单个正态总体参数的假设检验

合集下载

正态总体均值的假设检验

正态总体均值的假设检验
t 检验 用 t 分布
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一

一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:

8.2-0单正态假设检验

8.2-0单正态假设检验
解 这里方差σ2未知,因此检验统计量为
u X 0 . S/ n
拒绝域为| u | u / 2 .查表得 u / 2 = u0.025 = 1.96 .
由于
| u | | x 0 | 0.4 50 1.22 1.96 , s/ n 4
所以接受H0,即认为总体的均值μ=0.
147,150,149,154,152,153,148,151, 155
假设零件长度服从正态分布,问这批零件是否
合格(取 = 0.05)?
解 这里是在总体方差 2 未知的情况下,检验假设 H0: 0 150 ,H1: 150 .
在H0成立时,检验统计量
T X 0 ~ t(n 1) .
| t | | x 0 | 1.096 2.306 .
s/ n
所以接受H0,即认为这批零件合格.
三、正态总体方差的假设检验— 2 检验
设总体 X ~ N (, 2 ) 平 .
, (X1,X2,…,Xn)为X 的样本,给定显著性水
1.当 已知时,方差 2的假设检验
H0: 2
(5)由数据计算得x 112.8, s 1.1358
故T 112.8 112.6 0.4659 2.4469 1.1358 7
故接受H 0 ,即可认为用热敏电阻测温仪间接测量温度无系统 误差。
例2 某车间加工一种零件,要求长度为150mm, 今从一批加工后的这种零件中抽取 9 个,测得长度如 下:

2
2 (n)
或 2

2 1
2 (n)
2


2 0
2


2 0
2


2

单正态总体的参数假设检验

单正态总体的参数假设检验

单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。

在本文中,我们将讨论单正态总体的参数假设检验方法。

单正态总体是指样本来自一个服从正态分布的总体。

二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。

原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。

2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。

在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。

3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。

5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。

6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。

三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。

1. Z检验:当总体的标准差已知时,可以使用Z检验。

Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。

根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。

2. t检验:当总体的标准差未知时,使用t检验。

t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。

根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。

四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。

假设我们关注的是该电商平台订单的平均发货时间。

我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。

正态总体的假设检验

正态总体的假设检验
(Xi μ)2
n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

正态总体均值的假设检验

正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)

又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验

单个正态总体均值假设检验(标准差已知,Z检验)

单个正态总体均值假设检验(标准差已知,Z检验)

X



n
z 2
0

X


n
z
2

16
7
步骤1:提出检验假设
H0 : 1550, H1 : 1550
步骤2:确定检验规则
检验统计量为 Z X 1550. 取显著水平 0.05, n
由备择假设的形式知,这是左边检验,因此检验 规则为:当Z z z0.05 1.645时,拒绝H0.
8
步骤3:计算检验统计量的值
2
双边假设问题
H0 : 0, H1 : 0,
其中0是已知的常数.
2
拒绝域
接受域
2
检验统计量为 Z X 0
z 2
z 2
n
检验拒绝域W | Z |
X 0 n
z/2 .
3
P_值的计算
对给定的样本观察值x1,, xn,记检验统计量Z的取值
9
利用P_值进行假设检验
步骤3’:计算P_值
P_ P( X 1550 1530 1550 1550) n 120 225
P(Z 2.5) 0.006
步骤4’:根据显著水平作出判断
P_ 0.006 0.05,
同样做出拒绝原假设H0 : 1550的判断.
将样本均值x 1530, 120, n 225,
代入检验统计量,计算得
Z X 1550 1530 1550 2.5 1.645.
n 120 225
步骤4:根据实际情况作出判断
因此,根据检验规则,做出拒绝原假设H0的判断. 即认为A高校学生的生活水平低于B高校.

正态总体的均值和方差的假设检验

正态总体的均值和方差的假设检验

12
n1

2 2
n2
~ N (0,1)
给定α 0.05,
(当H 0成立时)
由 Φ(u0.025 ) 0.975, 查表可得 uα / 2 u0.025 1.96
(3)拒绝域: W1={(x1, x2, ∙∙∙, xn, y1, y2, ∙∙∙, yn)||u| u /2=1.96},
3. μ为未知,关于σ 2的检验(χ 2检验法)
设X 1 , X 2 , , X n是来自正态总体 N ( μ, σ 2 )的一样本,
其中μ, σ 2未知,检验水平为 α,检验σ 2步骤为:
1 假设H0 : 2 0 2 , H1: 2 0 2 ;
X1 , X 2 ,, X n为来自总体X的样本,
2 2 2 2 X ~ N ( μ1 , σ1 ),Y ~ N ( μ2 , σ 2 ), σ1 60, σ 2 80,问
两台机床生产的产品重量有无显著差异( =0.05)? 解 本题归结为检验假设
(1) H0 : 1 2 , H1: 1 2 ,
(2)取检验的统计量为 U ( X Y ) /
解 (1)
本题归结为检验假设
H 0 : μ 800,
H1 : μ 800;
40,n 9 X 800 (2)选择统计量 U 9 40
当H0成立时,U~N(0,1).
(3)给定显著性水平 = 0.05,由正态分布函数表 查得u /2=u0.025 =1.96,从而得检验的拒绝域为 W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 }; (4) 由样本值计算U的观测值为
x 0 s / n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H1 : 0,拒绝域为
x -0 | t | t / 2 (n 1) s/ n
例1 某车间生产铜丝,铜丝的主要质量指标是折断力
X 的大小。由资料可认为 X ~ N (570, 82 ), 而今换了一 批原料,从性能上看,估计折断力的方差不会有变化, 现抽出10个样品,测得其折断力(斤)为
2 2 2 双边假设检验 H 0 : 2 0 , H1 : 0
拒绝域为
(n 1) s 2
2 0
12 / 2 (n 1) 或 f y

2 2
(n 1) s 2

2 0
2 / 2 ( n 1)
2 12 / 2 (n 1) / 2 ( n 1)
故未落在拒绝域之内,接受H0,可以认为冷却用水 升高温度的均值不多于5°.
⑵ 置信水平为0.95 的σ2的置信区间为
2 2 2 2 ( n 1) s ( n 1) s 4 s 4 s , 2 , 2 2 2 (n 1) 1 (n 1) 0.025 (4) 0.975 (4) 2 2
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n
由已知可计算 x , n, s 2 得 | t | 2.997
查表 t0.005 (5) 4.0322 | t | t0.005 (5)
故未落在拒绝域之内,拒绝 H1 ,接受H0 可以认为这批产品合格。
三、单个正态总体均值的假设检验(单边检验) 1. 已知σ2,检验μ (U 检验法) 右边假设检验 H 0 : 0
H1 : 0 ,拒绝域为

x -0 u z / n
左边假设检验 H 0 : 0
z
H1 : 0 ,拒绝域为

x -0 u z / n
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 t t (n 1) s/ n
由已知可得 x 5.34 , n 5 , s 2 0.631,
5.34 5 0.9570 得 t 0.631 / 5
查表 t0.05 (4) 2.1318 t t0.05 (4)
x -0 14.2-14 0.375 计算 u / n 3.2/ 36
查表 z z0.05 1.645 u z0.05 所以未落在了拒绝域之内,故接受 H 0 : 14, 即不能认为这批木材的小头直径在14cm以上。
例7 已知某压缩机的冷却用水,其升高温度 X ~ N ( , 2 ),
问这批木材的平均小头直径能否认为在14cm以上? (α=0.05) 解: 检验假设 H 0 : 14, H1 : 14 右边检验
X -0 取统计量 U ~ N (0,1) / n
x -0 z 拒绝域为 u / n
由已知可得 x 14.2 , n 36 , 3.6,
例3 某次考试的考生成绩 X ~ N ( , 2 ), , 2 未知, 从中随机地抽取36位考生的成绩,平均成绩为63.5分, 标准差 s =15分。⑴ 问在显著水平0.05下是否可以认为 全体考生的平均成绩为70分? ⑵ 求μ的置信水平为 0.95的置信区间。 解: ⑴ 提出假设 H 0 : 0 70, H1 : 70

2 2 左边假设检验 H 0 : 2 0 拒绝域为 , H1 : 2 0

2
(n 1) s
2 0
2

12 (n 1)
12 (n 1)
例6 从一批木材中随机抽取36根,测量其小头直径,
2 X ~ N ( , 3.2 ), 设木材的小头直径 算的平均值 x 14.2cm.
x -0 5.2 10 2.055 计算 | u | 8 / n
查表 z 2 1.96 | u | z 2 1.96 所以落在了拒绝域之内,拒绝H0 ,接受H1 , 认为折断力大小有差别。
例2 某工厂生产的一种螺钉,标准要求长度是32.5 毫米。实际生产的产品其长度X假定服从正态分布,
第八章
§8.2 单个正态总体的 参数假设检验
一、单个正态总体均值的假设检验 二、单个正态总体方差的假设检验
一、单个正态总体均值的假设检验(双边检验) 设总体 X ~ N ( , 2 ) ,其中 X 1 , X 2 ,, X n 为X 的 样本。我们对μ作显著性检验。 1. 已知σ2,检验μ (U 检验法) 双边假设检验 H 0 : 0
数据为578,572,580,568,572,570,572,570, 596,584,问该学生跳远成绩水平是否与鉴定成绩有
显著差异?(α=0.05)
1 n 解: n 10, x xi 576.2 n i 1 n 1 s2 ( xi2 nx 2 ) 74.1778 n 1 i 1
而 20.025 (4) 11.143, 20.975 (4) 0.484
所求置信区间为(0.2265, 5.2149)。
572 578 570 568 572 570 570 572 596 584
检验其折断力的大小有无差别。 ( =0.05) 解: 此问题就是已知方差 2 82 检验假设 H 0 : 570, H1 : 570
X -0 取统计量 U ~ N (0,1) / n
x -0 拒绝域为 | u | z / 2 / n 由已知可得 x 575.2 , n 10
X ~ N ( , 2 ), 2未知. 现从该厂生产的一批产品
中抽取6件, 得尺寸数据如下:
32.56, 29.66, 31.64, 30.00, 31.87, 31.03
( = 0.01) 假定方差保持不变,问这批产品是否合格? 解: 先提出假设 H 0 : 0 32.5, H1 : 32.5
H1 : 0 ,拒绝域为
| x -0 | | u | z / 2 / n
2. σ2未知,检验μ (t 检验法)
n 1 2 可用样本方差 S 2 ( X X ) 代替σ2 k n 1 k 1
统计量
X -0 t ~ t (n 1) S/ n
双边假设检验 H 0 : 0 ,
z
2. σ2未知,检验μ (t 检验法)
右边假设检验 H 0 : 0
H1 : 0 ,拒绝域为

x -0 t t (n 1) s/ n
左边假设检验 H 0 : 0
t (n 1)
H1 : 0 ,拒绝域为

x -0 t t (n 1) s/ n
查表

2 0.975
(9) 2.700
2 0.025 (9) 19.023
由于 2.7 2 19.023 , 未落在拒绝域之内,故接受H0 。
即可以认为 2 82.
(2) ⑵ 提出假设 H 0 : 0 576, H1(2) : 576
X 0 取统计量 U ~ N (0,1). / n
t (n 1)
确定原假设和被择假设的原则: 等号必须放在原假设里
四、单个正态总体方差的假设检验(单边检验)
2 2 2 右边假设检验 H 0 : 2 0 , H1 : 0 拒绝域为

2
(n 1) s 2

2 0
(n 1)
2
2 (n 1)
观测5台压缩机的冷却用水的升高温的平均值为 x 5.34,
样本方差为 s 2 0.631. ⑴ 在显著水平α=0.05下是否可以
认为冷却用水升高温度的平均值不多于5°?(2)求σ2的
置信水平为0.95的置信区间。
解: ⑴ 先提出假设 H 0 : 0 5, H1 : 0
拒绝域为 | u | z / 2
576.2 576 x 576 0.079 其中 | U | 8 / 10 8/ n
查表 z / 2 z0.025 1.96 0.079 故未落在拒绝域之内,故接受H0 ,即可以认为 576.
综合⑴与⑵,该生跳远成绩水平与鉴定成绩无显著差异.

提出假设 H (1) : 2 2 82 H (1) : 2 82 0 0 1
2
取统计量
2
(n 1) S
2
02
2 1 / 2
~ 2 (n 1).
2 2
拒绝域为
(n 1) 或 / 2 (n 1)
2 9 74.1778 9 s 2 10.43 其中 2 64 8
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n 计算 | t | 2.6
| t | 2.6 t0.025 (35) 2.0301
故落在拒绝域之内,拒绝H0 ,接受H1 即不能认为全体考生的平均成绩为70分。 ⑵ μ的置信水平为0.95的置信区间为
x
例4 某次统考后随机抽查26份试卷,测得平均成绩:
2 样本方差 x 75.5分, s 162 ,已知该次考试
成绩 X ~ N ( , 2 ) ,试分析该次考试成绩标准差 是否为σ=12分左右?(=0.05) 解: 提出假设 H 0 : 0 12, H1 : 12 取统计量
2 0.975
(25) 13.12
02.025 (25) 40.646
显然 13.12 2 40.646 ,未落在拒绝域之内,故接受H0 。 表明考试成绩标准差与12无显著差异。
相关文档
最新文档