同轴电缆技术概述

合集下载

射频同轴电缆结构和主要技术性能

射频同轴电缆结构和主要技术性能

2、柔软电缆长度确实定及剥线 根据技术图纸拟定了电缆长度及剥尺寸后,用
剪线钳等工具按长度要求将电缆剪断,并用卡尺或 直尺检验其长度及公差是否符合工艺要求。
柔软电缆剥线要半刚性电缆轻易得多,剥线措 施和可利用旳工具多种多样,只要能够确保精度、 不损伤电缆,都能够使用。国外近几年推出多种自 动剥线机,其控制精度高、速度快,是软电缆剥线 较为理想旳设备。
刚性电缆:也称硬电缆,最用于微波测试系统
中,做为测试原则元件,一般以空气为绝
缘介质,没有多少工程使用价值。
波纹铜管电缆:外导体为螺旋状或环状波纹铜
管,较易弯曲,一般尺寸较大,损耗低、
功率容量大、电性能优越,常用于天馈系
统中。
5、有关稳相电缆
稳相电缆应具有下列特征:
1)机械相位稳定性:射频同轴电缆以不不大于
绝缘电阻:考核绝缘介质材料特征旳一项电 性能指标。
功率容量:与电缆机械尺寸有关旳一项电性 能指标。
相位温度系数:特定频率下单位长度电缆在 单位温度变化时产生旳相位漂移旳PPm值。 3、电缆主要机械性能指标
最小弯曲半径:射频同轴电缆在使用时允许 弯折旳最小半径值。过份弯折将造成电 缆损伤,导至电缆性能下降。
柔软电缆旳焊接式连接技术要求高,且操作麻 烦,人为原因影响较大,一般只有耐高温电缆才干 进行焊接式连接。
压接式是为了防止夹持式和焊接式旳缺陷而研 制出来旳,它具有构造简朴、装接速度快、一致性 好、可靠性高等优点,一经出现便得到广泛旳应用。 压接电缆编织层旳措施一般有两种:圆形压接和六 方压接。
外径较大旳电缆(超出Φ7)多采用夹持式
3、内导体旳装接 内导体与电缆芯线旳装接最常用旳措施有焊
接和压接。前面讲过,内导体压接旳方式有诸多 优点,但因为电缆芯线外径尺寸较小,压接要求 旳配合尺寸精度很高,这给机械加工带来某些难 题。内导体旳压接与外导体一样,采用压六方或 压四方旳方式,操作以便。

同轴电缆技术规范书

同轴电缆技术规范书

同轴电缆技术规范书中国电信集团公司内蒙古网络资产分公司二OO九年三月同轴电缆技术规范书一、概述同轴电缆分为细缆RG-58 和粗缆RG-11两种。

本次招标主要应用于机房2M线。

粗缆(RG-11)的直径为1.27厘米,最大传输距离达到500米。

由于直径相当粗,因此它的弹性较差,而且RG-11连接头的制作方式也相对要复杂许多。

由于粗缆的强度较强,最大传输距离也比细缆长。

粗缆的阻抗是75Ω。

视频同轴电缆英文简称SYV,常有的有75-7,75-5,75-3,75-1等型号,特性阻抗都是75欧姆,以适应不同的传输距离。

二、参数指标1、主要电气参数(1)同轴电缆的特性阻抗同轴电缆的平均特性阻抗为50±2Ω,沿单根同轴电缆的阻抗的周期性变化为正弦波,中心平均值±3Ω,其长度小于2米。

(2)同轴电缆的衰减指500米长的电缆段的衰减值。

当用10MHz的正弦波进行测量时,它的值不超过8.5db(17db/公里);而用5MHz的正弦波进行测量时,它的值不超过6.0db(12db/公里)。

(3)同轴电缆的传播速度需要的最低传播速度为0.77C(C为光速)。

(4)同轴电缆直流回路电阻电缆的中心导体的电阻与屏蔽层的电阻之和不超过10毫欧/米(在20℃下测量)。

2、同轴电缆的物理参数同轴电缆是由中心导体、绝缘材料层、网状织物构成的屏蔽层以及外部隔离材料层组成.同轴电缆具有足够的可柔性,能支持254mm(10英寸)的弯曲半径。

中心导体是直径为 2.17mm±0.013mm的实芯铜线。

绝缘材料必须满足同轴电缆电气参数。

屏蔽层是由满足传输阻抗和ECM规范说明的金属带或薄片组成,屏蔽层的内径为 6.15mm,外径为8.28mm。

外部隔离材料一般选用聚氯乙烯(如PVC)或类似材料。

3、对同轴电缆进行测试的主要参数 (1)导体或屏蔽层的开路情况。

(2)导体和屏蔽层之间的短路情况。

(3)导体接地情况。

(4)在各屏蔽接头之间的短路情况。

同轴电缆焊接工艺_概述及解释说明

同轴电缆焊接工艺_概述及解释说明

同轴电缆焊接工艺概述及解释说明1. 引言1.1 概述同轴电缆焊接工艺是一种常见的用于连接同轴电缆的技术。

同轴电缆作为一种广泛应用于通信、电视、无线网络等领域的传输介质,其连接的可靠性和稳定性对于整个系统的运行至关重要。

因此,对同轴电缆的焊接工艺进行深入研究和探索具有重要意义。

1.2 文章结构本文将分为五个部分进行阐述。

第一部分是引言,主要介绍了同轴电缆焊接工艺及文章结构。

第二部分将详细概述同轴电缆焊接工艺的基本原理、重要性以及工艺流程。

第三部分会对同轴电缆焊接工艺进行详细解析,包括准备工作和材料准备、焊接设备和技术要点以及焊接步骤和注意事项。

第四部分将探讨焊后处理和质量控制方面的内容,包括焊后处理工作流程、质量控制方法与标准要求以及常见问题及其解决方法。

最后一部分是结论,总结概括了主要观点和结果,并对同轴电缆焊接工艺的优劣势及未来发展趋势进行分析。

1.3 目的本篇文章的目的在于全面介绍同轴电缆焊接工艺,包括其基本原理、重要性、详细步骤以及相关的质量控制方法。

通过深入了解该工艺,读者可以掌握同轴电缆焊接的技术要点,并在实际应用中确保焊接质量和可靠性。

此外,对比其他类似工艺的优劣势及未来发展趋势的分析,有助于读者形成对该领域发展方向的认识和思考。

因此,本文将为感兴趣的读者提供一份有关同轴电缆焊接工艺概述及解释说明的全面参考资料。

2. 同轴电缆焊接工艺概述2.1 同轴电缆的基本原理同轴电缆是一种常用于传输高频信号和宽带数据的电缆。

它由内导体、绝缘层、外导体和外护套组成。

内导体负责传输信号,而外导体用于屏蔽干扰信号。

这种结构使得同轴电缆具有良好的传输性能和抗干扰能力。

通过在两端焊接同轴电缆,可以实现电气连接,并确保信号稳定地传递。

同轴电缆焊接工艺的重要性在于保证焊接点具有较低的噪声和损耗,以及良好的信号传输质量。

2.2 焊接工艺的重要性同轴电缆焊接过程中,正确选择合适的焊接设备、材料和技术要点至关重要。

同轴电缆技术专利综述

同轴电缆技术专利综述

同轴电缆技术专利综述文章从国际申请量、同轴电缆材料、同轴电缆结构三个方面对同轴电缆技术进行了分析,并总结该领域的发展状况,为相关领域的专利审查工作提供技术支持,并为相关技术提供参考依据。

标签:同轴电缆;发泡;泄漏;细径化Abstract:This paper analyzes the coaxial cable technology from three aspects of international application amount,coaxial cable material and coaxial cable structure,and summarizes the development of this field,and provides technical support for the patent examination work in related fields as well as the reference for the related technology.Keywords:coaxial cable;foaming;leakage;fine diameter1 同轴电缆技术概述同轴电缆的发展主要分为四代:第一代是19世纪中期开始利用聚乙烯材料作为实芯绝缘介质;第二代是利用化学发泡PE材料作为绝缘介质;第三代是藕芯纵孔PE材料作为绝缘介质;第四代是利用物理发泡PE材料作为绝缘介质。

同轴电缆按照结构可分为:泄漏同轴电缆、多芯同轴电缆、细径化同轴电缆、复合同轴电缆[1]。

同轴电缆行业发展至今经历了一系列的变迁。

由于全球电子产业在2000年进入高峰期,作为电子产业一部分,同轴电缆市场规模也达到历史的高峰期。

在随后的三年内,随着全球经济增长率进入低谷,同轴电缆产业也随着下游需求的萎缩而进入低迷期,直到2003年下半年才出现复苏迹象。

从2004 年开始,全球同轴电缆行业进入新一轮的增长期[2][3]。

同轴是什么原理

同轴是什么原理

同轴是什么原理
同轴是一种常用的电缆结构,通常由中心导体、绝缘层、外导体和外层绝缘层组成。

其工作原理基于以下几个方面:
1. 电性能优越:同轴电缆采用金属导体,可以大大减小电阻和电容,从而提高传输效率和信号质量。

2. 抗干扰能力强:由于中心导体与外导体之间存在较大的电势差,能够形成一个屏蔽层,可以有效地屏蔽外界电磁干扰,提高传输稳定性。

3. 波导特性:同轴电缆可通过正确选择导体尺寸和绝缘材料,使其成为波导,有效减小传输损耗,提高信号传输距离。

4. 阻抗匹配:同轴电缆可以通过合理设计导体和绝缘层的尺寸,使其具有与系统中其他部件(如发射器、接收器等)相匹配的阻抗,从而实现高效传输。

5. 适应广泛:同轴电缆可用于传输各种信号,如音频、视频和数据信号等,广泛应用于电视、无线通信和计算机网络等领域。

总之,同轴电缆主要通过金属导体、绝缘层和外层导体的构造,以及特定的尺寸和绝缘材料选择,实现了较低的传输损耗、较强的抗干扰能力、优越的波导特性和阻抗匹配,从而满足了各种信号传输的需求。

同轴电缆的说明

同轴电缆的说明

同轴线缆是一种优质的宽带传输介质优点:传输信号的衰减小技术水平同轴:目前我国的同轴产品的技术水平已经做到了0-20Gz;双绞线:双绞线的传输带宽约为同轴的1/10抗干扰性:同轴线:它把传输信号产生的电磁场全部限制在屏蔽层内部,不向外辐射,根据收发可逆原理,外界电磁场也不能穿过屏蔽层进入内部。

双绞线:双绞线不同了,干扰产生原理是另一回事,它的信号传输电磁场理论上是分布在无限空间。

根据收发可逆原理,外部空间电磁场也可以直接进入双绞线。

双绞线无法防止外界电磁场进入,但采用了螺旋扭绞的办法,让两条线接收到的信号“尽量完全一样”,并采用平衡差分信号处理技术,把这种完全一样的“共模信号”抑制掉。

这里关键是双绞线的“平衡”特性,“平衡”一旦有差别,干扰便乘虚而入,外界物体也会影响平衡。

工程上“平衡”是相对的,不是绝对的,电路的“共模抑制”性能是有一定范围的。

这两项实际问题,决定了双绞线的抗干扰能力,是有限制的,整合网络布线规则中规定强干扰情况下,必须使用屏蔽双绞线,就是这个道理。

传输特性:同轴线特线:同轴和双绞线的传输特性是由国标规定的,改变不了。

如视频信号上边频为6M,对于2000米传输距离,SYWV-75-5电缆衰减为40db,即电压衰减100倍,1Vp-p的6M视频信号衰减到10mv,或80db微伏,在这个电平进行视频恢复,可以保证高信噪比。

具有有线电视系统设计经验的工程师,对此十分清楚;对于非屏蔽双绞线,2km的6M衰减为92db,衰减将近4万倍,比75-5同轴电缆大52db(近400倍);双绞线特性:双绞线传输2km,1Vp-p信号衰减到了25微伏,即电平为28db微伏,已经可以和电路噪声电平接近了,仅用末端补偿,信噪比会严重变坏,出路只能是提高前端电平。

这就是目前双绞线传输必须采用的“前推后拉”技术方案,要求前后设备的补偿提升总能力必须大于92db,实际应该做到100db。

需要注意的还有,前端大信号放大提升电路本身产生的固有噪声,要比末端小信号电路产生的固有噪声大很多,系统信噪比变坏的更快,有人提出双绞线传输设备接力的中继级数可以做得很多(比同轴多很多),这纯属想象,理论上和实践上都是讲不通的;结论:比较同轴和双绞线传输系统时,有两个要点必须抓住:一是比较两种线传输特性的区别,二是看传输设备的水平和性能。

射频同轴电缆结构及主要技术性能

射频同轴电缆结构及主要技术性能

2、装配前准备工作
装配开始前一定要做好准备工作,详细消化 电缆组件图上的各项要求,并核对装配计划单与 相配的射频连接器、半刚或半柔性电缆是否符合 电缆组件图要求,同时按图纸上的要求确定相应 剥线夹具、电缆弯曲夹具、电缆装配夹具以及准 备好电铬铁、焊丝、焊剂、洒精棉球等工量夹具。
3、半刚、半柔性电缆长度的确定及剥线 首先,电缆组件的长度的确定供需双方在合同
4、半刚、半柔性电缆的弯曲 半刚、半柔性电缆本身具有一定的机械强度,
容易弯折成一定的形状,以达到特定整机结构的 要求,这是此类电缆的一大特色。对不同直径的 电缆,有不同的最小弯曲半径,我们加工打弯时 不应使弯曲半径小于规定值,以免对电缆造成损 伤。
打弯时不能用手去直接弯折,而应该采用专 门的弯曲工具,以免使弯曲部分严重变形。弯曲 工具及使用方法可参考富士达公司产品手册最后 一部分。
绝缘电阻:考核绝缘介质材料特性的一项电 性能指标。
功率容量:与电缆机械尺寸有关的一项电性 能指标。
相位温度系数:特定频率下单位长度电缆在 单位温度变化时产生的相位漂移的PPm值。 3、电缆主要机械性能指标
最小弯曲半径:射频同轴电缆在使用时允许 弯折的最小半径值。过份弯折将造成电 缆损伤,导至电缆性能下降。
刚性电缆:也称硬电缆,最用于微波测试系统 中,做为测试标准元件,一般以空气为绝 缘介质,没有多少工程使用价值。
波纹铜管电缆:外导体为螺旋状或环状波纹铜 管,较易弯曲,一般尺寸较大,损耗低、 功率容量大、电性能优越,常用于天馈系 统中。
5、关于稳相电缆 稳相电缆应具备以下特性: 1)机械相位稳定性:射频同轴电缆以不小于最
我们常用的电缆有如下几种:半刚性电缆、半 柔性电缆、柔软电缆、大功率波纹馈线等,大功率波纹 馈线组件的装接大部分是在现场操作,且批量很小,这 里就不讲了,下面谈一谈半刚、半柔性电缆组件和柔软 电缆组件的装接。

同轴电缆

同轴电缆
《广电网络工程综合实训》 课程
同轴电缆
目 录
01
同轴电缆的组成
02
同轴电缆的分类
03 同轴电缆的技术参数 04
典型同轴电缆简介
1.同轴电缆的组成
同轴电缆是共用天线系统信号的传输媒介,它 一般是由轴心重合的内导体、金属屏蔽层导体以及 绝缘层、护套保护层等几个部分构成的。
2.同轴电缆的分类
依据内、外导体间绝缘介质处理方法的不同,可分为四种: 第一种是实芯同轴电缆,这种电缆的介电常数高、 传输损耗大,属于早期生产的产品,目前已淘汰不用; 第二种是藕芯同轴电缆,这种电缆的传输损耗比实 芯电缆要小得多,但防潮防水性能差,以前使用较普 遍,现在已不多见;
2.同轴电缆的分类
同轴电缆的型号命名
为了规范电缆的生产与使用,我国对同轴电缆的不同类别的电缆 型号实行了统一的命名,通常它由四个部分组成,其中第二、三、 四部分均用数字表示,这些数字分别代表同轴电缆的特性阻抗
(Ω)、芯线绝缘的外径(mm)和结构序号。
2.同轴电缆的分类
例如,型号为SYWV-75-5-1的同轴电缆的含义是:同轴射频电缆、 绝缘材料为物理发泡聚乙烯、护套材料为聚氯乙烯、特性阻抗为 75 Ω、芯线绝缘外径为5 mm,结构序号为1。
第三种是物理发泡同轴电缆,这种电缆的传输损耗 比藕芯同轴电缆的还要小,且不易老化和受潮,是目 前使用最广泛的电缆;
第四种是竹节电缆,这种电缆具有物理发泡电线同 样或更优的性能,但由于制造工艺和环境条件要求高, 产品的价格也偏高,因此一般仅作为主.8 mm、7.25 mm、9.00 mm、11.50 mm、 13.00 mm等,我国用5、7、9、−12、−13等数字来表示; 国外还有MC-440、MC-500、QR-540、QR-860等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求α最小值。令
因此衰减系数最小的条件为 该超越方程的解为
由此可见,在固定外导体D的条件下,同轴线获得最小衰减系数的最佳直径比D/d约为3.6,对于空气绝缘的同轴线,它的特性阻抗为77欧姆时,衰减最小。
目前微波技术中常用的同轴线特性阻抗为75和50欧姆为标准值,前者接近于衰减最小的要求,后者兼顾了大功率与小衰减系数的两个要求。
(1)fc=截止频率
(2)C=真空中的光速
(3)εr=相对介电常数
(4)d=内导体外直径
(5)D=外导体内直径
在截止频率以下,电缆的不连续性也会激发电磁波以高级模式传播,但衰减很大,其影响可以忽略。TEM模式是同轴电缆传输中所希望的唯一模式,电缆的所有传输特性都是建立在这种模式的基础上。除了截止频率以外,通常还规定了电缆的最大工作频率,它考虑一定的余量,以安全工作在截止频率下。对于某些电缆,根据其它结构标准确定的最大工作频率有时和截止频率相差很大。
3.2.1通过功率最大:
令直径比D/d=χ,通过功率的公式可表述如下:
求P的极大值,令
得到 因此通过功率最大的条件为:
由此可见,在固定外导体D的条件下,同轴线获得最大通过功率的最佳直径比D/d约为1.65,对于空气绝缘的同轴线,它的特性阻抗为30欧姆时,通过功率最大。
3.2.2衰减最小
对于空气绝缘的同轴线,衰减系数如下:
5.射频电缆的其他安装使用指标------------------------------------------------------------------- 28
6.射频电缆原材料介绍----------------------------------------------------------------------------- 30
除了电阻,集肤效应还影响电感、特性阻抗和传输速率等。
下表是铜导体对应的导电层厚度:
频率(MHz)
1
10
100
220
450
550
800
900
1000
导电层厚度(µm)
66.02
20.88
6.60
4.45
3.11
2.82
2.34
2.20
2.09
频率(MHz)
1800
2200
2400
3000
5000
10000
导电层厚度(µm)
1.56
1.41
1.35
1.21
0.93
0.66
3.2特征阻抗
特征阻抗是同轴电缆的一个很重要的性能。从电气意义上说,它表示导体之间的电势差与流过该导体间的电流比值。在均匀同轴电缆中,特征阻抗在电缆整个长度方向上是一常数。电缆终端负载应与其特征阻抗匹配,因此有必要对电缆的特征阻抗进行重点阐述。在无线通信中,最常用的特征阻抗是50欧姆,象75欧姆等其它值也在其它பைடு நூலகம்域用到,如有线电视系统等。
(9)Z=特征阻抗εr=绝缘相对介电常数D=外导体内直径,mm d=内导体外直径,mm
从上式看出,可以根据合理选择导体直径和绝缘介电常数来调整特征阻抗的大小。而相对介电常数取决于其材料和其结构,实芯PE的相对介电常数为2.25~2.34,高发泡情况下可以低于1.25,空气的相对介电常数为1,PTFE的相对介电常数为2.00~2.10。
α1=导体损耗系数α2=介质损耗系数
衰减随频率的升高而增加,这是由于导体的集肤效应和介质的损耗引起的。
导体损耗系数与导体电阻率和尺寸有关,内外导体的表面电导率应尽可能高,应用趋肤效应,做大电缆时可选铜管或铜包铝为内导体,而小规格高频电缆则都选用镀银铜(包钢)。
介质损耗系数取决于相对介电常数和介质材料的损耗因子。通常使用PTFE或PE,现代的技术中使用发泡聚乙烯作介质材料可以减少这些系数,PE用注气方法的绝缘工艺可以达到80%以上的发泡度。注气方法中,氮气直接注入到挤塑机的介质材料中。该方法相对于化学发泡方法也称为物理发泡方法。用化学发泡法,只能得到50%左右的发泡度。而PTFE也有相类似的方法,使PTFE里面充满微孔,从而降低相对介电常数。
(5) (6) (7)
特征阻抗、衰减常数及相位常数是表示传输线特性的三个最重要的物理量。然而上面相关的数学表达式在电缆设计和应用中并无实用价值。在下面的章节中,将从同轴电缆工程应用出发以更实用形式来表示这些有关特性的物理量。
3传输特性及相关指标
3.1集肤效应
在直流作用下,电流能均匀流过导体的横截面。在高频下,电流只流过导体表面。此时,导体有效横截面积减小,阻抗增加。
在频率大于10MHz时,衰减可用下面的公式表示(见图4):
(13)
α=衰减,dB/100mεr=介质的相对介电常数
D=外导体内径,mmd=内导体直径,mm
σ1=内导体导电率,MS/mσ2=外导体导电率,MS/m tanδ=介质损耗因子 f=频率,MHz图4基本传输公式
电缆衰减主要是电阻性衰减αR,它与频率的算术平方根成正比。介质的衰减αg和频率成正比,它与电缆尺寸无关,仅由绝缘材料的数量和质量决定。随着频率的增加和电缆规格增大,介质衰减在总衰减中所占的比例增大。这就促使我们对高频率下使用的小规格电缆则选用发泡PTFE等高档绝缘材料,大直径电缆研究物理高发泡工艺以减小介质衰减,。
3传输特性及相关指标------------------------------------------------------------------------------ 6
4 机械特性-------------------------------------------------------------------------------------------- 27
7.美军标RG系列电缆简介及资料----------------------------------------------------------------- 34
8.附件1 (原材料简写一览表) --------------------------------------------------------------------- 57
γ=传输常数图3微长度传输线的等效电路
电路输入端的电压V(z),输出端V(z+Δz),对应的电流I(z)和I(z+Δz)。可以看出,输出电压不等于输入电压,这是由于有电感和电阻的串联;同样,输出电流不等于输入电流,这是由于有电导和电容的并联。但是,均匀传输线任意一点的电压和电流比值为常数。
(2)根据下面的公式可以看出Z取决于L,R,G和C这几个基本参数:
图2也表明了电磁场中另外一种有趣的现象。在有封闭外导体的同轴电缆中,TEM波在电缆内部传播。如果外导体是完全封闭的,则在电缆内部和外部环境间没有电磁耦合,电缆既不发射也不接收任何信号。这表明有封闭外导体的同轴电缆不会产生任何射频信号干扰其它系统,同时对其它系统的射频信号也有屏蔽作用。
而在漏泄电缆中,外导体上的槽孔可在电缆内部和外部环境之间建立一种耦合机制。电缆中传输的能量一部分发射到电缆外部空间,电缆充当天线的作用。这些漏泄电缆将有详细讨论。
所有传输线都可用二端口网络的等效电路来描述,如图3。基本参数都沿电路连续分布,主要有四个:
L=单位长度电感,H/Km
R=单位长度电阻,Ω/Km
G=单位长度电导,S/KM
C=单位长度电容,F/Km
另外,还有四个二次参数:Z=特性阻抗,Ω
α=单位长度衰减常数,dB/Km β=单位长度相位常数,rad/Km
11.常用微波波段划分-------------------------------------------------------------------------------- 60
1.射频同轴电缆在电缆行业中的分布图.
2.射频同轴电缆传输理论
在同轴电缆中,传输回路由内导体、绝缘介质和外导体三部分组成,它们的材料和尺寸决定了电缆的传输性能和其它电气性能。这三部分是同心的,即有共同的中心轴。电缆外导体上一般有一层护套,具体结构在后面的章节中详细讨论。
常用微波波段划分60射频同轴电缆传输理论在同轴电缆中传输回路由内导体绝缘介质和外导体三部分组成它们的材料和尺寸决定了电缆的传输性能和其它电气性能
1射频同轴电缆在电缆行业中的分布图------------------------------------------------------- 2
2射频同轴电缆传输理论------------------------------------------------------------------------- 3
图2同轴电缆中TEM模式下的电磁场模型
据电磁场理论,TEM模式所有的能量都沿电缆轴向传输,其主要特性仍是传输性能,如特性阻抗和衰减等。在一定频率下,TEM模式是同轴电缆中唯一的传播模式。高于此频率时还会激发其它的传播模式。这一频率称之为截止频率,与电缆的结构和绝缘性能有关。在同轴传输中,这些高级模式是有害的,因此,应了解电缆截止频率并保证电缆在该频率下使用。截止频率可用下面的公式计算:
3.3衰减
电缆两点处能量的减少就是衰减(有时也称为纵向损耗),电缆的衰减用分贝/单位长度表示,如dB/100m。根据上述定义,电缆衰减公式是:
(11)P1终端负载与电缆特征阻抗匹配时电缆的输入功率P2此电缆远端的功率
电缆的衰减也受其结构和使用频率的影响,可用下述公式计算:
(12)α=给定频率的衰减αR=电阻性衰减αg=介质性衰减
(3)j=复数的虚部ω=2πf, f是频率
另一个重要的传输参数是传播系数,可用下面公式表示: (4)
衰减系数的自然单位是Np/m(奈培/米),但在实际工程中用另一单位dB代替Np。下面的公式表示它们之间的关系:
1 dB=0.115Np 1Np=8.686dB在高频下(f>1 MHz),R <<ωL,G<<ωC,则有以下公式近似成立:
相关文档
最新文档