第五节正态总体参数的区间估计汇总
正态总体均值的区间估计

的下α/2分位数。
实例二
总结词
在未知总体标准差的情况下,可以使用样本标准差来估 计总体均值的区间。
详细描述
当总体标准差未知时,我们可以使用样本标准差来代替总 体标准差进行区间估计。具体来说,对于一个样本容量为n 的随机样本,其样本均值和样本标准差分别为和s。根据中 心极限定理,当样本容量n足够大时,样本均值近似服从正 态分布,其均值和标准差分别为μ和s/√n。因此,可以使 用μ±Zα/2s/√n来估计总体均值的置信区间。
实例三:小样本下的总体均值区间估计
总结词
在小样本情况下,可以使用t分布的性质来估计总体均 值的区间。
详细描述
当样本容量n较小时,样本均值的标准误差较大,使用 正态分布进行区间估计可能不准确。此时可以使用t分布 进行区间估计。具体来说,对于一个自由度为n-1的t分 布,其上侧分位数记为tα/2(n-1),那么可以使用 μ±tα/2(n-1)s/√n来估计总体均值的置信区间。与正态 分布相比,t分布的尾部更厚,因此在小样本情况下更为 稳健。
THANKS
感谢观看
理论依据
许多统计方法和模型都以正态分布为基础。
实际应用
在自然科学、社会科学和工程领域中,许多 现象都可以用正态分布来描述和分析。
03
总体均值的区间估计方法
样本均值和样本标准差
样本均值
表示样本数据的平均水平,计算公式 为 $bar{x} = frac{1}{n} sum_{i=1}^{n} x_i$,其中 $n$ 是样 本数量,$x_i$ 是每个样本值。
区间估计的应用
区间估计在统计学、经济学、社会学等领域有着广泛的应用。例如,在市场调查中,通过 抽样调查得到样本数据,然后利用区间估计方法估计总体市场占有率或平均价格等指标。
总体参数的区间估计

三、总体参数的区间估计
图5-10 “探索”对话框
图5-11 “探索:统计量”对话框
三、总体参数的区间估计
单击“统计量”按钮,弹出“探索:统计量”对话框,如图5-11所示。 该对话框中有如下四个复选框: (1)描述性:输出均值、中位数、众数、标准误、方差、标准差、极小值 、极大值、全距、四分位距、峰度系数和偏度系数的标准误差等。此处能够设 置置信区间,默认为90%(α=0.1),可根据需要进行调整。 (2)M 最大似然确定数。 (3)界外值:输出五个最大值和五个最小值。 (4)百分位数:输出第5%、10%、25%、50%、75%、90%、95%位数 。
三、总体参数的区间估计
【例5-17】 某餐馆随机抽查了50位顾客的消费额(单位:元)为 18 27 38 26 30 45 22 31 27 26 35 46 20 35 24 26 34 48 19 28 46 19 32 36 44 24 32 45 36 21 47 26 28 31 42 45 36 24 28 27 32 36 47 53 22 24 32 46 26 27 在90%的概率保证下,采用点估计和区间估计的方法推断餐馆顾客的平均消 费额。 解:执行“分析”→“描述统计”→“探索”命令,打开“探索”对话框。由于本例只 有消费额一个变量,且需要对消费额进行探索性分析,故选中左侧列表框中的“消 费额”选项,将其移入“因变量列表”框中,如图5-10所示。
解:已知n=31,α=0.01,=10.2;σ=2.4,z0.005=2.58,由于总 体方差已知,为大样本,可以利用式(5-23)来进行计算。
即(9.088,11.312 该学生每天的伙食费在显著性水平为99%时的置信区间为( 9.088,11.312)。
总体参数的区间估计

因为
ˆ (1 P ˆ) P SP ˆ n
0.1 (1 0.1) 0.0077 1500
上一张 下一张 主 页Fra bibliotek退 出
所以该地区老年人结核病患病率ρ 的95%、 99%置信区间为:
0.1 1.96 0.0077 0.1 1.96 0.0077
0.1 2.58 0.0077 0.1 2.58 0.0077
越高。
上一张 下一张 主 页 退 出
常用的置信度为95%和99%,故由(5-13)
式可得总体平均数μ 的95%和99%的置信区间如
下:
( x t 0.05 S x x t 0.05 S5-14 x ) ( 5-15 ) x t 0.01S x x t 0.01 S x
P( x t a S x x t a S x ) 1 a
称为置信半径; ta S x
(5-13)式称为总体平均数μ 置信度为1-a的置
信区间。其中
x和 ta S x
分别称为置信下限和置信上限; 置信上、下限 x ta S x
之差称为置信距,置信距越小,估计的精确度就
ˆ 其中, P 为样本百分数, 为样本百分数标准 S ˆ P
误, 的计算公式为: SP ˆ
SP ˆ ˆ (1 P ˆ P ) 5-18) ( n
上一张 下一张 主 页 退 出
【例5.10】 调查某地1500老年人,患结核病
的有150人,求该地区老年人结核病患病率的
95%、99%置信区间。
ˆ ,采用正态分布近似法求 由于>1000, >1% P 置信区间。
上一张 下一张 主 页 退 出
正态总体参数的区间估计实验结论

正态总体参数的区间估计实验结论正态总体参数的区间估计是统计学中一种常用的方法,可以帮助我们估计未知正态总体参数的取值范围。
通过构建置信区间,我们可以在一定的置信水平下对总体参数的取值范围进行估计。
以下是一个关于正态总体参数的区间估计实验结论。
在本实验中,我们以某个地区的成年人男性身高为研究对象,采集了一组样本数据。
通过对样本数据的分析和计算,得出了平均身高和标准差的估计值,并以此构建了置信区间。
首先,我们计算出了样本数据的均值为175cm,并且样本的标准差为5cm。
接下来,我们选择了一个置信水平为95%的置信区间进行计算。
根据正态分布的性质,我们可以使用标准正态分布表来确定置信区间的边界。
通过查表,我们找到了置信水平为95%对应的临界值,记为z。
在本实验中,z的取值为1.96。
然后,我们可以根据样本的均值、标准差和样本容量来计算置信区间的上限和下限。
置信区间的上限计算公式为:上限 = 均值 + z * (标准差/ √样本容量);置信区间的下限计算公式为:下限 = 均值 - z * (标准差/ √样本容量)。
根据实验数据的计算,最终得出了置信区间为(172.04cm,177.96cm)。
这意味着在95%的置信水平下,我们可以合理地推断该地区成年男性的平均身高位于该区间内。
这个实验结论具有以下几个指导意义。
首先,通过正态总体参数的区间估计,我们可以更准确地估计未知总体参数的取值范围,有助于我们了解总体的特征。
其次,通过选择合适的置信水平,我们可以控制估计结果的可靠性和精确度。
在本实验中,我们选择了95%的置信水平,意味着我们有95%的把握让估计结果覆盖真实总体参数。
最后,置信区间的上下限提供了关于总体参数范围的重要信息,可以用来支持决策和制定策略。
总之,正态总体参数的区间估计是一种重要的统计方法,可以为我们提供对未知总体参数取值范围的估计。
通过该方法,我们可以在一定的置信水平下对总体参数进行准确的估计,从而为实际问题的分析和决策提供科学依据。
总体参数的区间估计公式

总体参数的区间估计公式在进行区间估计时,我们首先需要收集到一个样本,并根据样本对总体参数进行估计。
然后根据样本的统计量,结合分布的性质和抽样方法,建立置信区间。
设总体参数为θ,我们希望得到它的置信水平为1-α的置信区间。
置信水平表示我们对总体参数的估计的可信程度,一般常用的置信水平有90%、95%和99%等。
参数估计的方法有很多,具体的方法选择取决于总体参数的性质、样本的大小以及其他假设条件。
常见的参数估计方法有:1.总体均值的区间估计:假设总体呈正态分布,样本大小为n,则总体均值的区间估计公式为:[样本均值-Z值(α/2)*总体标准差/√(n),样本均值+Z值(α/2)*总体标准差/√(n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
2.总体比例的区间估计:假设总体为二项分布,样本大小为n,成功的次数为x,则总体比例的区间估计公式为:[样本比例-Z值(α/2)*√(样本比例*(1-样本比例)/n),样本比例+Z值(α/2)*√(样本比例*(1-样本比例)/n)]其中Z值(α/2)为标准正态分布的分位数,可以从标准正态分布表中查得。
3.总体方差的区间估计:假设总体呈正态分布,样本大小为n,则总体方差的区间估计公式为:[(n-1)*样本方差/卡方分布(α/2),(n-1)*样本方差/卡方分布(1-α/2])]其中卡方分布是用于描述自由度为n-1的卡方随机变量的概率分布,可以从卡方分布表中查得。
以上是常见的总体参数区间估计公式,这些公式是根据统计学理论推导而来的,适用于不同情况下的参数估计。
在实际应用中,我们根据具体问题和假设条件选择适当的参数估计方法,计算置信水平的区间估计,从而对总体参数进行估计和推断。
正态总体参数的区间估计实验结论

正态总体参数的区间估计实验结论在统计学中,正态分布是一种非常重要的分布,许多自然现象和实验数据都可以用正态分布来描述。
而在实际应用中,我们常常需要估计正态总体的参数,比如均值和标准差。
在这篇文章中,我将介绍如何利用区间估计的方法来估计正态总体的参数,并给出一个实验结论。
让我们来回顾一下区间估计的基本原理。
区间估计是通过样本数据来估计总体参数的一种方法,其核心思想是利用样本数据给出一个参数的估计区间,该区间包含真实参数的概率较高。
在正态总体参数的区间估计中,我们通常使用样本均值和样本标准差来进行估计。
接下来,我将介绍一个实际的例子来说明正态总体参数的区间估计方法。
假设我们有一批产品的重量数据,我们想要估计这批产品的平均重量。
我们随机抽取了一部分产品进行称重,得到了样本均值和样本标准差。
根据中心极限定理,我们知道样本均值的分布是正态分布的,可以利用这一性质来构建参数的置信区间。
假设我们得到的样本均值为100,样本标准差为5,样本量为30。
我们可以利用正态分布的性质来构建样本均值的置信区间,假设置信水平为95%,那么我们可以计算出置信区间为(98, 102)。
这意味着在95%的置信水平下,真实的总体平均重量落在98到102之间。
通过这个简单的例子,我们可以看到区间估计的重要性和实际应用。
在实际问题中,我们往往无法得知总体参数的真实值,只能通过样本数据来进行估计。
区间估计可以帮助我们对参数的估计进行更准确的评估,同时也可以给出参数估计的不确定性范围。
总的来说,正态总体参数的区间估计是统计学中一种常用的方法,通过构建置信区间来估计总体参数的真实值。
在实际应用中,我们可以根据样本数据来进行参数的估计,同时也可以评估参数估计的置信水平。
通过区间估计的方法,我们可以更准确地了解总体参数的情况,为决策提供更可靠的依据。
希望本文能帮助读者更好地理解正态总体参数的区间估计方法,并在实际问题中应用到实践中。
正态分布总体的区间估计与假设检验汇总表

(单侧检验)
2
(n
1)S 2
2 0
~2n1
2
2 /2
n
1
或
2
2 1- / 2
n 1
2 2 n 1
2
≥
2 0
2
<
2 0
(单侧检验)
2
2 1-
n
1
2. 两个正态总体均值及方差的假设检验表(显著性水平 α)
条件 原假设 H0 备择假设 H1
检验统计量
拒绝域
12
,
2 2
已知
1 =2 1 2 1 2
1 2
1 2
(单侧检验)
SW
(n1 1)S12 (n2 1)S22 n1 n2 2
T < - t (n1 n2 2)
1,2
未知
2 1
=
2 2
2 1
≤
2 2
2 1
≠
2 2
(双侧检验)
2 1
>
2 2
(单侧检验)
F
S12 S22
~
F ( n1 - 1, n2 - 1)
F ≥ F /2 n1 1, n2 1
已知
0 / n
X
0 n
u
/2,
X
0 n
u
/2
2 未知 T X 0 ~ t(n 1) S/ n
X
S n 1
t / 2
n
1 ,
X
S n
1
t
/
2
n
1
方差 2
未知
2
(n 1)S 2
2 0
~2n1
(n 2 /
1)S 2
正态总体参数的区间估计

总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: Q S 2 是 2 的无偏估计,且统计量:
(n 1)S 2
2
~ 2(n 1)
是不依赖于任何未知参数的。
概率统计
故对于给定的置信水平,
按照 2分布的上 分
位点的定义有:
P
{|
(n
1)
2
s2
|
2
2(n
1)}
1
从中解得:
P{
求: 的 95% 的置信区间.
X
解: 由已知: Q 1 95% 5%,
n
~ N (0,1)
查正态分布表得: z z0.05 z0.025
((z0.025 ) 1 0.025 0.975)
2
2
u(1 0.025) 1.96
得:
0.029
n
z
2
1.96 0.014 16
概率统计
例4. 求 例3 中的 (1), (2)两种情况下, 2 的置信度为
0.9 的置信区间.
(1) 用金球测定观察值为: 6. 683, 6. 681, 6. 676,
取统计量:
解: 在(1)中
6. 678, 6. 679, 6. 672
(n 1) s2 (6从而 的 95%的置信区间为:
(2.705 0.014, 2.705 0.014) (2.691, 2.719)
即用 X 2.705 来估计 值的可靠程度达到 95%
的区间范围是 (2.691, 2.719)
(2). 方差 2 未知的情形
Q 2 未知,但考虑到样本方差是 2的无偏估计,
2
1
2(n
1)
(n 1)S 2
2
2
2(n
1)}
1
于是所求 2的置信度为 1 置信区间为:
概率统计
于是所求 2的置信度为 1 置信区间为:
(n 1) s2 (n 1) s2
(
2(n 1) ,
2
2 1
2
(n
1)
)
标准差 的一个置信度为 1 的置信区间:
n1s
n1s
(
,
)
2 (n 1)
第五节 正态总体参数的区间估计
一. 正态总体均值的区间估计
1. 单个正态总体 N (, 2 ) 情形
问题: 设 X1,… Xn 是取自 N (, 2 ) 的样本,X , S 2
是样本的均值与方差,给定置信度 1
求:参数 的置信度为1 的置信区间.
(1). 当方差 2 已知的情形
寻找未知参 数的一个良
得:
s n
t (n 2
2
1)
0.03 4
3.1824
0.0477%
从而 的 95%的置信区间为:
( 8.2923%, 8.3877%)
概率统计
二. 正态总体方差的区间估计
1. 单个正态总体 N ( , 2 )的情形
问题: 设总体 X ~ N ( , 2 ) , , 2 未知。
X1 , X 2 ,L X n 是总体 X 的一个样本, 2 是样
概率统计
例2. 确定某种溶液的化学浓度,现任取4个样品,测 得样本均值为 X 8.34%, 样本标准方差为:
s 0.03% 现溶液的化学浓度近似
取统计量:
服从正态分布
X
求: 的置信度为 95% 的置信区间
s n
解: 由已知:Q 1 95% 5% ~ t (n 1)
查 t 分布表得:t (n 1) t0.025 (3) 3.1824
2
2 1 0.1
(5
1)
2 0.95
(4)
0.711
2
2 的置信度为0.9的置信区间为:
0.000036 0.000036
(
,
) (0.0000038, 0.0000506)
9.488
0.711 (3.8106 , 5.06105 )
概率统计
第 203 页 10 , 12
概率统计
X
n
|
z
2
}
1
从中解得:
概率统计
P{X
n
z
2
X
n
z
2
}
1
于是所求 的置信度为1 置信区间为 :
( X n z 2 , X n z 2 )
也可简记为:
(X
n
z 2 )
概率统计
例1. 某实验室测量铝的比重 16 次,得平均值
X 2.705 ,设总体 X ~ N (, 0.0292 )
(高斯已证明测量误差是服从正态分布) 取统计量:
用 s 2 去代替 2 得统计量:
X s
~
t(n 1)
n
它是不依赖于任何 未知参数的.
概率统计
即:
P
{|
X S
n
|
t
2(n
1)}
1
从中解得:
P{X
S n
t
2(n 1)
X
S n
t
2(n
1) }
1
于是所求 的置信度为1 置信区间为 :
S
S
[ X n t 2(n 1), X n t 2(n 1) ]
概率统计
在(2)中
(2) 用铂球测定观察值为:
(n 1) s2
6.661, 6.661, 6.667,
6.667, 6.667, 6.664
1
(5 1) (0.00036) 0.00036
51
2 0.1
(5
1)
2 0.05
(4)
9.488
取统计量:
(n 1)S2 2
~ 2 (n 1)
1
2
(
n
1)
2
2
概率统计
例3. 分别用金球和铂球测定引力常数(单位:1011m3kg1s2 )
设测定值总体为N (, 2 ), , 2 均为未知.
(1) 用金球测定观察值为: 6.683, 6.681, 6.676, 6.678, 6.679, 6.672
(2) 用铂球测定观察值为: 6.661, 6.661, 6.667, 6.667, 6.667, 6.664
61
(n 1)S2 2
~ 2 (n 1)
2 0.1
(6
1)
2 0.05
(5)
11.071
2
2
1
0.1
(6
1)
2 0.95
(5)
1.145
2
2 的置信度为0.9的置信区间为:
0.0003 0.0003
(
,
) (0.0000271, 0.000262)
11.071 1.145
(2.71105 , 2.62104 )
选 的点估计(无偏估计)为 X
好估计
随机变量 U X ~ N ( 0, 1 ),而且
n
概率统计
U 不依赖于任何未知参数。
现对于给定的置信水平 1 (大概率), 根据 U
的分布,确定一个区间,使得U 取值于该区间的
概率为1
故对于给定的置信水平,
按照标准正态分布的
分位点的定义有:
P
{|