参数估计与置信区间

合集下载

统计学中的参数估计方法

统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。

通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。

本文将介绍几种常用的参数估计方法及其应用。

一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。

最常用的点估计方法是最大似然估计和矩估计。

1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。

它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。

最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。

2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。

矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。

二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。

常见的区间估计方法有置信区间估计和预测区间估计。

1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。

置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。

2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。

预测区间估计在预测和判断未来观测值时具有重要的应用价值。

三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。

贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。

贝叶斯估计方法的关键是设定先验分布和寻找后验分布。

参数估计的置信区间例题和知识点总结

参数估计的置信区间例题和知识点总结

参数估计的置信区间例题和知识点总结在统计学中,参数估计的置信区间是一个非常重要的概念,它为我们提供了对总体参数的估计范围以及估计的可靠程度。

接下来,我们将通过一些具体的例题来深入理解置信区间,并对相关的知识点进行总结。

一、知识点回顾1、总体参数与样本统计量总体参数是描述总体特征的数值,如总体均值、总体方差等。

而样本统计量则是根据样本数据计算得到的数值,如样本均值、样本方差等。

我们通过样本统计量来对总体参数进行估计。

2、点估计点估计是用一个数值来估计总体参数,常见的点估计方法有矩估计法和最大似然估计法。

3、区间估计区间估计则是给出一个区间,认为总体参数有一定的概率落在这个区间内。

置信区间就是一种常见的区间估计方法。

4、置信水平置信水平表示置信区间包含总体参数的概率,通常用1 α 表示,常见的置信水平有 90%、95%和 99%。

5、置信区间的计算公式对于总体均值的置信区间,当总体方差已知时,置信区间为:\(\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\);当总体方差未知时,使用样本方差代替,置信区间为:\(\bar{X}\pm t_{\alpha/2}(n-1) \frac{S}{\sqrt{n}}\)。

二、例题解析例 1:某工厂生产一种零件,其长度服从正态分布。

现随机抽取 10 个零件,测量其长度(单位:cm)分别为 121, 119, 123, 120, 118, 122, 124, 117, 125, 120。

已知总体方差为 004,求总体均值的 95%置信区间。

首先,计算样本均值:\(\bar{X} =\frac{1}{10} (121 + 119 + 123 + 120 + 118+ 122 + 124 + 117 + 125 + 120) = 120\)因为置信水平为 95%,\(\alpha = 005\),\(Z_{\alpha/2}= 196\),总体方差\(\sigma^2 = 004\),所以\(\sigma = 02\),样本容量\(n = 10\)。

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计数理统计是概率论、数学统计和实证研究的基础,它研究的是通过观测和实验来获取数据,从而对总体的特征进行推断和估计的方法和理论。

在数理统计中,参数估计和置信区间估计是两个重要的概念和方法,用于对总体参数进行推断和估计。

一、参数估计参数估计是指通过样本数据对总体参数进行估计的方法。

总体参数是指总体的某个特征或指标,如均值、方差等。

参数估计可以分为点估计和区间估计两种方法。

1. 点估计点估计是指使用样本数据来估计总体参数的一个具体值,这个估计值被称为点估计量。

常用的点估计量有样本均值、样本方差等。

点估计的目标是使得估计值尽量接近真实的总体参数,即具有无偏性和有效性。

无偏性是指估计值的期望等于真实参数,有效性是指估计值的方差最小。

无偏性是一个重要的性质,它保证了估计值在大样本下趋近于真实值。

有效性则是在无偏估计的前提下,使估计值的方差最小,从而提高估计的准确性。

2. 区间估计区间估计是指通过样本数据得到总体参数的一个范围,这个范围被称为置信区间。

置信区间表示了总体参数的估计精度和可信程度。

在构造置信区间时,需要指定置信水平,常用的置信水平有95%和99%等。

置信水平为95%表示在大量重复抽样中,有95%的置信区间会包含真实的总体参数。

构造置信区间的方法有很多,如正态分布的置信区间、t分布的置信区间等。

不同的方法适用于不同的总体分布和样本信息。

在实际应用中,要根据具体的问题和数据的特点选择合适的置信区间方法。

二、数理统计中的应用参数估计和置信区间估计在数理统计中有广泛的应用,可以用于推断和估计各种领域的问题。

1. 总体均值的估计当我们要估计总体的均值时,可以使用点估计和区间估计的方法。

点估计是通过样本均值来估计总体均值,区间估计则是给出总体均值的一个范围。

2. 总体比例的估计当我们要估计总体的比例时,例如某种特征在总体中出现的比例,也可以使用点估计和区间估计的方法。

点估计是通过样本比例来估计总体比例,区间估计则是给出总体比例的一个范围。

估计总体参数置信区间

估计总体参数置信区间

估计总体参数置信区间前言在统计学中,我们经常需要估计总体参数。

然而,我们通常无法获得整个总体的数据,而只能通过样本来进行推断。

因此,我们需要知道如何构建置信区间,以便对总体参数进行估计。

置信区间的概念置信区间是对总体参数的估计范围。

它由一个下限和一个上限组成,通常表示为(下限,上限)。

置信区间的意义在于,我们可以根据样本数据推断,总体参数可能取值的范围。

构建置信区间的步骤构建置信区间的一般步骤如下:1.选择一个置信水平(通常为95%或99%)。

置信水平表示我们对置信区间的可信程度,例如,95%的置信水平意味着我们有95%的把握包含了总体参数的真实值。

2.根据样本数据计算得到一个统计量的抽样分布。

这个统计量通常与总体参数有关,并且我们已知它的抽样分布。

3.根据抽样分布和置信水平,找到一个临界值。

这个临界值使得样本统计量落入置信区间内的概率等于置信水平。

4.根据临界值和样本统计量的抽样分布,计算得到置信区间的下限和上限。

下限和上限的计算公式通常根据具体的统计推断方法而不同。

置信区间的例子为了更好地理解置信区间的概念,我们举一个例子。

假设我们对某个城市的居民平均年龄感兴趣,并从该城市中随机抽取了40个样本。

我们对这些样本进行统计分析,得到样本平均年龄为35岁,标准差为5岁。

现在我们希望构建一个95%置信水平下的置信区间,以估计该城市居民的平均年龄。

根据中心极限定理,我们知道样本均值的抽样分布近似服从正态分布。

根据正态分布的性质,我们可以使用t分布来进行推断。

根据样本数据和正态分布的性质,我们计算得到临界值为1.96(根据样本量和置信水平查找t分布表)。

根据临界值和样本统计量的抽样分布,我们可以计算得到置信区间的下限和上限。

下限=样本平均年龄-临界值*(样本标准差/√样本量)=35-1.96*(5/√40)≈33.29岁上限=样本平均年龄+临界值*(样本标准差/√样本量)=35+1.96*(5/√40)≈36.71岁因此,在95%的置信水平下,我们可以估计该城市居民的平均年龄在33.29岁到36.71岁之间。

参数估计表种的置信区间

参数估计表种的置信区间

参数估计表种的置信区间
参数估计表中的置信区间是用于表示一个参数的可能取值范围,通常以一个区间的形式表示。

置信区间的计算基于样本数据,并考虑了抽样误差。

它提供了一个概率范围,使得我们可以确定所估计的参数在该区间内的置信程度。

置信区间的大小取决于多个因素,包括所使用的统计方法、样本大小和样本数据的分布。

较小的置信区间表示我们对参数的估计更加精确,而较大的置信区间则表示估计的不确定性增加。

在参数估计表中,置信区间通常与所估计的参数一起列出。

例如,如果我们要估计一个总体的平均值,那么置信区间将表示该平均值可能落入的范围。

通过查看置信区间,我们可以了解到所估计的参数可能的取值范围,以及该估计的可靠程度。

这对于判断研究结果的有效性、进行假设检验以及做出决策都非常重要。

需要注意的是,置信区间只是一种概率范围的表示,并不能确定参数的确切值。

在实际应用中,我们通常会选择一个适当的置信水平,以平衡估计的准确性和可靠性。

应用统计学第6章参数估计(置信区间)ppt课件

应用统计学第6章参数估计(置信区间)ppt课件
从中解得
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的

参数估计的三种方法

参数估计的三种方法

参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。

常用的参数估计方法包括点估计、区间估计和最大似然估计。

点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。

其中最简单的点估计方法是样本均值估计。

假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。

根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。

因此,我们可以用样本的平均值作为总体均值的点估计。

另一个常用的点估计方法是极大似然估计。

极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。

具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。

极大似然估计即求解使得似然函数取得最大值的θ值。

举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。

那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。

我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。

与点估计相比,区间估计提供了一个更加全面的参数估计结果。

区间估计指的是通过样本数据推断总体参数的一个区间范围。

常用的区间估计方法包括置信区间和预测区间。

置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。

置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。

置信区间的计算方法根据不同的总体分布和参数类型而异。

举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。

预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验数理统计是一门研究如何利用数据对未知参数进行估计和进行推断的学科。

本文将介绍数理统计中的参数估计与置信区间估计,以及假设检验与拟合优度检验的基本概念和相关方法。

一、参数估计与置信区间估计在数理统计中,参数是描述总体特征的量,例如总体均值、总体方差等。

参数估计就是利用样本统计量对总体参数进行估计。

常用的参数估计方法有最大似然估计和矩估计。

最大似然估计是一种常用的参数估计方法,其基本思想是选择参数值使得观测到的样本出现的概率最大化。

假设总体服从某个分布,最大似然估计通过优化似然函数来估计参数。

最大似然估计具有良好的性质,例如渐近正态性和无偏性等。

矩估计是另一种常用的参数估计方法,其基本思想是利用样本矩与总体矩的对应关系来估计参数。

例如,样本均值可以用来估计总体均值,样本矩可以通过总体矩的方法进行计算得到。

矩估计具有较好的渐近正态性和无偏性。

参数估计的结果往往带有一定的不确定性,为了评估估计结果的准确性,常使用置信区间估计。

置信区间估计是指通过样本数据得到的区间,该区间包含了未知参数的真值的概率。

常见的置信区间估计方法有正态分布的置信区间估计和大样本下的置信区间估计。

二、假设检验在数理统计中,假设检验是一种推断方法,用于检验总体参数的假设是否成立。

假设检验的基本思想是通过样本数据来判断假设是否得到支持。

常用的假设检验方法有正态总体均值的假设检验、正态总体方差的假设检验和两样本均值的假设检验等。

假设检验包括建立原假设和备择假设,选择适当的检验统计量,并设定显著性水平,进行统计推断。

结果的判断依据是计算得到的检验统计量是否落在拒绝域内。

如果检验统计量落在拒绝域内,拒绝原假设,否则接受原假设。

假设检验的结果可以提供统计学上的证据,用于决策和推断。

三、拟合优度检验拟合优度检验是一种用于检验总体数据是否符合某个特定分布的方法。

在数理统计中,拟合优度检验常用于检验样本数据与给定的分布是否相符。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数估计与置信区间
我们总是希望能够从一些样本数据中去探究数据总体的表现特征,在网站数据分析中也是如此,我们试图从最近几天的数据表现来推测目前网站的整体形势是怎么样的,有没有变好或者变差的信号,但当前几天的数据无法完全代表总体,所以这里只能使用“估计”。

同时,网站的数据始终存在波动,将最近时间段的数据作为抽样样本很可能数据正好处于较低或者较高水平,所以我们用样本得到的估计值不可能是无偏差的,我们同时需要去评估这个估计值可能的变化区间。

参数估计(Parameter Estimation)是指用样本的统计量去估计总体参数的方法,包括点估计和区间估计。

点估计
点估计(Point Estimation)是用抽样得到的样本统计指标作为总体某个未知参数特征值的估计,是一种统计推断方法。

一般对总体参数的估计会包括两类:一种是用样本均值去估计总体均值,对应到网站数据中的数值型指标,比如网站每天的UV,我们可以用近一周的日均UV去估计目前网站每天唯一访客数量的大体情况;另外一种是用样本概率去估计总体概率,对应到网站数据中的比率型指标,比如网站的目标转化率,我
们可以用近3天的转化率去预估网站当天目标转化的水平;同时我们会计算样本的标准差来说明样本均值或者概率的波动幅度的大小,从而估计总体数据的波动情况。

点估计还包括了使用最小二乘法对线性回归做曲线参数的拟合,以及最大似然估计的方法计算样本集分布的概率密度函数的参数。

区间估计
区间估计(Interval Estimation)是依据抽取的样本,根据一定的正确度与精确度的要求,估算总体的未知参数可能的取值区间。

区间估计一般是在一个既定的置信水平下计算得到总体均值或者总体概率的置信区间(Confidence Interval),一般会根据样本的个数和标准差估算得到总体的标准误差,根据点估计中用样本均值或样本概率估计总体均值或总体概率,进而得出一个取值的上下临界点。

我们可以将样本标准差记作S,如果我们抽样获取的有n个样本,那么总体的标准差σ就可以用样本标准差估算得到:
从这个公式中我们可以看到大数定理的作用,当样本个数n越大时,总体指标差σ越小,样本估计值越接近总体的真实值。

Excel的图表里面也提供了添加“误差线”的功能:
有了总体的标准差σ,我们就可以使用区间估计的方法计算总体参数在一定置信水平下的置信区间,置信区间(Confidence Interval)给出了一个总体参数的真实值在一定的概率下会落在怎么样的取值区间,而总体参数落在这个区间的可信程度的这个概率就是置信水平(Confidence Level)。

当抽取的样本数量足够大时(一般n>30),根据“中心极限定理”,我们可以认为样本均值近似地服从正态分布。

根据Z统计量的计算公式:
假如在1-α的置信水平下,则总体均值μ的置信区间为:
这里样本均值和标准差都可以根据抽样的结果计算得到,所以在既定置信水平的条件下,我们只要查Z值表(Z-Score)得到相应的Z值就可以计算得到总体均值的置信区间。

对于置信水平或者叫置信度的选择,在统计学中一般认为95%的置信度的结果具有统计学意义,但其实在互联网领域数据的分析中不需
要这么高的置信度,我们有时也会选择80%或者90%的置信度,相应的Z值见下表:
置信水平1-α对应Z值Zα/2
95% 1.96
90% 1.65
80% 1.28
对于总体概率的估计,在具备足够样本数量的条件下,我们用样本概率p 预估总体概率,而总体概率的标准差则是sqrt(p(1-p)/n),同样可以计算得到置信区间。

其实这篇文章的内容大部分都可以在统计学书籍或者网上Wiki里面找到,当然写到博客里面不是为了做科普,这里的每篇“数据分析方法”类目下的文章都是跟相应的网站数据分析的应用文章结合,这篇也不例外,如果你对相关内容感兴趣,请关注后续发布的文章,或者订阅我的博客吧。

摘自:网站数据分析。

相关文档
最新文档