一个总体参数假设检验

合集下载

总体参数P的假设检验

总体参数P的假设检验
第三节 (0-1) 总体参数 p 的大样本检验
在实际问题中,经常会遇到要对(0-1)总 体中参数 p 进行检验的问题。这时,一般是抽取 大容量(n>30)的样本,利用中心极限定理,对 参数 p 进行假设检验.
下面先用此方法对双边检验进行假设检验, 然后推广到单边检 p0
近似
~ N(0, 1)
p(1 p)
n
例1. 某药厂在广告上声称该药品对某种疾病的治愈率
为80%,一家医院对这种药品临床使用120例,治愈 85人,问该药品的广告是否真实(α=0.02)?
解: 由于n=120为大样本,设随机变量X为
1 抽查一位服用病该人药发品现的疾病 X0 抽查一位服用病该人药发品现的疾病未
则X~(0-1)分布.
若有诀窍,则 猜中的概率 p 应大于1/2.
x 600.61
100
2
原假设
H0
:
p
1, 2
备择假设
1 H1 : p 2
检验统计量为U Xp0
p0(1 p0)/n
拒绝域: W{Uzα}
α=0.05,
zα z0.051.645
W{Uzα}{U1.64}5
u xp0
0.6 0.5 2 1.645
则X~(0-1)分布.
原假设 H0 :p80%,备择假设 H1:p8% 0
检验统计量为U Xp0
p0(1 p0)/n
拒绝域:W{Uzα/2}
α=0.02, zα/2z0.012.33
W{Uzα/2} {U2.33}
x 85 0.7083 120
| u| | x p0 | | 0.70830.8| 2.51132.33
p0(1 p0)/ n
0.5 0.5

单正态总体的参数假设检验

单正态总体的参数假设检验

单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。

在本文中,我们将讨论单正态总体的参数假设检验方法。

单正态总体是指样本来自一个服从正态分布的总体。

二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。

原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。

2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。

在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。

3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。

5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。

6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。

三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。

1. Z检验:当总体的标准差已知时,可以使用Z检验。

Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。

根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。

2. t检验:当总体的标准差未知时,使用t检验。

t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。

根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。

四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。

假设我们关注的是该电商平台订单的平均发货时间。

我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。

总体参数的假设检验

总体参数的假设检验

社会学研究数据分析
要点一
总结词
社会学研究中的假设检验主要用于探究社会现象、行为和 社会关系等。
要点二
详细描述
在社会学研究中,假设检验被广泛应用于社会调查、实验 研究和准实验研究中。研究者通过收集和分析数据,检验 关于社会现象、行为和社会关系的假设。例如,可以检验 教育程度与收入水平的关系、政策实施对居民生活的影响 等假设。这有助于深入了解社会现象,为政策制定和社会 发展提供科学依据。
P值是假设检验中的重要指标,表示观察到的数据或更极端情况出现的 概率。P值越小,表明观察到的数据越不可能发生,从而支持拒绝原假 设。
P值的解读
在解读P值时,应注意其与临界值的关系。通常,当P值小于显著性水 平(如0.05)时,我们拒绝原假设。
03
决策与P值
虽然P值提供了一定的决策依据,但不应过分依赖P值进行决策。在某
两个总体参数的假设检验
两个总体参数的假设检验的定义
对两个总体的参数提出假设,并利用样本数据对该假设进 行检验,以判断两个参数之间是否存在显著差异。
提出假设
根据研究目的或问题,提出关于两个总体参数的假设。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
计算检验统计量的值
根据样本数据计算检验统计量的值。
做出决策
将计算出的检验统计量的值与临界值进行比较,做出接受 或拒绝假设的决策。
非参数假设检验
03
符号检验
总结词

假设检验关于总体参数的假设提出与验证

假设检验关于总体参数的假设提出与验证

假设检验关于总体参数的假设提出与验证假设检验是统计学中一种常用的方法,用于对总体参数的假设提出与验证。

在实际应用中,我们常常需要对某个总体进行推断,通过假设检验可以帮助我们判断某种观测结果是否支持或者反驳对总体参数的某种假设。

1. 假设的提出在进行假设检验之前,我们首先需要明确假设的提出。

根据研究的问题和目标,我们可以提出两类假设:原假设(H0)和备择假设(H1)。

原假设是指对总体参数的某种特定值或关系的假设,通常我们将其视为默认假设;备择假设则是与原假设相对立的假设。

2. 假设的验证假设的验证是通过收集样本数据进行统计分析来进行的。

首先,我们需要明确一个检验统计量,它是根据样本数据与原假设的偏离程度计算出来的一个统计量。

常用的检验统计量包括Z统计量和t统计量等。

我们可以根据假设的情况选择适当的检验统计量。

接下来,我们需要确定显著性水平(α),它表示在原假设成立的情况下,观测到的结果与原假设相差较大的概率。

通常情况下,我们选择显著性水平为0.05或0.01,表示在5%或1%的水平上进行显著性检验。

然后,我们计算出检验统计量的观测值,并根据观测值和显著性水平对其进行比较。

这一比较可以通过查找相应的分布表或使用统计软件进行计算得出。

最后,我们根据比较的结果得出结论。

如果观测值小于临界值,则我们无法拒绝原假设,即数据支持原假设;如果观测值大于临界值,则我们可以拒绝原假设,即数据不支持原假设,而支持备择假设。

3. 假设检验的错误在进行假设检验时,我们需要注意两种错误的可能性:第一类错误(α错误)和第二类错误(β错误)。

第一类错误是指在原假设为真的情况下,我们错误地拒绝了原假设;第二类错误是指在备择假设为真的情况下,我们错误地接受了原假设。

减小第一类错误的概率会增加第二类错误的概率,反之亦然。

在设计假设检验时,我们需要根据实际情况和问题的重要性来平衡两类错误的概率。

4. 常见的假设检验假设检验方法有很多,以下是一些常见的假设检验方法:- 单样本均值检验:用于检验一个总体均值是否等于某个特定值。

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。

假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。

⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。

如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。

2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。

根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。

三、U检验(Z检验)U检验⼜称Z检验。

Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。

它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。

Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。

其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。

2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。

其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。

如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。

统计学中的假设检验

统计学中的假设检验

统计学中的假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

在统计学中,假设检验是一种常用的方法,用于验证对于某一总体的某一假设是否成立。

假设检验在科学研究、商业决策以及社会调查等领域都有广泛的应用。

本文将介绍假设检验的基本概念、步骤和常见的统计方法。

一、假设检验的基本概念假设检验是基于样本数据对总体参数进行推断的一种方法。

在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据来判断是否拒绝原假设。

原假设通常是我们希望证伪的假设,而备择假设则是我们希望支持的假设。

二、假设检验的步骤假设检验一般包括以下步骤:1. 提出假设:根据研究问题和背景,提出原假设和备择假设。

2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

3. 收集样本数据:根据研究设计和样本容量要求,收集样本数据。

4. 计算统计量:根据样本数据计算出相应的统计量,如均值、标准差、相关系数等。

5. 判断拒绝域:根据显著性水平和统计量的分布,确定拒绝域。

拒绝域是指当统计量的取值落在该区域内时,我们拒绝原假设。

6. 做出决策:根据样本数据计算出的统计量与拒绝域的关系,判断是否拒绝原假设。

7. 得出结论:根据决策结果,得出对原假设的结论。

三、常见的统计方法在假设检验中,常见的统计方法包括:1. 单样本t检验:用于检验一个样本的均值是否等于某个给定值。

2. 双样本t检验:用于检验两个样本的均值是否相等。

3. 方差分析:用于检验两个或多个样本的均值是否有显著差异。

4. 相关分析:用于检验两个变量之间是否存在线性相关关系。

5. 卡方检验:用于检验观察频数与期望频数之间的差异是否显著。

四、假设检验的局限性假设检验作为一种统计方法,也存在一定的局限性。

首先,假设检验只能提供关于原假设的拒绝与否的结论,并不能确定备择假设的真实性。

正态总体参数的假设检验

正态总体参数的假设检验

578, 572, 570, 568, 572, 570, 570, 572, 596, 584 试判断新生产的铜丝的折断力有无提高(取α=0.05)?

H0 : 0 570 H1 : 0
用U检验法,这时拒绝条件为U u , 计算知 X 575.2,
U X 0 575.2 570 2.05 u u0.05 1.645
N (0,1) U u
| T | t / 2 T t T t
2法
2


2 0

2

2


2 0
2


2 0


2 0
2
(n 1)S 2


2 0
2


2 0
2


2 0
0
2

2 1
/
2

提出检验假设 H0 : p p 0 0.17 H1 : p 0
用大样本U 检验法,这时拒绝条件为|U| u / 2 将 n 400, x 56 / 400 0.14, p(1 p) 0.17(1 0.17) 0.376代入,得
| u |
U法
( 2已知)
0
0 0
0
T法
( 2未知)
0
0
假设H1
0 0 0
0 0 0
检验统计量
U X 0 / n
T X 0
S/ n
抽样分布 拒绝条件 A (P( A) )
9.2 正态总体参数的假设检验
一、一个正态总体参数的假设检验 二、非正态总体均值的假设检验 三、两个正态总体参数的假设检验 四、两个非正态总体均值的假设检验

假设检验的一般步骤

假设检验的一般步骤

假设检验的一般步骤假设检验是统计学中一种重要的方法,用于检验研究者提出的关于总体参数的假设是否成立。

它的一般步骤如下:第一步:确定问题并建立假设在开始假设检验之前,需要确定所要研究的问题并建立相应的假设。

一般来说,假设分为原假设和备择假设两种。

原假设通常是指总体参数没有变化或存在某种规律性,备择假设则是指总体参数发生了变化或不存在任何规律性。

第二步:选择检验统计量在确定假设之后,需要选择检验统计量。

检验统计量是用来度量样本数据与假设的差异程度的统计量,通常是样本均值、样本比率、样本方差等。

第三步:设定显著性水平显著性水平是指在进行假设检验时所允许的犯错误的概率。

通常情况下,显著性水平设定为0.05或0.01。

第四步:计算检验统计量的值在进行假设检验时,需要计算出检验统计量的值。

具体计算方法根据所选择的检验统计量的不同而有所差异。

第五步:确定拒绝域拒绝域是指当检验统计量的值落在该区域内时,拒绝原假设。

拒绝域的确定需要根据所选的显著性水平和自由度来进行计算。

第六步:进行统计决策在计算出检验统计量的值并确定了拒绝域之后,需要进行统计决策,判断是拒绝原假设还是接受原假设。

具体决策方法根据所选的显著性水平和自由度而有所不同。

第七步:得出结论在进行统计决策之后,需要根据结果得出结论。

如果拒绝原假设,则表明样本数据与原假设存在显著差异,否则则表明样本数据与原假设不存在显著差异。

假设检验是一种重要的统计方法,它能够帮助研究者确定总体参数的真实情况,提高研究的可靠性和准确性。

熟练掌握假设检验的一般步骤和方法,对于科学研究和实践应用都具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以拒绝H0 ,接受HA 。
即栽培条件的改善显著地提高了 豌豆籽粒重量。
【例题分析】 某批发商欲从生产厂家购进一批灯泡,根据合同
规定,灯泡的使用寿命平均不能低于1000小时。 已知灯泡使用寿命服从正态分布,标准差为20小时。 随机抽取100只灯泡,测得样本均值为 960 小时。 批发商是否应该购买这批灯泡? (=0.05)
(2) 显著性水平: α =0.05
(3) 检验统计量:
z X 0 n
37.92 37.72 0.33 / 9
1.82
(4) 建立H0的拒绝域:
因为 HA: μ >μ 0,
故为单侧上尾检验,
因为z>u 0.05 , 拒绝 H0,
u 0.05=1.645
(5)结论:因为z=1.82>1.645=u 0.05,
均值的双侧 Z 检验
【例题分析】 某机床厂加工一种零件,根据经验知道,该厂加工 零件的椭圆度近似服从正态分布,其总体均值为
0=0.081mm,总体标准差为 = 。 今换一种新机床进行加工,抽取n=200个零件进行 检验,得到的平均椭圆度为0.076mm。
试问新机床加工零件的椭圆度的均值与以前有无
2. 原假设为H0: =0
备择假设为HA: 0 ; >0 ; <0
3. 使用z-统计量
z x 0 ~ N ( 0 ,1) n
(1)σ 已知时(或σ 未知,但为大样本时) 平均数的显著性检验--z检验
均值的单侧 Z 检验
【例题分析】已知豌豆籽粒重量(g/100粒)
(4).检验统计量
样本方差
2

(n 1)s2
02
~
2(n 1)
假设的总体方差
பைடு நூலகம்、方差的卡方 (2) 检验
(5)将计算出来的2 (df=n-1)值与α (df=n-1) 对应的 X2分位数相比较,确定是否接受原假设。 双尾检验:
若: 2 (1-α /2) < 2 < 2 α /2 ,接受零假设。
服从正态分布 N(37.72;0.332)。在改善栽培 条件后,随机抽取9粒,其重量平均数为 37.92,若标准差仍为 0.33,问改善栽培条件 是否显著提高了豌豆籽粒重量 ?
解: (1) 假设 H0: μ =μ 0=37.72 HA: μ >μ 0=37.72
由于改善了栽培条件,只会使籽粒 重量提高,不会使籽粒重量降低。
2 检验是建立在 2 分布的基础上的。
设X是服从正态分布 N (, 2 ) 的随机变量,
并从中获得含量为n的随机样本,计算样本
方差为 s 2 ,则 统计量 (n 1)s 2 服从
n-1自由度的
2
2 分布。
2、方差的卡方 (2) 检验
(1).检验一个总体的方差或标准差; (2).假设总体近似服从正态分布; (3 ).原假设为 H0: 22 = 0022
(4) 建立H0的拒绝域: 因HA:μ ≠μ 0,所以是 双侧检验,当|t| > t(0.05双侧) 时拒绝 H0, 查附表3:t8(0.05双侧) =2.306
(5)结论:因t>t8(0.05双侧),所以拒绝 H0而接受HA,说明喷药前后果穗重的差异是
显著的。
2 方差的卡方 (2) 检验
对单个标准差做检验时使用 2 检验,
H0: 1000 HA: < 1000 = 0.05 n = 100 临界值(s):
拒绝域
-1.6450
检验统计量:
z x 0 960 1000 2 n 20 100
决策: 在 = 0.05的水平上拒绝H0
结论: 有证据表明这批灯泡的 Z 使用寿命低于1000小时
显著差异?(=0.05)
H0: = 0.081 HA: 0.081 = 0.05 n = 200 临界值(s):
拒绝 H0
.025
检验统计量:
z x 0 0.0760.081 2.83 n 0.025 200
拒绝 H0
.025
决策: 结论:
拒绝H0
有证据表明新机床加工的 -1.96 0 1.96 Z 零件的椭圆度与以前有显著
t x 0 ~ t (n 1)
sn
【 例题分析】 已知玉米某品种的平均穗重μ 0=300g,喷药后 随机抽取9个果穗,穗重为: 308 305 311 298 315 300 321 294 320g。 问:喷药后与喷药前的果穗重差异是否显著?
解:(1)H0 :μ =μ 0=300 HA :μ ≠μ 0
二、一个总体参数的差异显著性检验
一个总体
均值
比例
方差
Z 检验
t 检验
Z 检验
((单单侧侧和和双双侧侧)) ((单单侧侧和和双双侧侧)) ((单单侧侧和和双双侧侧))
检验
((单单侧侧和和双双侧侧))
所针对的问题?
回答样本是否来自同一总体。故又称为 “单样本检验 ”
解决的方法? 根据问题的不同,确定不同的检验方法: 用到的统计量主要有三个: Z 统计量、 t 统计量: 用于均值和比例的检验。
因为问题要求检验的是“穗重差异 是否显著“,并没有明确穗重一定 增加或一定减少.
(2)显著性水平:α =0.05
(3) 统计量: t X 0
sn
x

1 9
9 i 1
xi
308
9
9
xi2 ( xi )2 / n
s i1
i 1
n 1
9.62
t 308 300 2.49 9.62 / 9
差异。
(2).σ 未知时的平均数的显著性检验 —t 检验
生物学中所遇到的大部分问题,总体标准差 都是未知的,此时的检验统计量 x 服从自由度 为( n - 1)的 t 分布。即需用t检验做平均数 的显著性检验,t 检验的程序与z 检验一样, 只要用t分布的分位数 t 代替标准正态分布的 分位数 u 就可以了。
2 统计量: 用于方差检验。
1 、检验均值
(1)σ 已知时的平均数的显著性检验 ——z 检验
(2) σ 未知时的平均数的显著性检验 ——t 检验
(1)σ 已知时(或σ 未知,但为大样本时) 平均数的显著性检验--z检验
1. 假定条件 – 总体服从正态分布 – 若不服从正态分布, 可用正态分布来近似 (n30)
相关文档
最新文档