正态总体参数的假设检验
数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。
假定原假设为真,考虑这个条件下统计量的分布。
根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。
设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。
⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。
以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。
对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。
正态总体的假设检验

n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?
单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0
n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。
解
①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0
N ( , ) ,
n
Z
n
X 0
n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即
第二节 正态总体均值的假设检验

σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ
两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。
正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)
.
又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
正态总体的均值和方差的假设检验

12
n1
2 2
n2
~ N (0,1)
给定α 0.05,
(当H 0成立时)
由 Φ(u0.025 ) 0.975, 查表可得 uα / 2 u0.025 1.96
(3)拒绝域: W1={(x1, x2, ∙∙∙, xn, y1, y2, ∙∙∙, yn)||u| u /2=1.96},
3. μ为未知,关于σ 2的检验(χ 2检验法)
设X 1 , X 2 , , X n是来自正态总体 N ( μ, σ 2 )的一样本,
其中μ, σ 2未知,检验水平为 α,检验σ 2步骤为:
1 假设H0 : 2 0 2 , H1: 2 0 2 ;
X1 , X 2 ,, X n为来自总体X的样本,
2 2 2 2 X ~ N ( μ1 , σ1 ),Y ~ N ( μ2 , σ 2 ), σ1 60, σ 2 80,问
两台机床生产的产品重量有无显著差异( =0.05)? 解 本题归结为检验假设
(1) H0 : 1 2 , H1: 1 2 ,
(2)取检验的统计量为 U ( X Y ) /
解 (1)
本题归结为检验假设
H 0 : μ 800,
H1 : μ 800;
40,n 9 X 800 (2)选择统计量 U 9 40
当H0成立时,U~N(0,1).
(3)给定显著性水平 = 0.05,由正态分布函数表 查得u /2=u0.025 =1.96,从而得检验的拒绝域为 W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 }; (4) 由样本值计算U的观测值为
x 0 s / n
7-2正态总体参数的检验

一、单个正态总体均值的检验 二、两个正态总体均值差的检验 三、正态总体方差的检验
同上节) 标准要求长度是32.5毫米 毫米. 例2(同上节 某工厂生产的一种螺钉 标准要求长度是 同上节 某工厂生产的一种螺钉,标准要求长度是 毫米
实际生产的产品,其长度 假定服从正态分布N( σ 未知, 实际生产的产品,其长度X 假定服从正态分布 µ,σ2 ) ,σ2 未知, 现从该厂生产的一批产品中抽取6件 得尺寸数据如下: 现从该厂生产的一批产品中抽取 件, 得尺寸数据如下
(1)与(4); (2)与(5)的拒绝域形式相同 与 的拒绝域形式相同. 与 的拒绝域形式相同
一、单个正态总体均值的检验
是来自N( σ 的样本 的样本, 设x1,…,xn是来自 µ,σ2)的样本 关于µ的三种检验问题是 (µ0是个已知数 是个已知数)
(1) H0 : µ ≤ µ0 vs H1 : µ > µ0 (2) H0 : µ ≥ µ0 vs H1 : µ < µ0 (3) H0 : µ = µ0 vs H1 : µ ≠ µ0
对于检验问题 对于检验问题
(2) H0 : µ ≥ µ0 vs H1 : µ < µ0
x − µ0
仍选用u统计量 u = 选用 统计量 相应的拒绝域的形式为: 相应的拒绝域的形式为
取显著性水平为α 取显著性水平为α,使c满足 P 0 (u ≤ c) = α 满足 µ
由于μ = μ 0时,u ~ N(0,1),故 c = uα,如图 故 , 因此拒绝域为: 因此拒绝域为 或等价地: 或等价地 φ(x)
检 H0 : µ = µ0 vs H1 : µ ≠ µ0 验
x − µ0 s/ n
接受域为: 接受域为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
578, 572, 570, 568, 572, 570, 570, 572, 596, 584 试判断新生产的铜丝的折断力有无提高(取α=0.05)?
解
H0 : 0 570 H1 : 0
用U检验法,这时拒绝条件为U u , 计算知 X 575.2,
U X 0 575.2 570 2.05 u u0.05 1.645
N (0,1) U u
| T | t / 2 T t T t
2法
2
2 0
2
2
2 0
2
2 0
2 0
2
(n 1)S 2
2 0
2
2 0
2
2 0
0
2
2 1
/
2
或
提出检验假设 H0 : p p 0 0.17 H1 : p 0
用大样本U 检验法,这时拒绝条件为|U| u / 2 将 n 400, x 56 / 400 0.14, p(1 p) 0.17(1 0.17) 0.376代入,得
| u |
U法
( 2已知)
0
0 0
0
T法
( 2未知)
0
0
假设H1
0 0 0
0 0 0
检验统计量
U X 0 / n
T X 0
S/ n
抽样分布 拒绝条件 A (P( A) )
9.2 正态总体参数的假设检验
一、一个正态总体参数的假设检验 二、非正态总体均值的假设检验 三、两个正态总体参数的假设检验 四、两个非正态总体均值的假设检验
概率统计(ZYH)
一、一个正态总体参数的假设检验
设 X1 , X2 ,L , Xn 是来自总体 X ~ N (, 2 )的样本, X , S 2分别 是样本均值和样本方差. 则在上节,我们构造了 U检验法( 已知)
|x
/
p0 | n
| 0.14 0.17 | 0.376 / 400
1.596
u / 2
u0.025
1.96
故接受H0, 即认为这项新工艺未显著地影响产品的质量.
概率统计(ZYH)
三、两个正态总体参数的假设检验
设样本 X1 , X2 ,L
, X n1 和Y1 ,Y2 ,L
, Yn2
是来自总体 X
~
N
(
1
,
2 1
)
故接受H0, 即认为该日生产的灯泡的平均寿命没有降低.
概率统计(ZYH)
例3 已知某种导线 ,要求其电阻的标准差不得超过 0.005欧. 今在生产的一批导线中取样品9根,测得s=0.007欧. 设这批导线的电阻服从正态分布,问在显著性水平α=0.05下 能认为这批导线的电阻标准差显著地偏大吗?
解
H0
/ n 8 / 10
故拒绝H0, 即认为新生产的铜丝折断力有显著提高.
概率统计(ZYH)
例2 已知某工厂在正常情况下生产的灯泡的寿命X服 从正态分布,且均值为1600小时,如果某日发生异常情况,可 能影响产品质量,故测了十个灯泡,其寿命(单位:小时)如下:
1490, 1440, 1680, 1610, 1500, 1750, 1550, 1420, 1800, 1580 问该日生产的灯泡的平均寿命是否有所降低(取α=0.05)?
解
H0 : 0 1600 H1 : 0
用T检验法,这时拒绝条件为T t , 计算知 n 10, x 1582, s 128.6
t
x 0
s/ n
1582 1600 0.443 128.6 / 10
t
t0.05
1.833
概率统计(ZYH)
二、非正态总体均值的假设检验
如果 X1 , X2 ,L , Xn 是来自总
体 X的样本, EX , DX 2 , 但
总体不服从正态分布,则由中心极 限定理知
U
X
近似
~ N (0,1)
(当n较大时)
/ n
故对大样本(n较大), 仍可用U检验法,这时拒绝条件仍如上表所示.
: 2
2 0
0.0052
用 2 检验法,这时拒绝条件为 2 2
将 n 9, s 0.007代入,得
H1
: 2
2 0
2 (n 1)s2 (9 1) 0.0072 15.68
2 0
0.0052
2
2 0.05
(9
1)
15.5
故拒绝H0, 即认为这批导线的电阻标准差显著地偏大.
可
列
提出检验假设 H0 : 0 H1 : 0
在假设条件下, 有检验统计量 U X 0 ~
N (0,1)
入
/ n
检
验 故有支持H1的小概率事件A:P(A) P | UU|uu/ 2
表
于是得检验H
的拒绝条件(或拒绝域):
0
| UU|uu /2
时:X
0
/
n
U, X /
n
~
N (0,1), 从而
P U
u
P
X
/ n
u
因此 A U u 是更小概率的事件,故拒绝条件仍为:U u
概率统计(ZYH)
一个正态总体参数的假设检验表(置信度水平为 )
检验法 假设H0
如果
2未知,
则可用样本方差S
2或样本二阶中心距M
代替.
2
概率统计(ZYH)
例4 某产品的次品率为0.17.现对此产品进行新工艺 试验,从中抽取400件检验,发现有次品56件.能否认为这项
新工艺显著地影响产品的质量( 0.05)
解 设一次试验的次品数为X,则
X ~ B(1, p), EX p, DX p(1 p)
2
2 /2
2 (n 1)
2 2
0
2
2 1
概率统计(ZYH)
例1 某车间生产铜丝, 据经验知该车间生产的铜丝折 断力X~N(570,82).今换了一批质量较好的原材料,从性能上 看,估计折断力的方差不变,但不知折断力是否有所增强.故 从新生产的铜丝中抽取了十个样品,测得折断力(单位:N)为