LAAS,R.N IEKAMP,E.S TEIN,AND F.W OBSCHAL,Error in-dicators for mixedfinite elements in2-dimensional linear elasticity,Comp.Methods Appl.Mech.Engrg.,127(1995),pp.345–356.[6]J.B RAMBLE,J.P ASCIAK,J.W ANG,AND J.X U,Convergence estimates for mult-grid algorithms without regularity assumptions,p.,57(1991),pp.23–45.[7]J.H.B RAMBLE,J.E.P ASCIAK,AND J.X U,Parallel multilevel preconditioners,p.,55(1990),pp.1–22.[8]S.C.B RENNER,A multilevel algorithm for the lowest-order raviart-thomas mixedtriangularfinite element method,SIAM J.Numer.Anal.,29(1992),pp.647–678.[9]12 C.Wieners [15]R.V ERF¨UHRT,A multilevel algorithm for mixed problems,SIAM J.Numer.Anal.,21(1984),pp.264–271.[16]C.W IENERS,Adaptive multigrid solution for mixedfinite elements in2-dimensionallinear elasticity,tech.rep.,Universit¨a t Stuttgart,SFB404Preprint97/13,1997. [17]。

相关文档
最新文档