总体参数的假设检验
总体参数P的假设检验

在实际问题中,经常会遇到要对(0-1)总 体中参数 p 进行检验的问题。这时,一般是抽取 大容量(n>30)的样本,利用中心极限定理,对 参数 p 进行假设检验.
下面先用此方法对双边检验进行假设检验, 然后推广到单边检 p0
近似
~ N(0, 1)
p(1 p)
n
例1. 某药厂在广告上声称该药品对某种疾病的治愈率
为80%,一家医院对这种药品临床使用120例,治愈 85人,问该药品的广告是否真实(α=0.02)?
解: 由于n=120为大样本,设随机变量X为
1 抽查一位服用病该人药发品现的疾病 X0 抽查一位服用病该人药发品现的疾病未
则X~(0-1)分布.
若有诀窍,则 猜中的概率 p 应大于1/2.
x 600.61
100
2
原假设
H0
:
p
1, 2
备择假设
1 H1 : p 2
检验统计量为U Xp0
p0(1 p0)/n
拒绝域: W{Uzα}
α=0.05,
zα z0.051.645
W{Uzα}{U1.64}5
u xp0
0.6 0.5 2 1.645
则X~(0-1)分布.
原假设 H0 :p80%,备择假设 H1:p8% 0
检验统计量为U Xp0
p0(1 p0)/n
拒绝域:W{Uzα/2}
α=0.02, zα/2z0.012.33
W{Uzα/2} {U2.33}
x 85 0.7083 120
| u| | x p0 | | 0.70830.8| 2.51132.33
p0(1 p0)/ n
0.5 0.5
单正态总体的参数假设检验

单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。
在本文中,我们将讨论单正态总体的参数假设检验方法。
单正态总体是指样本来自一个服从正态分布的总体。
二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。
原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。
2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。
在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。
3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。
通常情况下,显著性水平取0.05或0.01。
4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。
5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。
6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。
三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。
1. Z检验:当总体的标准差已知时,可以使用Z检验。
Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。
根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。
2. t检验:当总体的标准差未知时,使用t检验。
t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。
根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。
四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。
假设我们关注的是该电商平台订单的平均发货时间。
我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。
总体参数的假设检验

社会学研究数据分析
要点一
总结词
社会学研究中的假设检验主要用于探究社会现象、行为和 社会关系等。
要点二
详细描述
在社会学研究中,假设检验被广泛应用于社会调查、实验 研究和准实验研究中。研究者通过收集和分析数据,检验 关于社会现象、行为和社会关系的假设。例如,可以检验 教育程度与收入水平的关系、政策实施对居民生活的影响 等假设。这有助于深入了解社会现象,为政策制定和社会 发展提供科学依据。
P值是假设检验中的重要指标,表示观察到的数据或更极端情况出现的 概率。P值越小,表明观察到的数据越不可能发生,从而支持拒绝原假 设。
P值的解读
在解读P值时,应注意其与临界值的关系。通常,当P值小于显著性水 平(如0.05)时,我们拒绝原假设。
03
决策与P值
虽然P值提供了一定的决策依据,但不应过分依赖P值进行决策。在某
两个总体参数的假设检验
两个总体参数的假设检验的定义
对两个总体的参数提出假设,并利用样本数据对该假设进 行检验,以判断两个参数之间是否存在显著差异。
提出假设
根据研究目的或问题,提出关于两个总体参数的假设。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
计算检验统计量的值
根据样本数据计算检验统计量的值。
做出决策
将计算出的检验统计量的值与临界值进行比较,做出接受 或拒绝假设的决策。
非参数假设检验
03
符号检验
总结词
假设检验关于总体参数的假设提出与验证

假设检验关于总体参数的假设提出与验证假设检验是统计学中一种常用的方法,用于对总体参数的假设提出与验证。
在实际应用中,我们常常需要对某个总体进行推断,通过假设检验可以帮助我们判断某种观测结果是否支持或者反驳对总体参数的某种假设。
1. 假设的提出在进行假设检验之前,我们首先需要明确假设的提出。
根据研究的问题和目标,我们可以提出两类假设:原假设(H0)和备择假设(H1)。
原假设是指对总体参数的某种特定值或关系的假设,通常我们将其视为默认假设;备择假设则是与原假设相对立的假设。
2. 假设的验证假设的验证是通过收集样本数据进行统计分析来进行的。
首先,我们需要明确一个检验统计量,它是根据样本数据与原假设的偏离程度计算出来的一个统计量。
常用的检验统计量包括Z统计量和t统计量等。
我们可以根据假设的情况选择适当的检验统计量。
接下来,我们需要确定显著性水平(α),它表示在原假设成立的情况下,观测到的结果与原假设相差较大的概率。
通常情况下,我们选择显著性水平为0.05或0.01,表示在5%或1%的水平上进行显著性检验。
然后,我们计算出检验统计量的观测值,并根据观测值和显著性水平对其进行比较。
这一比较可以通过查找相应的分布表或使用统计软件进行计算得出。
最后,我们根据比较的结果得出结论。
如果观测值小于临界值,则我们无法拒绝原假设,即数据支持原假设;如果观测值大于临界值,则我们可以拒绝原假设,即数据不支持原假设,而支持备择假设。
3. 假设检验的错误在进行假设检验时,我们需要注意两种错误的可能性:第一类错误(α错误)和第二类错误(β错误)。
第一类错误是指在原假设为真的情况下,我们错误地拒绝了原假设;第二类错误是指在备择假设为真的情况下,我们错误地接受了原假设。
减小第一类错误的概率会增加第二类错误的概率,反之亦然。
在设计假设检验时,我们需要根据实际情况和问题的重要性来平衡两类错误的概率。
4. 常见的假设检验假设检验方法有很多,以下是一些常见的假设检验方法:- 单样本均值检验:用于检验一个总体均值是否等于某个特定值。
两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。
本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。
二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。
在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。
通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。
零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。
例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。
三、样本收集在提出假设后,需要收集样本数据以进行检验。
样本收集应遵循随机抽样的原则,以确保样本的代表性。
在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。
四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。
样本统计量是根据样本数据计算出的量,用于推断总体参数。
临界值是用于判断样本统计量是否达到显著差异的标准。
在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。
五、推断结论根据样本检验的结果,可以做出推断结论。
如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。
推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。
六、结果解释推断结论做出后,需要对结果进行解释。
解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。
结果解释要求清晰明了地传达结果的含义和应用范围。
七、误差分析误差分析是假设检验中不可或缺的一环。
误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。
误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。
两个总体参数的假设检验

Part
03
假设检验的注意事项
样本量
样本量过小
01
如果样本量过小,会导致检验结果不稳定,无法准确
推断总体参数。
样本量过大
两个总体参数的假设 检验
• 假设检验的基本概念 • 两个总体参数的假设检验 • 假设检验的注意事项 • 假设检验的实例分析 • 总结与展望
目录
Part
01
假设检验的基本概念
定义
01
假设检验是一种统计推断方法 ,通过对样本数据的分析,对 总体参数做出假设,并通过检 验假设是否成立来得出结论。
02
在假设检验中,通常会先提出 一个关于总体参数的假设,然 后通过样本数据对该假设进行 验证。
03
假设检验的目的是根据样本数 据对总体参数做出合理的推断 ,并尽可能减少因错误判断而 导致的误差。
目的
判断总体参数是否符合预期
通过假设检验,可以判断总体参数是否符合预 期,从而为进一步的研究或决策提供依据。
两个总体比例的比较
总结词
Fisher's exact test
详细描述
Fisher's exact test用于比较两个总体的分类比例是否存在显著差异,特别是当样本量较小时。它基于 Fisher's exact probability distribution,通过计算概率值来评估实际观测频数与期望频数之间的差异是 否具有统计学显著性。
两个总体方差的比较
01 总结词
Levene's test
正态总体参数的假设检验

578, 572, 570, 568, 572, 570, 570, 572, 596, 584 试判断新生产的铜丝的折断力有无提高(取α=0.05)?
解
H0 : 0 570 H1 : 0
用U检验法,这时拒绝条件为U u , 计算知 X 575.2,
U X 0 575.2 570 2.05 u u0.05 1.645
N (0,1) U u
| T | t / 2 T t T t
2法
2
2 0
2
2
2 0
2
2 0
2 0
2
(n 1)S 2
2 0
2
2 0
2
2 0
0
2
2 1
/
2
或
提出检验假设 H0 : p p 0 0.17 H1 : p 0
用大样本U 检验法,这时拒绝条件为|U| u / 2 将 n 400, x 56 / 400 0.14, p(1 p) 0.17(1 0.17) 0.376代入,得
| u |
U法
( 2已知)
0
0 0
0
T法
( 2未知)
0
0
假设H1
0 0 0
0 0 0
检验统计量
U X 0 / n
T X 0
S/ n
抽样分布 拒绝条件 A (P( A) )
9.2 正态总体参数的假设检验
一、一个正态总体参数的假设检验 二、非正态总体均值的假设检验 三、两个正态总体参数的假设检验 四、两个非正态总体均值的假设检验
统计学中的假设检验方法应用

统计学中的假设检验方法应用假设检验是统计学中一种常用的推断方法,用于检验关于总体参数的假设。
它基于样本数据,通过对比样本观察值与假设的理论值之间的差异,来确定是否拒绝或接受一些假设。
假设检验在实际应用中广泛使用,以下是一些常见的应用:1.平均值检验:平均值检验用于检验总体平均值是否等于一些特定值。
例如,一个医疗研究想要检验其中一种药物的疗效,可以控制一个实验组和一个对照组,然后收集两组患者的项指标数据(如血压)并计算均值,然后利用假设检验来判断两组是否存在显著差异。
2.方差检验:方差检验用于检验不同总体的方差是否相等。
例如,一个制造业公司想要比较两个供应商提供的原材料的质量是否一致,可以从这两个供应商中分别抽取样本,然后对比两组样本的方差,通过假设检验来判断两个供应商的方差是否有显著差异。
3.比例检验:比例检验用于检验两个总体比例是否相等。
例如,一个选举调查机构想要了解两个候选人在选民中的支持率是否相同,可以进行随机抽样并询问选民的偏好,然后利用假设检验来判断两个候选人的支持率是否存在显著差异。
4.相关性检验:相关性检验用于检验两个变量之间的相关关系是否显著。
例如,一个市场研究公司想要了解广告投入与销售额之间的关系,可以收集一定时间内的广告投入和销售额的数据,并进行相关性检验来判断两者之间是否存在显著的线性关系。
5.回归分析:假设检验在回归分析中也有广泛应用。
通过假设检验可以判断回归模型中的参数估计是否显著,进而判断自变量对因变量的影响是否存在统计学意义。
例如,一个经济学研究想要检验GDP(自变量)对于失业率(因变量)的影响,可以建立回归模型并通过假设检验来判断GDP系数是否显著。
在应用中,假设检验的步骤通常包括以下几个部分:明确研究问题、建立原假设和备择假设、选择适当的检验统计量、设定显著水平、计算检验统计量的观察值、根据观察值和临界值的比较结果进行决策、得出结论。
需要注意的是,假设检验的结果并不能确定假设是正确的或错误的,它只是根据样本数据提供了统计学上的证据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字媒体技术系
§6.1 假设检验的过程和逻辑
有了两个假设,就要根据数据来对它 们进行判断。
数据的代表是作为其函数的统计量; 它在检验中被称为检验统计量(test statistic)。
§6.1 假设检验的过程和逻辑
但小概率并不能说明不会发生,仅 仅发生的概率很小罢了。拒绝正确 零假设的错误常被称为第一类错误 (type I error)。
在备选假设正确时反而说零假设正 确的错误,称为第二类错误(type II error)。在本书的假设检验问 题中,由于备选假设不是一个点, 所以无法算出犯第二类错误的概率 数字媒体技术系 。
上,这个关于总体均值的H0相对于H1
的H检验0 :记为 5
H : 5 1
数字媒体技术系
§6.1 假设检验的过程和逻辑
备选假设应该按照实际世界所代表的 方向来确定,即它通常是被认为可能 比零假设更符合数据所代表的现实。
比如上面的H1为m>5;这意味着,至少 样本均值应该大于5;
至于是否显著,依检验结果而定。
数字媒体技术系
反过来,如果要证明这个人骂过人很 容易,只要有一次被抓住就足够了。
看来,企图肯定什么事物很难,而否 定却要相对容易得多。这就是假设检 验背后的哲学。
科学总往往是在否定中发展
数字媒体技术系
在假设检验中,一般要设立一个原假 设(上面的“从来没骂过人”就是一 个例子);
而设立该假设的动机主要是企图利用 人们掌握的反映现实世界的数据来找 出假设与现实之间的矛盾,从而否定 这个假设。
根据零假设(不是备选假设!),可
得到该检验统计量的分布;再看这个 统计量的数据实现值(realization) 属不属于小概率事件。
数字媒体技术系
§6.1 假设检验的过程和逻辑
也就是说把数据代入检验统计量, 看其值是否落入零假设下的小概 率范畴;
如果的确是小概率事件,那么就 有可能拒绝零假设,或者说“该 检验显著,”
数字媒体技术系
John Morrell有限公司
研究问题:消费总体中是否有50%以上的人偏爱 Morrell生产的炖牛肉这种方便食品。
令p表示偏爱Morrell产品的总体比率,研究中 的假设检验为
H0 : p 0.50 H0 H : p 0.50
比原率假小设H于等0 于50表%。示如,果偏样爱本Mo数rr据el支l产持品样的本总拒H体绝0
§6.1 假设检验的过程和逻辑
在零假设下,检验统计量取其实现值 及(沿着备选假设的方向)更加极端
值的概率称为p-值(p-value)。 如果得到很小的p-值,就意味着在零
假设下小概率事件发生了。
如果小概率事件发生,是相信零假设, 还是相信数据呢?
当然多半是相信数据,拒绝零假设。
数字媒体技术系
数字媒体技术系
§6.1 假设检验的过程和逻辑
先要提出个原假设,比如某正态总体
的均值等于5(m=5)。这种原假设也称
为零假设(null hypothesis),记为H0。
与此同时必须提出备选假设(或称为
备择假设,alternative
hypothesis),比如总体均值大于5
(m>5)。备选假设记为H1或Ha。形式
数字媒体技术系
John Morrell有限公司
Morrell市场部对公司各种产品的最新信息 进行管理,并将这些产品与同类品牌进行 对比。
最近对Morrell生产的炖牛肉这种方便食品 进行消费者喜爱程度的调查,与其他两种 竞争产品的类似牛肉制品进行了比较。在 这三种对比检验中选择一些消费者组成样 本并据此说明从口味、外观、香味和整体 偏好上对该产品的喜爱程度。
从而接受备择假设H
,则Morrell会得
出结论:通过三种产品的比较,消费者总体中
超过50%以上的人偏爱该公司的产品。
数字媒体技术系
John Morrell有限公司
在一项与这项调查独立的口味检验的研究中, 来自辛辛那提、密尔沃基和洛杉矶的224名消
费者组成一个样本,其中有150名选择Morrell
生产的炖牛肉方便食品为自己最喜爱的产品。
根据统计假设检验方法,拒绝原假设
研究提供统计证据支持H
。
H0
。Байду номын сангаас
得出结论认为:超过50% 以上的消费者偏爱
Morrell公司的产品。
总体比率的点估计 p 150 / 224 0.67
因此,样本数据支持食品杂志的广告,认为在 三种产品的口味比较中,Morrell生产的炖牛
肉方便食品“在竞争中受欢迎程度为二比一”。
数字媒体技术系
在多数统计教科书中(除理论探讨 外)假设检验都是以否定原假设为 目标。
如否定不了,说明证据不足,无 法否定原假设。但不能说明原假 设正确。
就像一两次没有听过他骂人还远 不能证明他从来没有骂过人数字。媒体技术系
John Morrell有限公司
John Morrell有限公司1827年创建于英国, 是历史最悠久的连锁运营的肉类制造商。 它的产品包括13个品牌:John Morrell、
E-Z-Cut \Tobin's First Price\ Dinner Bell \Hunter\Kretschamer\Rath\Rodeo\Shenso n\Farmers Hichory Brand\Iowa Quality\ Peyton's 每种品牌都在消费者中拥有很 高的品牌认知度和忠诚度。
统计学
─从数据到结论
数字媒体技术系
第六章 总体参数的假设检验
数字媒体技术系
如果一个人说他从来没有骂过人。 他能够证明吗?
要证明他没有骂过人,他必须出示他从小到大 每一时刻的录音录像,所有书写的东西等等, 还要证明这些物证是完全的、真实的、没有间 断的。这简直是不可能的。
即使他找到一些证人,比如他的同学、家人和 同事,那也只能够证明在那些证人在场的某些 片刻,他没有被听到骂人。
否则说“没有足够证据拒绝零假 设”,或者“该检验不显著。”
数字媒体技术系
§6.1 假设检验的过程和逻辑
注意:在我们所涉及的问题中,零假 设和备选假设在假设检验中并不对称。
因检验统计量的分布是从零假设导出 的,因此,如果发生矛盾,就对零假 设不利了。
不发生矛盾也不能说明零假设没有问 题。
数字媒体技术系