物理化学实验讲义

合集下载

物理化学实验讲义上

物理化学实验讲义上

实超级恒温水浴与其性能测定一、实验目的1.了解超级恒温水浴的构造及恒温原理,初步掌握超级恒温水浴的装配、调节和使用。

2.绘制超级恒温水浴的灵敏度曲线(温度—时间曲线)。

二、实验原理在科学研究及物理化学实验中所测的数据,如折射率、粘度、表面张力、电导、化学反应速率常数等都与温度有关,因此须在恒温条件下测定。

恒温就是使温度在很小范围(实验室内一般为±0.1℃)内波动。

通常用超级恒温水浴来控制温度维持恒温。

要使恒温设备维持在高于室温的某一温度,就必须不断地补充一定的热量,使由于散热等原因所引起的热损失得到了补偿。

不锈钢水浴箱、温度传感器、控温机箱(常用电子继电器)、电子加热器、搅拌器等组成。

其装置示意图如图1所示超级恒温水浴之所以能恒温,主要是靠温度传感器,温度控制器和电加热器三个部件配合工作达到。

当超级恒温水浴因对外散热而使水温低于设定值时,温度控制器就驱使加热器工作,使温度上升;当温度升高到设定值时,温控器又使加热器停止加热。

这样,就使槽温维持在所需要恒定的温度。

通常用超级恒温水浴灵敏度来衡量恒温精度。

超级恒温水浴灵敏度的测定是在指定温度下,观察温度波动情况,记录温度随时间的变化,其表示式如下:122F t tt C -=±式中:t 1—记录的最高温度t 2—记录的最低温度若已多次观测的温度值为纵坐标,以时间为横坐标,绘成温度—时间曲线即为在该指定温度下的灵敏度曲线。

三、仪器和药品1.不锈钢水浴箱1台2.控温机箱1台3.温度传感器1个 四、实验步骤1.向不锈钢缸(1)内注入其容积2/3~3/4的自来水,水位高度大约230mm (可根据实际需要而定),将温度传感器(5)插入不锈钢缸盖中间预置孔内(中间),另一端与控温机箱(2)后面板传感器插座(21)相连接。

2.用配备的电源线将市电AC220V 与控温机箱后面板电源插座(20)相连接。

先将加热器电源开关(8)、搅拌器开关(7)置于OFF 位置,后按下电源开关(9),此时显示器和指示灯均有显示。

物理化学实验报告讲义燃烧热实验

物理化学实验报告讲义燃烧热实验
3、量热测量是热力学的最基本最重要的研究方法之一,也是热力学学科的重要组成 部分。量热法可测定的物理量包括燃烧热、中和热、溶解热、蒸发热、熔化热、离解热
等。量热测量可以在等容条件下进行(如燃烧热),也可以在等压条件下进行(如中和热、
蒸发热、融化热等)。燃烧热一般在氧弹量热计中进行测量。许多稳定态单质在氧中的氧
各项数据后,点击操作,选择“计算水当量”,点击文件,保存数据,不要退出,点击
窗口,选择“待测物曲线图”。 3、萘的燃烧热的测定 用水冲洗氧弹及坩埚,倒掉内筒的水,并用纱布擦干。粗称萘 0.5-0.8 g,压片后,精
称质量,同苯甲酸一样装氧弹,重复以上操作测量萘的燃烧热,计算时点击操作,选择 “燃烧热计算”,其它与水当量计算相同,打印图表。
热系统温度升高(T)。实验测得温度升高,再根据量热计的水当量 K,就可以计算燃烧
反应的摩尔反应热 QV,m。即 QV,m = K•Δ T
Байду номын сангаас
(3-2)
量热计的水当量用已知燃烧热的标准物质(如基准试剂苯甲酸)来标定。若量热系统与
环境(外筒及其中的水)无热交换,可用下式计算水当量:
K
=
Q V ,1
m 1
+Q V ,2
图 3-1 量热计构造简图
1.外筒;2.内筒;3.氧弹;4.内筒搅 拌器;5.外筒温度计;6.控制箱; 7.外筒搅拌器;8.内筒贝克曼温度 计;9.温度温差仪
图 3-2 氧弹构造简图
1.弹体;2.坩埚;3.点火丝;4、5. 电极;6.弹盖;7.进/排气孔
1、首先打开控制箱和计算机电源的开关,双击计算机桌面上的“燃烧热 1.0”就可 以进入“燃烧热测定实验数据采集系统”。
4、实验结束后,把内桶的水再倒回容量瓶中,把内桶和氧弹擦干,仪器恢复原样。

高级物理化学实验讲义-液质联用

高级物理化学实验讲义-液质联用

⾼级物理化学实验讲义-液质联⽤⾼级物理化学实验讲义实验项⽬名称:L C Q-F l e e t液质联⽤仪的原理、实验技术及应⽤姓名: 张诗群学号:130420123 指导教师:谢莉莉成绩评定:评阅教师:⽇期:2012 年6 ⽉17 ⽇⼀、实验⽬的1.掌握L C Q-F l e e t液质联⽤仪基本原理。

2.熟悉该仪器的各部分的功能,并能进⾏简单的进样操作及控制软件的使⽤。

3.初步使⽤该仪器的数据处理软件,对得到的较简单实验谱图进⾏正确的判断及归属。

⼆、实验原理1. 质谱简化流程:2. LCQ-fleet的结构⽰意图。

3. 质谱相关名词质荷⽐(m/z):以原⼦质量单位表⽰的离⼦质量与其电荷数的⽐值。

基峰:在质谱图中,指定质荷⽐范围内强度最⼤的离⼦峰称作基峰。

总离⼦流谱图(TIC):对质荷⽐(m/z)在⼀定范围内的离⼦电流总和进⾏连续检测与记录的谱图。

原⼦质量单位(u):⽤来衡量原⼦或分⼦质量的单位,它被定义为碳12原⼦质量的1/12。

4.离⼦的产⽣离⼦源类型:1.Electrospray Ionization (ESI) 电喷雾电离- ⼤多数情况下是液态过程。

2.Atmospheric Pressure Photo-Ionization(APCI)⼤⽓压下化学电离-⽓相过程。

3.Atmospheric Pressure Photo-Ionization(APPI)⼤⽓压下光离⼦化-⽓相过程。

离⼦源作⽤:1.去溶剂2.真空过渡3.离⼦化4.去除⼲扰5. 电喷雾(ESI)电离过程6. ESI离⼦化特点:1. 软电离⽅式,⼀般得到分⼦离⼦峰,如M+H+,M+Na+,M-H+;2. 液态电离⽅式,流速耐受有限(<250 ul/min);3. 可在常温下进⾏,热不稳定化合物⾸选;4. 可产⽣多电荷离⼦;有利于⼤分⼦化合物(如蛋⽩和多肽)的分析;5. 适⽤于强极性化合物;6. 灵敏度⾼;7. ⼤⽓压化学离⼦化(APCI)电离过程8. ⼤⽓压化学离⼦化(APCI)电离过程通过电晕放电离⼦化⼤⽓压化学电离有三个过程:1. 在⾼压电极作⽤下,氮⽓载⽓和⽓化的液相⾊谱溶剂发⽣反应,产⽣预反应离⼦。

物理化学实验报告讲义乙酸乙酯皂化反应速率系数及活化能的测定

物理化学实验报告讲义乙酸乙酯皂化反应速率系数及活化能的测定

物理化学实验报告讲义:乙酸乙酯皂化反应速率系数及活化能的测定引言皂化反应是一种常见的酯水解反应,其速率受到温度、浓度、催化剂等因素的影响。

本实验旨在通过测定不同温度下乙酸乙酯的皂化反应速率,进而确定反应速率常数和活化能。

实验步骤1.实验准备:–配制乙酸钠溶液:称取一定质量的乙酸钠,溶于适量蒸馏水,稀释至所需浓度。

–配制酚酞指示剂溶液:称取适量酚酞,溶于蒸馏水中,制备0.1%(质量比)的酚酞指示剂溶液。

2.实验操作:–取一个耐热烧杯,加入适量的乙酸乙酯和适量的乙酸钠溶液,并加入少量酚酞指示剂溶液。

–在烧杯的外侧用胶布粘上温度计,记录初始温度。

–将烧杯放入恒温水浴中,控制温度在40℃、50℃、60℃、70℃和80℃,并记录反应液的温度变化。

–通过测定溶液颜色的变化,记录反应液从红色到完全无色所需的时间。

–重复上述操作,得到多组实验数据。

数据处理1.计算乙酸乙酯的皂化反应速率常数:–根据实验数据中记录的反应液从红色到无色所需的时间,计算反应速率,即单位时间内消耗的乙酸乙酯的量。

–将实验数据整理成表格,列出温度、反应时间、反应速率等数据。

–利用反应速率与温度之间的关系,拟合得到反应速率常数的表达式。

–根据表达式,计算不同温度下的反应速率常数。

2.计算乙酸乙酯皂化反应的活化能:–计算不同温度下反应速率常数的对数,即ln(k)与1/T的关系。

–利用线性回归分析,拟合得到ln(k)与1/T的线性关系式,其中k为反应速率常数,T为温度的绝对温度。

–根据线性关系式,计算活化能Ea。

结果与讨论1.反应速率常数的确定:–将实验数据整理成表格,列出温度、反应时间、反应速率等数据。

表格中每组数据都包含多次实验的平均结果,以减小误差。

–对不同温度下的反应速率进行拟合,得到反应速率常数随温度变化的表达式。

–在一定温度范围内,反应速率常数随温度的增加而增大,符合Arrhenius方程。

2.活化能的测定:–通过线性回归分析,拟合得到ln(k)与1/T的线性关系式。

物理化学实验报告讲义一级反应动力学—H2O2 催化分解速率系数的测定

物理化学实验报告讲义一级反应动力学—H2O2 催化分解速率系数的测定

实验31 一级反应动力学—H 2O 2催化分解速率系数的测定 预习要求1. 本实验中使用什么物质作为催化剂;其使用时的注意事项。

2. 本实验反应过程中反应物浓度的变化的表示方法。

3. 反应速率系数的概念及影响因素。

实验目的1.了解催化剂在催化反应中的作用特征。

2.测量H 2O 2催化分解反应的速率系数及表观活化能。

实验原理对于反应: a A + b B = y Y + z Z其反应速率与反应物的量浓度的关系可通过实验测定得到。

多数反应的速率方程的形式为:υA = k A c Aα c B β 若实验确定某反应物A 的消耗速率与反应物A 的浓度的一次方成正比,则该反应对A 为一级反应。

其反应速率方程为:—d c A / d t = k A c A (3-19) 以过氧化氢分解反应为例,H 2O 2 → H 2O + ½O 2实验证明过氧化氢分解反应的反应速率与H 2O 2(A )浓度的关系符合式(3-19)。

将式(3-19)积分得:ln (c A / c A ,0)= -k A t (3-20) 式中:k A ——反应速率系数;c A ——反应时刻为t 时H 2O 2的浓度;c A,0——反应开始前H 2O 2的浓度。

在反应不同时刻测得H 2O 2的浓度,代入式(3-20)即可求出反应速率系数k A 。

H 2O 2分解过程中有O 2放出。

若保持生成O 2的温度、压力不变,可通过测量放出O 2的体积,经过代换得到溶液中H 2O 2的浓度。

设浓度为c A ,0的H 2O 2全部分解放出的氧气体积为V ∞,反应时刻t 时H 2O 2分解放出的氧气体积为V t ,则c A ,0∝V ∞ ; c A ∝(V ∞ – V t )将以上关系式代入式(3-20)得:t k V V V t A ∞∞-=-ln(3-21) 或 V t k )V V (t ∞A ∞lg +2.303-=-lg (3-22) 以lg (V ∞-V t )对t 作图。

物理化学实验讲义

物理化学实验讲义

物理化学实验讲义物理化学实验讲义实验六过氧化氢的催化分解一、实验目的1、测定一级反响速率常数k,验证反响速率常数k与反响物浓度无关。

2、通过改变催化剂浓度试验,得出反响速率常数k与催化剂浓度有关。

二、实验原理H2O2在常温的条件下缓慢分解,在有催化剂的条件下,分解速率明显加快,其反响的方程式为: H2O2= H2O+1/2O2在有催化剂〔如KI〕的条件下,其反响机理为:H2O2+KI→KIO+ H2O 〔1〕 KIO→KI + O2 〔2〕其中〔1〕的反响速度比〔2〕的反响速度慢,所以H2O2催化分解反响的速度主要由〔1〕决定,如果假设该反响为一级反响,其反响速度式如下:?dcH2O2/dt?k'cKIcH2O2 〔3〕在反响的过程中,由于KI不断再生,故其浓度不变,与k'合并仍为常数,令其等于k上式可简化为:?dcH2O2/dt?kcH2O2 〔4〕积分后为: ln(ct/c0)??kt 〔5〕c0--- H2O2的初始浓度ct----反响到t时刻的H2O2浓度k---- KI作用下, H2O2催化分解反响速率常数反响速率的大小可用k来表示,也可用半衰期t1/2来表示。

半衰期表示反响物浓度减少一半时所需的时间,即c?c0/2代入〔5〕式得:t1/2=(ln2)/k关于t时刻的H2O2浓度的求法有许多种,本实验采用的是通过测量反响所生成的氧的体积量来表示,因为在分解的过程中,在一定时间内,所产生的氧的体积与已分解的H2O2浓度成正比,其比例常数是一定值即1H2O2?H2O?O22 - 1 -物理化学实验讲义t?0 c0 0 0t?t ct?c0?x x ct?K(V??Vt) c0?KV?1x 2V?—H2O2全局部解所产生的氧气的体积Vt----反响到t时刻时,所产生的氧气的体积x—反响到t时刻时,H2O2已分解的浓度式中K为比例常数,将此式代入速率方程式中,可得到:ln(ct/c0)?ln(V??Vt)/V???kt 即:ln(V??Vt)??kt?lnV?如果以t为横坐标,以ln(V??Vt)为纵坐标,假设得到一直线,即可验证H2O2催化分解反响为一级反响,由直线的斜率即可求出速率常数k值。

物理化学实验报告讲义二组分金属相图的测定

物理化学实验报告讲义二组分金属相图的测定

实验30 二组分金属相图的测定预习要求1.理解热分析法。

2.理解步冷曲线上的转折点及停歇线表示的含义。

3.本实验所测定的Zn-Sn二组分,在液相及固相的相互溶解情况。

4.使用热电偶测量温度时的注意事项。

(参阅附录1.2.3)实验目的1.用热分析法(步冷曲线法)绘制Zn-Sn二组分金属相图。

2.掌握热电偶测量温度的基本原理和自动平衡记录仪的使用方法。

实验原理简单的二组分金属相图主要有三种:①液相完全互溶,凝固后固相也能完全互溶成固溶体的系统,如Cu-Ni,溴苯-氯苯;②液相完全互溶,固相完全不互溶的系统,如Bi-Cd;③液相完全互溶,固相部分互溶的系统,如Pb-Sn。

本实验研究的Zn-Sn系统属于第二种。

在低共熔温度下,Zn在固相Sn中的最大溶解度为w Zn=0.09。

热分析法是绘制金属相图的基本方法之一,即利用金属或合金在加热或冷却过程中发生相变时,相变热的吸收或释放引起热容的突变,来得到金属或合金中相转变温度的方法。

通常的做法是将金属或合金加热至全部熔化,然后让其在一定的环境中自行冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线,即为步冷曲线(见图3-13)。

当熔融的系统均匀冷却时,如果不发生相图3-13步冷曲线变,则系统温度随时间的变化是均匀的,冷却速度较快(如图中ab线段);若在冷却过程中发生相变,由于在相变过程中伴随着放热,所以系统的冷却速率减慢,步冷曲线上出现转折(如图中b点);当系统继续冷却到某一温度时(如图中c点),系统中有低共熔混合物析出,步冷曲线出现温度的“停顿”;在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图中cd线段);当系统完全凝固后,温度又开始下降(如图中de线段)。

图3-14 固相完全不互溶的A-B二组分金属相图及其步冷曲线由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的步冷曲线得到有固体析出的温度和低共熔温度。

根据一系列组成不同系统的步冷曲线各转折点、停歇线的温度,即可画出二组分系统的相图(温度-组成图)。

物化实验补充讲义

物化实验补充讲义

正丙醇—水双液系的气液平衡相图摘要本实验对于正丙醇—水双液系的气液平衡相图进行了探讨。

利用阿贝折射仪和沸点仪分别测定体系的组成以及沸点,并利用气液平衡相图确定该体系的最低恒沸温度及恒沸混合物的组成,进一步理解分馏原理。

关键词正丙醇水双液系相图折射率最低恒沸点分馏1、前言双液系,即常温下两液态物质混合而成的体系,从拉乌尔定律可以看出,饱和蒸气压与其组成有关。

而液体的沸点指的是液体的蒸汽压与外压相等时的温度,故而双液系的沸点不仅与外压有关还与其组成有关。

要得到具体的关系可以通过其气液相图表示,即用通用几何作图的方法将双液系的沸点分别对其气相、液相作图,即T—x相图。

而实际溶液由于A—B组分相互影响,常与拉乌尔定律有较大的偏差,在T—X图中可能有最低和最高点出现,这些点称为恒沸点,其相应的溶液称为恒沸点混合物。

恒沸混合物蒸馏所得的气相与液相组成相同。

在本实验中,我们利用沸点仪测出混合液的沸点,用阿贝折射仪测出气相和液相混合液的折射率,进而求出其组成,最后得到正丙醇—水的气液相图,进而得到恒沸点以及恒沸混合物的组成,还可以根据相图进一步理解蒸馏和精馏的原理。

2、实验部分(一)仪器与试剂试剂:正丙醇(纯度99.5%)蒸馏水仪器:沸点仪阿贝折射仪调压变压器超级恒温水浴水银温度计(50~100℃,分度为0.1℃)(0~50℃,分度为0.1℃)10ml,20ml移液管各一只干燥吸管 20~30支干燥试剂瓶20~30支擦镜纸(二)实验步骤1、仪器安装于调整:调节恒温槽温度并使其稳定,使阿贝折射仪上的温度稳定在25℃左右,用纯水校正阿贝折射仪。

按右图所示安装沸点仪,使温度计B与加热丝之间要有一定的距离。

2、从正丙醇开始测量:(1)用50mL的移液管从支管L中加入正丙醇溶液50mL,浸没加热丝,水银温度计的水银球一半在溶液中,一半在蒸汽中。

夹上电热丝夹,打开冷却水,插上电源,调节变压器电压由零慢慢增加,观察加热丝上是否有小气泡逸出,电压控制在20V以内,溶液会慢慢沸腾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.恒温槽构造及恒温原理
2.乌氏粘度计的构造及测量原理
分子量是表征化合物特性的基本参数之一。

但高聚物的分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量,是平均分子量。

高聚物分子量测定方法很多,对线型高聚物,歌方法适用的范围如下:
端基分析<3×104
沸点升高、凝固点降低、等温蒸馏<3×104
渗透压104~106
光散射104~107
超离心沉降及扩散104~107
高聚物在稀溶液中的粘度,主要反映了液体在流动是存在着内摩擦,其中有溶剂分子与溶剂分子之间的内摩擦,表现出来的粘度叫纯溶剂粘度,记做η0,还有高分子与高分子之
间的内摩擦,以及高分子与溶剂分子之间的内摩擦,三者的总和表现为溶液的粘度,记做η,而在同一温度下,高聚物溶液的粘度一般都比纯溶剂的粘度要大,即η>η0,这些粘度增加的分数称作增比粘度,记做ηsp ,即:
110
00-=-=-=r sp ηηηηηηη 上式中ηr 称为相对粘度,它指明溶液粘度对溶剂粘度的相对值,仍是整个溶液的粘度行为;则意味着它已扣除了溶剂分子之间的内摩擦效应,仅留下纯溶剂与高分子之间,以及高聚物分子之间的内摩擦效应。

但溶液的浓度又可大可小。

显然,浓度越大,粘度也就越大,为了便于比较,取在单位浓度下所显示的粘度,即引入ηsp /C ,称为比浓粘度,其中C 是浓度。

又为了进一步消除高分子与高分子之间的内摩擦效应,必须将溶液浓度无限喜试网,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不计,这时溶液所呈现出的粘度行为主要就反映了高分子与溶剂分子之间的内摩擦。

这一粘度的极限值记为
[]ηη=→C sp C 0lim
[η]被称为特性粘度。

如果高聚物分子的分子量越大,则它与溶剂间的接触表面也越大,因此摩擦就大,表现出的特性粘度也大。

人们在大分子的[η]与其分子量M 呈正比的关系基础上,推广出高聚物[η]与其平均分子量M 之间的半经验关系。

[]αηM K =
K 是比例常数,α是与分子形状有关的经验参数。

K 和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。

K 值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度。

线团舒展,摩擦增大,α值就大,接近于1,线团紧缩,发生摩擦的机会减小,α值就小,在极限的情况下,接近0.5,所以α介于0.5~1之间。

K 和α的数值只能通过其他绝对方法确定(例如渗透压法、光散射法等等)。

而从粘度法只能测得[η]。

测得液体粘度的方法,主要可分为三类:
(1) 液体在毛细管里的流出时间;
(2) 圆球在液体里的下落速度;
(3) 液体在同心轴圆柱体间相对转动的影响。

在测定高分子的[η]时,以毛细管流出法的粘度计最为方便。

当液体在毛细管粘度计内因重力作用而流出时,遵守泊谡叶公式:
lt
V m lV t hgr ππρη884-= η——液体的粘度,ρ——液体的密度,l ——毛细管的长度,r ——毛细管半径,t ——是流出时间,h ——流过毛细管液体的平均液柱高度,V ——流经毛细管的液体体积,m ——毛细管末端校正的参数(一般在r/l<<1时,可以取m=1)。

对于某一支指定的粘度计而言,上式可以写成下式
t
B At -=ρη 当B<1时,当流出时间在2分钟左右,该项可以忽略。

又因通常测定是在稀溶液中进
行(C<1×10-2kg/L ),所以溶液的密度与溶剂的密度近似相等,在这近似条件下,可将ηr 写成:
0t t r ==ηηη t 为溶液的流出时间,t 0为纯溶剂的流出时间。

25℃,右旋糖酐的水溶液,其K=9.78×10-4,α=0.50
ηsp /C
C
操作步骤:
1. 调节恒温槽的温度为25℃。

2. 洗涤粘度计,用待测液润洗粘度计,从A 管注入待测液至标线范围里,垂直固定在恒温槽中,使上标a 以下部分完全浸没在水中恒温5分钟。

3. 用手堵住C 管,用洗耳球从B 管抽气,使待测液升至G 球1/2左右停止,松开C 管,用秒表记录液面在a 、b 两线间移动的时间。

4. 重复测定3次,误差不超过0.2~0.3秒,取平均值。

5. 重复2~4步骤,从稀到浓依次测定其他溶液。

(水,10%NaCl ,1%高聚物溶液)
6. 结束后,仔细用洗液洗涤粘度计,尤其是毛细管部分。

再用水洗。

注意:不要磕碰到粘度计。

相关文档
最新文档