2018年八年级上册数学期末考试试卷及答案
2018年秋人教版八年级上册数学期末检测卷(含答案)

八年级数学上册期末检测卷一、选择题(本大题共10小题,每小题4分,满分40分)1.在以下节水、回收、节能、绿色食品四个标志中,是轴对称图形的是2.已知非等腰三角形的两边长分别是2 cm和9 cm,如果第三边的长为整数,那么第三边的长为A.8 cm或10 cmB.8 cm或9 cmC.8 cmD.10 cm3.将点M(-5,y)向下平移6个单位长度后所得到的点与点M关于x轴对称,则y的值是A.-6B.6C.-3D.34.下列命题与其逆命题都是真命题的是A.全等三角形对应角相等B.对顶角相等C.角平分线上的点到角的两边的距离相等D.若a2>b2,则a>b5.把一副三角板按如图叠放在一起,则∠α的度数是A.165°B.160°C.155°D.150°6.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是A.AD=CFB.∠BCA=∠FC.∠B=∠ED.BC=EF7.已知函数y=kx+b的图象如图所示,则函数y=-bx+k的图象大致是8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.其中正确的是A.①②④B.①②③C.②③④D.①③9.如图,已知直线m⊥n,在某平面直角坐标系中,x轴∥直线m,y轴∥直线n,点A,B的坐标分别为(-4,2),(2,-4),点A,O4,B在同一条直线上,则坐标原点为A.O1B.O2C.O3D.O410.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于点D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中正确的有A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.一副三角板如图放置,若∠1=90°,则∠2的度数为75°.12.在平面直角坐标系中,已知点A(2,3),B(4,7),直线y=kx-k(k≠0)与线段AB有交点,则k的取值范围为≤k≤3.13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C 向左平移,使其对应点C'恰好落在直线AB上,则点C'的坐标为(-1,2).14.如图,∠1=∠2,∠C=∠B,下列结论中正确的是①④.(写出所有正确结论的序号)①△DAB≌△DAC;②CD=DE;③∠CFD=∠CDF;④∠BED=2∠1+∠B.三、(本大题共2小题,每小题8分,满分16分)15.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;(2)用三角板作AC边上的高BD.解:如图所示.16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点△AOB.(顶点是网格线的交点)(1)画出将△AOB沿y轴翻折得到的△AOB1,则点B1的坐标为(-3,0);(2)画出将△AOB沿射线AB1方向平移2.5个单位得到的△A2O2B2,则点A2的坐标为(-1.5,2);(3)请求出△AB1B2的面积.解:(1)△AOB1如图所示.(2)△A2O2B2如图所示.(3)△AB1B2的面积=4.5×6-×3×4-×1.5×6-×4.5×2=12.四、(本大题共2小题,每小题8分,满分16分)17.如图,已知CD是AB的中垂线,垂足为D,DE⊥AC于点E,DF⊥BC于点F.(1)求证:DE=DF;(2)若线段CE的长为3 cm,BC的长为4 cm,求BF的长.解:(1)∵CD是AB的中垂线,∴AC=BC,∴∠ACD=∠BCD,∵DE⊥AC,DF⊥BC,∴DE=DF.(2)∵DE⊥AC,DF⊥BC,∴∠AED=∠BFD=90°,在Rt△ADE和Rt△BDF中,∴Rt△ADE≌Rt△BDF(HL),∴AE=BF,∵CE=3 cm,BC=4 cm,∴BF=AE=AC-CE=BC-CE=1 cm.18.已知:如图1,在Rt△ABC和Rt△A'B'C'中,AB=A'B',AC=A'C',C=∠C'=90°.求证:Rt△ABC和Rt△A'B'C'全等.(1)请你用“如果…,那么…”的形式叙述上述命题;(2)将△ABC和△A'B'C'拼在一起,请你画出两种拼接图形;例如图2:(即使点A与点A'重合,点C与点C'重合.)(3)请你选择你拼成的其中一种图形,证明该命题.解:(1)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边分别相等,那么这两个直角三角形全等.(2)如图:图①使点A与点A'重合,点B与点B'重合.图②使点A与点B'重合,点B与点A'重合.(3)在图①中,∵点A和点A'重合,点B和点B'重合,连接CC'.∵AC=A'C',∴∠ACC'=∠AC'C,∵∠ACB=∠A'C'B'=90°,∴∠ACB-∠ACC'=∠A'C'B'-∠AC'C,即∠BCC'=∠BC'C,∴BC=B'C'.在Rt△ABC和Rt△A'B'C'中,∴△ABC≌△A'B'C'(SSS).五、(本大题共2小题,每小题10分,满分20分)19.小明平时喜欢玩“宾果消消乐”游戏.本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2)观察(1)中所描点的位置关系,猜想y与x之间的函数关系,并求出所猜想的函数表达式;(3)若小明继续沉溺于“宾果消消乐”游戏,照这样的发展趋势,请你估计元月(此时x=13)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.解:(1)如图.(2)猜想:y是x的一次函数.设y=kx+b,把点(9,90),(10,80)代入得解得-∴y=-10x+180.经验证,点(11,70)和(12,60)均在直线y=-10x+180上,∴y与x之间的函数表达式为y=-10x+180.(3)∵当x=13时,y=50,∴估计元月份的考试中小明的数学成绩是50分.建议:不要再沉迷于游戏,要好好学习.20.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.则线段DE和BF在数量和位置上有什么关系?请说明理由.解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC-∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,∴△ECD≌△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、(本题满分12分)21.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发,沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t分后甲、乙两遥控车与B处的距离分别为d1,d2(单位:米),则d1,d2与t的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰?解:(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,∴d1=--(3)由已知可得AB=60米,BC=120米,v1=60米/分,v2=40米/分,并且在0≤t≤3时,乙车始终在甲车前面,当0≤t<1时,甲车未达到B点,所以甲、乙两遥控车的距离为40t-60t+60=-20t+60>10,解得t<2.5.所以0≤t<1时,两车距离始终大于10米,信号不会产生相互干扰.当1≤t≤3时,甲车经过B点向C点行驶,此时甲、乙两遥控车的距离为40t+60-60t>10,解得t<2.5,所以1≤t<2.5时,两车不会产生信号干扰.∴当0≤t<2.5时,两遥控车的信号不会产生相互干扰.七、(本题满分12分)22.在平面直角坐标系xOy中,已知定点A(1,0)和B(0,1).(1)如图1,若动点C在x轴上运动,则使△ABC为等腰三角形的点C有几个?(2)如图2,过点A,B向过原点的直线l作垂线,垂足分别为M,N,试判断线段AM,BN,MN之间的数量关系,并说明理由.解:(1)如图,当以AB为腰时,有3个;当以AB为底时,有1个,∴使△ABC为等腰三角形的点C有4个.(2)AM+BN=MN.理由:由已知可得OA=OB,∠AOM=90°-∠BON=∠OBN,在△AOM和△OBN中,∴△AOM≌△OBN(AAS),∴AM=ON,OM=BN,∴AM+BN=ON+OM=MN.八、(本题满分14分)23.如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,∴∠BAP=∠CAQ,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,∴CQ⊥BC.(2)当点P为BC的中点或与点C重合时,△ACQ是直角三角形.(3)①当BP=AB时,△ABP是等腰三角形;②当AB=AP时,点P与点C重合;③当AP=BP时,点P为BC的中点.∵△ABP≌△ACQ,∴当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.。
2018八年级上学期数学期末试题(含答案)

2018八年级上学期数学期末试题一、选择题(每小题4分,共计48分) 1.下列各数中最小的是( ) A .π-B .1C .3-D .02.下列语言叙述是命题的是( ) A .画两条相等的线段 B .等于同一个角的两个角相等吗? C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等3.点P(3,-5)关于x 轴对称的点的坐标为( ) A .(3,5)B .(3,-5)C .(-3,5)D .(-3,-5)4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F 出现,按照规定的目标表示方法,目标E ,F 的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A ,B ,D ,E 的位置时,其中表示不正确的是( ) A .A(4,30°)B .B(2,90°)C.C(6,120°)D.D(3,240°)第4题图 第5题图5.如图,阴影部分是一个长方形,它的面积是( ) A.3cm 2B.4cm 2C.5cm 2D.6cm 26.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A.中位数B.平均数C.方差D.众数7.下列各式计算正确的是( )A.2=-B.2(2)4-=2(3)3-=-164=8.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C -6°,则∠C 的度数为( ) A.90°B.58°C.54°D.32°9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵. 设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A.523220x y x y +=⎧⎨+=⎩B.522320x y x y +=⎧⎨+=⎩C.202352x y x y +=⎧⎨+=⎩D.203252x y x y +=⎧⎨+=⎩10.已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组的解是( )A.12x y =⎧⎨=⎩B.21x y =⎧⎨=⎩C.23x y =⎧⎨=⎩D.13x y =⎧⎨=⎩11.关于一次函数y=-2x+b(b 为常数),下列说法正确的是( ) A. y 随x 的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=-2x+3相交于第四象限内一点12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之是的函数关系如图,则这次长跑的全程为( )米。
【八年级数学试题】2018初二数学上册期末考试卷(有答案和解释)

2018初二数学上册期末考试卷(有答案和解释)
2018学年东省聊城市茌平县八年级(上)期末数学试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()
A. B. c. D.
考点轴对称图形.
分析根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
解答解A、是轴对称图形,故A符合题意;
B、不是轴对称图形,故B不符合题意;
c、不是轴对称图形,故c不符合题意;
D、不是轴对称图形,故D不符合题意.
故选A.
点评本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.下列语句中,属于命题的是()
A.作线段的垂直平分线
B.等角的补角相等吗
c.三角形是轴对称图形
D.用三条线段去拼成一个三角形
考点命题与定理.。
2018学年人教版八年级数学上期末试卷

2018人教版八年级数学上期末试卷及详细解答、选择题(本大题共10小题,每小题3分,共30分•在每小题给出的四个选项中,只有一项是符合题目要求的•)1. 下列图案属于轴对称图形的是()2. 点M (1, 2)关于y轴对称点的坐标为()A . (- 1 , 2) B. (- 1,—2) C. (1 , - 2) D . (2,—1)3•已知三角形两边长分别为7、11,那么第三边的长可以是()A . 2 B. 3 C. 4 D. 54•下列计算正确的是()A/3、2 6f C22_ 3 2 6^“、3门3A . (a )=a B. a?a =a C. a +a =a D . (3a)=9a5•—个多边形每「个外角都等于36°则这个多边形是几边形()A. 7B. 8C. 9D. 106.如图,已知△ ABC 中,/ A=75 ° 贝1+ / 2=( )A. 335°B. 255 °C. 155 °D. 150 °7.下列从左到右的运算是因式分解的是()2 2 2A . 2a2- 2a+1=2a (a- 1) +1B . (x - y) (x+y ) =x2- yC . 9x2- 6x+ 仁(3x - 1) 2D . x2+y2=(x - y) 2+2xy &若等腰三角形的两边长分别为A . 20 或22B . 20C . 226和8,则周长为(D .无法确定A.SB.9. 如图,已知 / 1 = / 2,则不一定能使△ABD ACD的条件是()C. / B= / C D . / BDA= / CDA10. 如图,已知 / MON=30 °点A1, A2, A3, ••在射线ON上,点B1, B2, B3, ••在射线OM 上,△ A1B1A2 , △ A2B2A3, △A3B3A4,…均为等边三角形,若OA l=2,则△ A5B5A6二、填空题(本题共18分,每小题3分,共18分)11•科学家发现一种病毒的直径为_________________________ 0.0043微米,则用科学记数法表示为微米.12. 若一个三角形三个内角的度数之比为 1 : 2: 3,则这个三角形中的最大的角度是1 _213. 计算(n- 3.14)°+ (丄)= ______________ .314. 若x2+mx+4是完全平方式,则m= ____________ .15. 如图,/ AOB=30 ° OP 平分/ AOB , PD丄OB 于D, PC// OB 交OA 于C,若PC=6,贝y PD= _________ .16. 下面的图表是我国数学家发明的杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律. 请你观察,并根据此规律写出:(a- b)5=1三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤) 17•计算:2 3 2(1)(- a ) ?4a (2) 2x (x+1) + (x+1) •18. 解下列分式方程:(219. (1)画出△ ABC关于y轴对称的图形△ A , B, C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)A/占\ L1、eC20. 如图,点E、F 在BC 上,BE=FC, AB=DC , / B= / C.求证:/ A= / D .21 •小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.22. 如图,在△ ABC中,AB=AC , / A=36 ° DE是AC的垂直平分线.V1 2 1xz13 3 11 4 b 4 1由=a+b阳+b) J日上+卫日ti+ M恒i-bj i=a ^Sa^b+Sab^i-t^(1) 求证:△ BCD 是等腰三角形;(2) △ BCD 的周长是a , BC=b ,求△ ACD 的周长(用含 a , b 的代数式表示)24. 已知△ ABC 是等边三角形,点 D 是直线BC 上一点,以AD 为一边在AD 的右侧作等 边厶ADE .(1) 如图①,点D 在线段BC 上移动时,直接写出 / BAD 和/ CAE 的大小关系;(2) 如图②,点D 在线段BC 的延长线上移动时,猜想 / DCE 的大小是否发生变化.若 不变请求出其大小;若变化,请 说明理由.25. (14分)已知:点 0到厶ABC 的两边AB , AC 所在直线的距离相等,且 OB=OC . (1) 如图1,若点0在边BC 上,求证:AB=AC ;(2) 女口图2,若点 0在厶ABC 的内部,求证: AB=AC ; (3) 若点0在厶ABC 的外部,AB=AC 成立吗?请画出图表示.23.先化简代数式: 代入求值.然后再从-2$电的范围内选取一个合适的整数B图12015-2016八年级(上)期末数学试卷一、选择题(本大题共 10小题,每小题2分,共20分•在每小题给出的四个选项中,只有 一项是符合题目要求的•) 1.下列图案属于轴对称图形的是 (【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知 选C .【点评】轴对称图形的判断方法: 把某个图象沿某条直线折叠, 如果图形的两部分能够重合, 那么这个是轴对称图形. 2.点M ( 1, 2)关于y 轴对称点的坐标为( )A . (- 1 , 2)B . (- 1,— 2)C . (1 , - 2)D . (2,— 1)【考点】 关于x 轴、y 轴对称的点的坐标. 【专题】常规题型.【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数解答. 【解答】解:点M (1, 2)关于y 轴对称点的坐标为(-1, 2). 故选A .【点评】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐 标规律: (1) 关于x 轴对称的点,横坐标相同,纵坐标互为相反数; (2) 关于y 轴对称的点,纵坐标相同,横坐标互为相反数; (3) 关于原点对称的点,横坐标与纵坐标都互为相反数. 3.已知三角形两 边长分别为7、11,那么第三边的长可以是 ( )A . 2B . 3C . 4D . 5 【考点】三角形三边关系.【分析】根据三角形的三边关系可得 11- 7V 第三边长V 11+7,再解可得第三边的范围,然 后可得答案.【解答】解:设第三边长为x ,由题意得: 11 - 7V x V 11+7, 解得:4V x v 18, 故选:D .【点评】此题主要考查了三角形的三边关系, 关键是掌握三角形两边之和大于第三边, 三角形的两边差小于第三边.A 、B 、D 都不是轴对称图形,只有C 是轴对称图形.故D .4 •下列计算正确的是()A • (a3) 2=a6B • a?a2=a2 C. a3+a2=a6 D • (3a) 3=9a3【考点】幕的乘方与积的乘方;合并同类项;同底数幕的乘法.【分析】A、根据幕的乘方的定义解答;B、根据同底数幕的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3) 2=a3>2=a6,故本选项正确;B、a?a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D (3a) 3=27a3,故本选项错误.故选A .【点评】本题考查了同底数幕的乘法,幕的乘方,积的乘方,理清指数的变化是解题的关键.5•—个多边形每个外角都等于36°则这个多边形是几边形()A. 7B. 8C. 9D. 10【考点】多边形内角与外角.【专题】计算题.【分析】多边形的外角和是360°又有多边形的每个外角都等于36°所以可以求出多边形外角的个数,进而得到多边形的边数.【解答】解:这个多边形的边数是:=10 .故答案是D .36s【点评】本题考查多边形的外角和,以及多边形外角的个数与其边数之间的相等关系.6.如图,已知△ ABC中,/ A=75 ° 贝1 + / 2=( )A. 335°B. 255 °C. 155 °D. 150 °【考点】多边形内角与外角;三角形内角和定理.【分析】先由三角形内角和定理得出/ B+ / C=180 °- / A=105 °再根据四边形内角和定理即可求出 / 1 + / 2=3 60° - 105°=255 °【解答】解:•/ / A+ / B+ / C=180 ° / A=75 °••• / B+ / C=180 °- / A=105 °•/ / 1+ / 2+/ B+ / C=360 °• / 1+ / 2=360 °- 105 °255 ° 故选B .【点评】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2) ?180° ( n绍且n为整数)是解题的关键.7•下列从左到右的运算是因式分解的是()2 2 2A • 2a2—2a+1=2a (a—1) +1B • (x - y) (x+y ) =x2- y2 2 2 2 2C. 9x —6x+仁(3x —1) D• x +y = (x —y) +2xy【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.&若等腰三角形的两边长分别为6和8,则周长为()A . 20 或22B . 20C . 22D .无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边两种情况分情况讨论,再利用三角形的三边关系判断是否能组成三角形.【解答】解:若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20 ,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22 ,综上所述,三角形的周长为20或22.故选A .【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.9. 如图,已知 /仁/ 2,则不一定能使△ ABD ACD的条件是()A . AB=ACB . BD=CD C. / B= /CD . / BDA= / CDA【考点】全等三角形的判定.【专题】压轴题.【分析】利用全等三角形判定定理ASA , SAS, AAS对各个选项逐一分析即可得出答案.【解答】解:A、•/ Z仁/ 2, AD为公共边,若AB=AC,则△ ABD ◎△ ACD ( SAS);故A 不符合题意;B、•••/仁/ 2, AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ ABD ◎△ ACD ;故B符合题意;C、•••/ 1 = / 2, AD为公共边,若/B= /。
2018年八年级上册数学期末考试试卷及答案

八年级上册数学期末试卷及答案(总分 100分答卷时间 120分钟)一、 选择题:本大题共 8 小题,每小题 2 分,共 16 分.在每小题给出得分评卷人的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入....题前括号内.【】 1. 计算( a 2 ) 3 的结果是A . a 5B . a 6C .a 8D . 3 a 2【】 2. 若正比例函数的图像经过点(-1,2),则这个图像必经过点A .( 1,2)B . (- 1,- 2)C . ( 2,- 1)D .( 1,- 2)【 】 3. 下列图形是轴对称图形的是A .B .C .D .【】 4. 如图,△ ACB ≌△ A ’CB ’,∠ BCB ’=30°,则∠ ACA ’的度数为A .20°B . 30°AC . 35°D .40°B【】5.一次函数 y=2x -2 的图象不经过 的象限是 ...A .第一象限B .第二象限C .第三象限D .第四象限B(第4题)【】 6. 从实数2,1, 0, , 4 中,挑选出的两个数都是无理数的为132,4D .2,A .,0B . ,4C .3【】 7. 若 a0 且 a x 2 , a y3 ,则 ax y的值为千米s/A .-1B . 12 D .3 3C .232 【】 8. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走1 的路程 s(单位:千米)与时间 t(单位:分)之间的函数关系如图所示.放学后如果O按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12 分B .10 分C .16 分D .14 分AC610t/分(第 8题)得分评卷人二、填空题:本大题共10 小题,第9~ 14题,每小题 2 分,第15~ 18题,每小题 3分,共 24 分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:2x31x2=.810.一次函数y(2 k4) x 5 中,y随x增大而减小,则k 的取值范是.11.分解因式:m2n mn2=.A12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,D 交 AC 于点 D,交 BC 于点 E. 已知∠ BAE=16°,则∠ C 的度数为.B E C(第 12题)13.计算:( 1)2009-(- 3)0+ 4 =.14.当s t1时,代数式 s22st t 2的值为.y215.若x25( y16)20,则x+y=.BO xy kx b A( 1, 2),y 2x AB(16.如图,直线经过点和点 2 0),直线(第 16 题)过点 A,则不等式2x kx b 0的解集为.17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为 66°,那么在大量角器上对应的度数为__________ °(只需写出 0°~ 90°的角度).(第 17 题)18.已知△ABC中,AB =BC≠AC,作与△ABC只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出个.三、解答题:本大题共 10小题,共 60 分.解答时应写出文字说明、证明过程或演算步骤.得分评卷人(19~20 题,第 19 题 6 分,第 20 题 5 分,共 11 分)19.(1)化简:(a 2b)( a 2b)1b (a 8b) .(2)分解因式:x32x2x .220.如图,一块三角形模具的阴影部分已破损.( 1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC的形状和大小完全相同的模具△A B C ,需要从残留的模具片中度量出哪些边、角?请简要说明理由.( 2)作出模具△A B C的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).AB C(第 20 题)得分评卷人(第 21题 5分,第 22题5分,共 10分)21.已知x25x14 ,求 x 1 2x 12x 1 1 的值.22.如图,直线l1:y x 1与直线 l 2:y mx n 相交于点 P(1, b) .(1)求b的值;(2)不解关于x,x y 10y 的方程组请你直接写出它的解.mx y n0yl1b PO1xl2得分评卷人(第 23题 5分,第 24题 6分,共 11分)(第 22题)23.如图,在平面直角坐标系xoy 中, A( 15),,B( 1,0), C(4,3) .(1)在图中画出△ABC关于y轴的对称图形△A1B1C1;(2)写出点 A1,B1,C1的坐标.y6A4C2-5BO5x-2(第 23题)八年级试卷、教案24.如图,四边形ABCD 的对角线 AC 与 BD 相交于 O 点,∠ 1=∠2,∠ 3=∠ 4.求证: ( 1) △ ABC≌△ ADC ;( 2) BO=DO.BA 13C 2O4D(第 24 题)得分评卷人(第 25题 6分,第 26题 6分,共 12分)25.只利用一把有刻度的直尺,用度量的方法,按下列要求画图:...( 1) 在图 1 中用下面的方法画等腰三角形ABC 的对称轴.①量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点 D ;②画直线 AD,即画出等腰三角形ABC 的对称轴.( 2)在图 2 中画∠ AOB 的对称轴,并写出画图的方法.【画法】ABB C O A图 1图 226.已知线段AC与BD相交于点O,连结AB、DC,E为OB的中点,F为OC的中点,连结 EF (如图所示).(1)添加条件∠ A=∠ D,∠ OEF =∠ OFE,求证: AB=DC.(2)分别将“∠ A=∠ D”记为①,“∠ OEF=∠OFE ”记为②,“ AB=DC”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题(选择“真”或“假”填入空格,不必证明).ADOE FB C(第 26 题)八年级试卷、教案八年级数学(参考答案)一、选择题(本题共8 小题;每小题 2 分,共 16 分)1.B 2.D3.A4.B 5.B6.D 7.C 8.D二、填空题 (本大题共10 小题,第9~14 题,每小题 2 分,第 15~18 题,每小题3分,共 24分.)9. 1x510.k <-211. m n(m-n)12.37°13.014.144 15. 916.- 2<x<- 117. 48°18. 7三、解答题 ( 本大题共 10 小题,共60分.)19.解:( 1)(a2b)( a2b)18b) b(a2a 24b 21ab4b 2,,,,,,,,,,,,,,,,,,,, 4 分2a 21ab ,,,,,,,,,,,,,,,,,,,,,,,,, 6 分2( 2)x32x2x=x( x2x1),,,,,,,,,,,,,,,,,,,,,, 3 分=x( x1)2,,,,,,,,,,,,,,,,,,,,,, 5 分20.( 1)只要度量残留的三角形模具片的∠B,∠ C 的度数和边 BC 的长,因为两角及其夹边对应相等的两个三角形全等.,,,,,,,,,,, 3 分(2)按尺规作图的要求,正确作出 A B C 的图形.,,,,,,,,,,, 5 分21.解:x 1 2x1x121=2x2x 2 x1( x22x1)1,,,,,,,,,,,,,,,,, 2 分= 2x2x 2 x1x22x 1 1,,,,,,,,,,,,,,,,, 3 分=x25x1,,,,,,,,,,,,,,,,,,,,,,,,,,, 4 分当x2 5x 14 时,原式 = ( x25x) 114115 ,,,,,,,,,,,,,,,,, 5 分22.解:( 1)∵(1,b) 在直线 y x1 上,∴当 x1时, b112.,,,,,,,,,,,,,,,,, 3 分x1,5 分( 2)解是,,,,,,,,,,,,,,,,,,,,,,,,,y 2.23.( 1)画图正确;,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分( 2)A1(1,5),B1(1,0),C1(4,3) ,,,,,,,,,,,,,,,,,, 5 分24.证明 :( 1) 在△ ABC 和△ ADC 中八年级试卷、教案1 2AC AC 34∴△ ABC≌△ ADC .,,,,,,,,,,,,,,,,,,,,, 3 分(2)∵△ ABC≌△ ADC∴AB=A D,,,,,,,,,,,,,,,,,,,,,,,,,, 4 分又∵∠ 1=∠2∴ BO=DO ,,,,,,,,,,,,,,,,,,,,,,,,, 6 分25. ( 1) 画图正确 ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分( 2) ①利用有刻度的直尺 , 在∠ AOB 的边 OA、OB 上分别截取 OC、 OD, 使 OC=OD;②连接 CD, 量出 CD 的长 , 画出线段 CD 的中点 E;③画直线 OE, 直线 OE 即为∠ AOB 的对称轴 . ,,,,,,,,,,,, 6 分(作图正确 2 分,作法正确 2 分)26.( 1)∵∠ OEF=∠ OFE∴ OE=OF ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 分∵E 为 OB 的中点, F 为 OC 的中点,∴ OB=OC,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分又∵∠ A=∠D ,∠ AOB=∠ DOC,△ AOB≌△ DOC,,,,,,,,,,,,,,,,,,,,,,,, 4 分∴ AB=DC ,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5 分( 2)假 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 6 分27.( 1)B( 2,2) ;,,,,,,,,,,,,,,,,,,,,,,,,,,, 2 分(2)∵等腰三角形OBD 是轴对称图形,对称轴是l,∴点 O 与点 C 关于直线 l 对称,∴直线 AC 与直线 l 的交点即为所求的点P.,,,,,,,,,,,,,, 3 分把 x=2 代入y 1 x2,得y=1,2∴点 P 的坐标为 ( 2, 1) ,,,,,,,,,,,,,,,,,,,,,,, 4 分(3)设满足条件的点Q 的坐标为( m,1 m2 ),由题意,得1m 21m 22m 或m ,,,,,,,,,,,,,,,,, 6 分224或 m 4 ,,,,,,,,,,,,,,,,,,,,,,7 分解得m344∴点 Q 的坐标为(4, 4),,,,,,,,,,,,,,8 分,)或(33( 漏解一个扣 2 分)28.( 1)1; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 分(2)易得 y乙=50x- 25,,,,,,,,,,,,,,,,,,,,,,,,, 2 分当 x=5 时, y=225,即得点 C( 5,225).由题意可知点 B( 2, 60),,,,,,,,,,,,,,,,,,,,, 3 分设 BD 所在直线的解析式为 y=kx+b,八年级试卷、教案5k b 225, k 55,∴b 解得b50.2k 60.∴ BD 所在直线的解析式为 y=55x - 50.,,,,,,,,,,,,,,,5 分当 y=300 时, x=70.11答:甲家庭到达风景区共花了706 分h . ,,,,,,,,,,,,,,,,,11( 3)符合约定. ,,,,,,,,,,,,,,,,,,,,,,7 分由图象可知:甲、乙两家庭第一次相遇后在 B 和 D 相距最远.在点 B 处有 y 乙 -y= -5x+25= -5×2+25=15 ≤15;在点 D 有 y —y 乙 =5x -25=75≤ 15.,,,,,,,,,,,,,,,,,8 分11。
(完整word版)201806人教版八年级上册数学期末试卷及答案

八年级上学期数学 期末一、选择题(每小题3分,共30分): 1.下列运算正确的是( B )A .4= -2B .3-=3C .24±=D .39=3 2.计算(ab 2)3的结果是( D )A .ab 5B .ab 6C .a 3b 5D .a 3b 6 3.若式子5-x 在实数范围内有意义,则x 的取值范围是( B )A .x>5B .x ≥5C .x ≠5D .x ≥0 4.如图所示,在下列条件中,不能判断△ABD ≌△BAC 的条件是( C )A .∠D=∠C ,∠BAD=∠ABCB .∠BAD=∠ABC ,∠ABD=∠BAC C .BD=AC ,∠BAD=∠ABCD .AD=BC ,BD=AC5.下列“表情”中属于轴对称图形的是(C )A .B .C .D .6.在下列个数:301415926、10049、0.2、π1、7、11131、327中无理数的个数是( A )A .2B .3C .4D .57.下列图形中,以方程y-2x-2=0的解为坐标的点组成的图像是( C )(第4题图)DCBA000012-12-2112xxxy y yy x8.任意给定一个非零实数,按下列程序计算,最后输出的结果是( B )A .mB .m+1C .m-1D .m 29.如图,是某工程队在“村村通”工程中修筑的公路长度(m )与时间(天)之间的关系图象,根据图象提供的信息,可知道公路的长度为( A )米.A.504B .432C .324D .72010.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A 、B 、D 的坐标分别为(0,0)、(5,0)、(2,3),则顶点C 的坐标为( C )A .(3,7)B .(5,3)C .(7,3)D .(8,2) 二、填空题(每小题3分,共18分): 11.若x -2+y 2=0,那么x+y= 2 .12.若某数的平方根为a+3和2a-15,则a= 4 . 13.等腰三角形的一个外角是80°,则其底角是 40° .14.如图,已知:在同一平面内将△ABC 绕B 点旋转到△A /BC /的位置时,AA /∥BC ,∠ABC=70°,∠CBC /为 40° .15.如图,已知函数y=2x+b 和y=ax-3的图象交于点P (-2,-5),则根据图象可得不等式2x+b>ax-3的解集是 X >-2 .平方结果+2÷m-mm(第10题图)DCBA 0yx16.如图,在△ABC 中,∠C=25°,AD ⊥BC ,垂足为D ,且AB+BD=CD ,则∠BAC 的度数是 105° .三、解答题(本大题8个小题,共72分): 17.(10分)计算与化简: (1)化简:)1(18--π0)12(21214-+-; (2)计算:(x-8y )(x-y ). =1=x 2-9xy+8y 218.(10分)分解因式:(1)-a 2+6ab-9b 2; (2)(p-4)(p+1)+3p.=-(a-3b )2 =(p+2)(p-2)19.(7分)先化简,再求值:(a 2b-2ab 2-b 3)÷b-(a+b )(a-b ),其中a=21,b= -1.原式=121.(8分)如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AC 于点D ,垂足为E ,若∠A=30°,CD=2.(第14题图)AC /CBA /CB D A(第16题图)DC(1)求∠BDC 的度数; (2)求BD 的长.(1)60° (2)422.(10分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋. 为了满足市场需求,某厂家生产A 、B 两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元. (1)求出y 与x 的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?(1)根据题意得:y=(2.3-2)x+(3.5-3)(4500-x )=-0.2x+2250; (2)根据题意得:2x+3(4500-x )≦10000,解得:x ≧3500元. ∵k=-0.2<0,∴y 随x 的增大而减小,∴当x=3500时,y=-0.2×3500+2250=1550.3.52.332售价(元/个)成本(元/个)BA参考答案: 一、选择题:BDBCC.ACBAC. 二、填空题:11.2; 12.4; 13.40o ; 14.40o ; 15.x>-2; 16.105o . 三、解答题:17.(1)解原式=321222212-+--=1; (2)解:(x-8y )(x-y )=x 2-xy-8xy+8y 2=x 2-9xy+8y 2.23223- 18.(1)原式=-(a 2-6ab+9b 2)=-(a-3b )2; (2)原式=p 2-3p-4+3p=p 2-4=(p+2)(p-2).19.解原式=a 2-2ab-b 2-(a 2-b 2)=a 2-2ab-b 2-a 2+b 2=-2ab , 将a=21,b=-1代入上式得:原式=-2×21×(-1)=1.21.(1)∵DE 垂直平分AB ,∴DA=DB ,∴∠DBE=∠A=30°,∴∠BDC=60°;(2)在Rt △BDC 中,∵∠BDC=60°,∴∠DBC=30°,∴BD=2CD=4.22.解:(1)根据题意得:y=(2.3-2)x+(3.5-3)(4500-x )=-0.2x+2250;(2)根据题意得:2x+3(4500-x)≦10000,解得:x≧3500元.∵k=-0.2<0,∴y随x的增大而减小,∴当x=3500时,y=-0.2×3500+2250=1550.答:该厂每天至多获利1550元.。
2018秋八年级数学上册期末测试题附答案新人教版

够
用
需
追
加
预
算
8
万
元
26
(12
分
)
如
图
在
四
边
形
ABCD
中
乙
ABC
=
90
0
AD/
BC
AB
BC
E
是
AB
的
中
占
八、、
C
土B
D.
⑴
求
证
:
BE
AD
7
(2
)
求
证
:
AC
是
线
段
ED
的
垂
直
平
分
线
7
(3
)△
DBC
是
等
腰
三——三
角
形
吗
?
并
说
明
理
由
•
解
:
(1)
由
ASA
\证
△丿
ABD
E
3CE
可
得
⑵
由
(1)
得
BE
AD
又
AE
BE
—
y:
2B.1xl
—
x
—
〕1
—
xx
C
•
x2
—
4x
+
3
—
—
2)2
+
1
D
•
x-
〈2
+
X)
=
1x
+
1
4
在
△
A
BC
屮
【八年级数学试题】2018八年级数学上期末试卷(附答案和解释)_0

2018八年级数学上期末试卷(附答案和解释)
配方法.
分析移项,配方后开方,即可得出两个一元一次方程,求出方程的解即可.
解答解x2﹣4x﹣96=0.
x2﹣4x+4=96+4,
配方得(x﹣2)2=100,
开方得x﹣2=±10,
解得x1=12,x2=﹣8.
点评此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
22.已知,求的值.
考点二次根式的化简求值.
分析先将已知化简,再代入即可.
解答解x=
=
=3 ,
原式=
=
=
=
= .
点评本题主要考查了二次根式的化简求值,先化简再代入是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学期末试卷及答案(总分100分 答卷时间120分钟)一、 选择题:本大题共8小题,每小题2分,共16分.在每小题给出 的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入 题前括号内.【 】1.计算23()a 的结果是A .a 5B .a 6C .a 8D .3 a 2【 】2.若正比例函数的图像经过点(-1,2),则这个图像必经过点A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)【 】3.下列图形是轴对称图形的是A .B .C .D .【 】4.如图,△ACB ≌△A ’C B’,∠BCB ’=30°,则∠ACA ’的度数为A .20°B .30°C .35°D .40°【 】5.一次函数y =2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【 】6.从实数2-,31-,0,π,4 中,挑选出的两个数都是无理数的为 A .31-,0 B .π,4 C .2-,4 D .2-,π 【 】7.若0a >且2xa=,3y a =,则x y a -的值为A .-1B .1C .23D .32【 】8.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t (单位:分)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为A .12分B .10分C .16分D .14分得分 评卷人CABB 'A ' (第4题)(第8题)s /千米t /分3 2 1 O610二、填空题:本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.计算:32128xx ⎛⎫⨯- ⎪⎝⎭= . 10.一次函数(24)5y k x =++中,y 随x 增大而减小,则k 的取值范是 . 11.分解因式:22mn mn -= .12.如图,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =16°,则∠C 的度数 为 .13.计算:(1-)2009-(π-3)0+4= .14.当12s t =+时,代数式222s st t -+的值为 . 15.若225(16)0x y -++=,则x +y = .16.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 . 17.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果 它们外缘边上的公共点P 在小量角器上对应的度 数为66°,那么在大量角器上对应的度数为__________°(只需写出0°~90°的角度).18.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题:本大题共10小题,共60分.解答时应写出文字说明、证明过程或演算步骤.(19~20题,第19题6分,第20题5分,共11分)19.(1)化简:)8(21)2)(2(b a b b a b a ---+. (2)分解因式:322x x x ---.20.如图,一块三角形模具的阴影部分已破损.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC 的形状和大小完全相同的模具△A B C ''',需要从残留的模具片中度量出哪些边、角?请简要说明理由.得分 评卷人得分 评卷人ADCEB(第12题)(第17题)(第16题)OB Ay(2)作出模具A B C '''△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).(第21题5分,第22题5分,共10分)21.已知2514x x -=,求()()()212111x x x ---++的值.22.如图,直线1l :1y x =+与直线2l :y mx n =+相交于点), 1(b P .(1)求b 的值; (2)不解关于y x ,的方程组10x y mx y n -+=⎧⎨-+=⎩ 请你直接写出它的解.(第23题5分,第24题6分,共11分)23.如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)在图中画出ABC △关于y 轴的对称图形111A B C △;(2)写出点111A B C ,,的坐标.(第23题)x(第22题)(第20题)24.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:(1)△ABC ≌△ADC ; (2)BO =DO .(第25题6分,第26题6分,共12分)25.只利用一把有刻度...的直尺,用度量的方法,按下列要求画图: (1)在图1中用下面的方法画等腰三角形ABC 的对称轴.① 量出底边BC 的长度,将线段BC 二等分,即画出BC 的中点D ; ② 画直线AD ,即画出等腰三角形ABC 的对称轴. (2)在图2中画∠AOB 的对称轴,并写出画图的方法. 【画法】26.已知线段AC 与BD 相交于点O ,连结AB 、DC ,E 为OB 的中点,F 为OC 的中点,连结EF (如图所示).(1)添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .(2)分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,若添加条件②、③,以①为结论构成另一个命题,则该命题是_________命题 (选择“真”或“假”填入空格,不必证明).ODCABEF(第26题)BC图1AOB图21 23 4ABCDO (第24题)八年级数学(参考答案)一、选择题(本题共8小题;每小题2分,共16分)1.B 2.D 3.A 4.B 5.B 6.D 7.C 8.D二、填空题(本大题共10小题,第9~14题,每小题2分,第15~18题,每小题3分,共24分.)9.514x -10.k <-2 11.m n (m -n ) 12.37° 13.0 14.1415.9 16.-2<x <-1 17.48° 18.7 三、解答题(本大题共10小题,共60分.) 19.解:(1))8(21)2)(2(b a b b a b a ---+ 2224214b ab b a +--=……………………………………………………4分 ab a 212-=…………………………………………………………………6分 (2)322xx x ---=2(1)x x x -++ …………………………………………………………3分=2(1)x x -+ …………………………………………………………5分20.(1)只要度量残留的三角形模具片的∠B ,∠C 的度数和边BC 的长,因为两角及其夹边对应相等的两个三角形全等.……………………………3分 (2)按尺规作图的要求,正确作出A B C '''∠的图形.……………………………5分 21.解:()()()212111x x x ---++=22221(21)1xx x x x --+-+++……………………………………………2分=22221211x x x x x --+---+ ……………………………………………3分=251xx -+………………………………………………………………………4分当2514x x -=时,原式=2(5)114115x x -+=+= ……………………………………………5分22.解:(1)∵),1(b 在直线1+=x y 上,∴当1=x时,211=+=b .……………………………………………3分(2)解是⎩⎨⎧==.2,1y x …………………………………………………………………5分23.(1)画图正确; ………………………………………………………………………2分(2)111(4,3)A B C (1,5),(1,0),………………………………………………5分24.证明:(1)在△ABC 和△ADC 中1234AC AC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△ADC .………………………………………………………3分 (2)∵△ABC ≌△ADC∴AB =A D ……………………………………………………………………4分又∵∠1=∠2∴BO =DO …………………………………………………………………6分25.(1)画图正确……………… …………………………………………………………2分(2) ①利用有刻度的直尺,在∠AOB 的边OA 、OB 上分别截取OC 、OD ,使OC =OD ; ②连接CD ,量出CD 的长,画出线段CD 的中点E ;③画直线OE ,直线OE 即为∠AOB 的对称轴.………………………………6分 (作图正确2分,作法正确2分) 26.(1)∵∠OEF =∠OFE∴OE =OF …………………………………………………………………………1分 ∵E 为OB 的中点,F 为OC 的中点,∴OB =OC ……………………………………………………………………………2分 又∵∠A =∠D ,∠AOB =∠DOC ,△AOB ≌△DOC ………………………………………………………………4分 ∴AB=DC …………………………………………………………………………5分 (2)假 ………………………………………………………………………………6分 27.(1)B (2,2); ………………………………………………………………………2分(2)∵等腰三角形OBD 是轴对称图形,对称轴是l ,∴点O 与点C 关于直线l 对称,∴直线AC 与直线l 的交点即为所求的点P . ……………………………………3分 把x =2代入122yx =-+,得y =1,∴点P 的坐标为(2,1)……………………………………………………………4分 (3)设满足条件的点Q 的坐标为(m ,122m -+),由题意,得 122m m -+= 或 122m m -+=-……………………………………………6分 解得43m = 或4m =-…………………………………………………………7分∴点Q 的坐标为(43,43)或(4-,4)……………………………………8分(漏解一个扣2分)28.(1)1;…………………………………………………………………………………1分(2)易得y 乙=50x -25…………………………………………………………………2分当x =5时,y =225,即得点C (5,225).由题意可知点B (2,60),……………………………………………………3分 设BD 所在直线的解析式为y =kx +b ,∴5225,260.k bk b+=⎧⎨+=⎩解得55,50.kb=⎧⎨=-⎩∴BD所在直线的解析式为y=55x-50.………………………………………5分当y=300时,x=70 11.答:甲家庭到达风景区共花了7011h.……………………………………………6分(3)符合约定.…………………………………………………………7分由图象可知:甲、乙两家庭第一次相遇后在B和D相距最远.在点B处有y乙-y= -5x+25=-5×2+25=15≤15;在点D有y—y乙=5x-25=7511≤15.……………………………………………8分。