平面向量基础试题(一)
平面向量经典试题(含答案)

平面向量1如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC ⋅= .〖解析〗在ABC ∆中,有余弦定理得2222cos1207BC AB AC AB AC ︒=+-⋅⋅=,7BC =,由正弦定理得3sin 7C ∠=,则2cos 7C ∠=,在ADC ∆中,由余弦定理求得222132cos 9AD DC AC DC AC C =+-⋅⋅∠=,则133AD =,由余弦定理得891coc ADC ∠=,1388||||cos ,7()3391AD BC AD BC AD BC ⋅=⋅=⨯⨯-=-. 〖答案〗83-.2.)已知AOB ∆,点P 在直线AB 上,且满足2()OP tPA tOB t R =+∈,则PA PB=( )A 、13B 、12C 、2D 、3〖解析〗如图所示,不妨设,OA a OB b ==;找共线,对于点P 在直线AB 上,有AP AB λ=;列方程,因此有AP AO OP =+2a tPA tb =-++,即12a tbAP t-+=+;而AB AO OB a b =+=-+,即有11212tt tλλ⎧=⎪⎪+⎨⎪=⎪+⎩,因此1t =时13λ=.即有PA PB =12.〖答案〗B .3.在△ABC 中,π6A ∠=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则B ∠等于 ▲ .〖解析〗当点D 无限逼近点C 时,由条件知BD DC ⋅趋向于零,||||AB AC =,即△ABC 是等边三角形.〖答案〗5π12. 4.如右图,在ABC ∆中,04,30AB BC ABC ==∠=,AD 是边BC上的高,则AD AC ⋅的值等于( )ABDCAB O Pab (第2题图)A .0B .4C .8D .-4【答案】B【解析】因为04,30AB BC ABC ==∠=,AD 是边BC 上的高, AD=2BD =1()2442AD AC AD AB BC AD AB AD BC ⋅=⋅+=⋅+⋅=⨯⨯=,选择B 5 在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .2AC AC AB =⋅ B . 2BC BA BC =⋅C .2AB AC CD =⋅ D . 22()()AC AB BA BC CD AB⋅⨯⋅=〖解析〗由于 ||||AC AB AC AB ⋅=⋅cso ∠CAB=|AC |2, 可排除A.||||BA BC BA BC ⋅=⋅cos ∠ABC=||AC 2, 可排除B , 而||||AC CD AC CD ⋅=⋅cos(π-∠ACD)=-||||AC CD ⋅cos ∠ACD<0 , |2|AB >0 , ∴|2|AB ≠AC CD ⋅,可知选C . 〖答案〗C . 6)函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π-.(,2)6D π解析 直接用代入法检验比较简单.或者设(,)a x y ''=根据定义cos[2()]26y y x x π''-=-+-,根据y 是奇函数,对应求出x ',y '答案 B7.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,且AC AE AF λμ=+,其中,R λμ∈,则+λμ= _________. 答案: 4/3 解析:设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+= 8在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 答案 B9.在△ABC 中,=++===n m AC n AB m AP PR CP RB AR 则若,,2,2 ( ) A .32 B .97 C .98 D .1答案:B10.设两个向量22(2cos )λλα=+-,a 和sin 2mm α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是 ( )A.[-6,1] B.[48], C.(-6,1] D.[-1,6]答案:A11.如图,已知正六边形123456PP P P P P ,下列向量的 数量积中最大的是( )A.1213,PP PPB. 1214,PP PPC. 1215,PP PPD. 1216,PP PP答案 A12.)已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则()A.a ⊥eB.e ⊥(a -e )C.a ⊥(a -e )D.(a +e )⊥(a -e ) 答案:B※※13.已知A ,B ,C 是平面上不共线上三点,动点P 满足⎥⎦⎤⎢⎣⎡++-+-=→→→→OC OB OA OP )21()1()1(31λλλ)0(≠∈λλ且R ,则P 的轨迹一定通过ABC ∆的A .内心 B. 垂心 C.重心 D.AB 边的中点 答案 C14. 如图所示,在△ABO 中,OC =41OA ,OD =21OB ,AD 与BC 相交于点M ,设OA =a ,OB =b .试用a 和b 表示向量______OM a b =+. 解 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m-1)a +n b .AD =OD -OA =21OB -OA =-a +21b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t,使得AM =t AD , 即(m-1)a +n b =t(-a +21b ). ∴(m-1)a +n b =-t a +21t b .⎪⎩⎪⎨⎧=-=-21t n t m ,消去t 得:m-1=-2n ,即m+2n=1. ①又∵CM =OM -OC =m a +n b -41a =(m-41)a +n b .CB =OB -OC =b -41a =-41a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线. 8分∴存在实数t 1,使得CM =t 1CB ,∴(m-41)a +n b =t 1⎪⎭⎫ ⎝⎛+-41, ∴⎪⎩⎪⎨⎧=-=-114141t n t m , 消去t 1得,4m+n=1 ② 由①②得m=71,n=73, ∴OM =71a +73b .15.如图所示,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN=2NC ,AM 与BN 相交于点P ,AP ∶PM 的值为______. 解 方法一 设e 1=BM ,e 2=CN , 则AM =AC +CM =-3e 2-e 1, BN =BC +CN =2e 1+e 2.因为A 、P 、M 和B 、P 、N 分别共线,所以存在实数μ、λ,使AP =λAM =-3λe 2-λe 1,BP =μBN =2μe 1+μe 2,∴BA =BP -AP =(λ+2μ)e 1+(3λ+μ)e 2,另外BA =BC +CA =2e 1+3e 2,⎩⎨⎧=+=+3322μλμλ,∴⎪⎪⎩⎪⎪⎨⎧==5354μλ, ∴AP =54AM ,BP =53BN ,∴AP ∶PM=4∶1. 方法二 设AP =λAM , ∵AM =21(AB +AC )=21AB +43AN , ∴AP =2λAB +43λAN . ∵B 、P 、N 三点共线,∴AP -AB =t(AB -AN ),∴AP =(1+t)AB -t ANa b ∴∴⎪⎪⎩⎪⎪⎨⎧-=+=tt λλ4312∴2λ+43λ=1,λ=54,∴AP ∶PM=4∶1.16.设0≤θ<2π,已知两个向量1OP =(cos θ,sin θ),2OP =(2+sin θ,2-cos θ),则向量21P P 长度的最大值是 . A.2B.3C.23 D.32答案 C17.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB •的最小值为(A) 42- (B)32- (C) 422-+ (D)322-+答案:D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,22221tan 1cos 21tan 1x x ααα--==++.PA PB•22221cos 21x x x x α-=⋅=⋅+,令21t x =+,……使用基本不等式得min ()322PA PB •=-+.18.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A.)323,⎡-+∞⎣B. )323,⎡++∞⎣C. 7,4⎡⎫-+∞⎪⎢⎣⎭D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得PABO220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
名校平面向量精选试题

第五章 平面向量一、基础题1.若向量)6,12(),2,4(),6,3(--==-=,则下列结论中错误的是( ) A .v u ⊥ B .w v //C .v u w 3-=D .对任一向量AB ,存在实数b a ,,使v b u a AB +=2.已知a =(-3,2),b =(-1,0),向量a λ+b 与a -2b 垂直,则实数λ的值为( ) A .71-B .71C .61- D .613.己知平面向量满足,与的夹角为60°,则“1m =”是 “()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是( ) A .4πB .2πC .43πD .π5.已知(2,)a m =,(1,)b m =-,若(2)a b b -⊥,则||a =( )A .4B .3C .2D .16.若向量)2,1(),1,1(),1,1(--=-==c b a ,则=c ( )A .2321--B .2321+-C .2123-D .2123+- 7.已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A .5B .10C .5D .25 8.若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为3π,则|a +b |=________. 9.把点A (2,1)按向量a =(-2,3)平移到B ,若2OB BC =-,则C 点坐标为_____.10.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()//a b c λ+,则λ的值为 . 11.向量,满足()(2)4a b a b -+=-,且,,则,夹角的等于______.12.已知)2,(cos x a =,)3,sin 2(x b = ,b a //,则=-x x 2cos 22sin .二.能力题13.定义:||||||sin a b a b θ⨯=,其中θ为向量a 与b 的夹角,若||2a =,||5b =,6a b ⋅=-,则||a b ⨯等于( )A .8-B .8C .8-或8D .614.已知向量),sin ,(cos θθ=向量),1,3(-=则|2|-的最大值、最小值分别是( ) A .24 ,0 B .4,24 C .16,0D .4,015.已知向量,,a b c 中任意两个都不共线,且a b +与c 共线, b c +与a 共线,则向量a b c ++=( )A .aB .bC .cD .016.若是所在平面内的一点,且满足()()0BO OC OC OA +-=,则一定是( )A .等边三角形B .等腰直角三角形C .直角三角形D .斜三角形 17.设Q P 、为△ABC 内的两点,且5121,2534AP AB AC AQ AB AC =+=+,则△ABP 的面积与△ABQ 的面积之比为 ( )A .58 B .35 C .54D .4518.已知|OP ―→|=1,|OQ ―→|=3,OP ―→⊥OQ ―→,点R 在△POQ 内,且∠POR =30°,OR ―→=m OP ―→+n OQ ―→(m ,n ∈R ),则mn等于( )A .13B .3C .33D . 319.向量)0,2(=a,b =(x ,y )若b 与b -的夹角等于6π,则b 的最大值为( )A .2B .32C .4D .334 20.在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .19 B .31C. 1D. 3 21.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = .三.拔高题22.在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰三角形但不是等边三角形.23.函数y =tan(π4x -π2)的部分图像如图所示,则(OB ―→-OA ―→)·OB ―→=( )A .-4B .2C .-2D .424.在平面内,点A 、B 、C 分别在直线l 1、l 2、l 3上,l 1∥l 2∥l 3(l 2在l 1与l 3之间),l 1与l 2之间距离为1,l 2与l 3之间距离为2,且2AB =AB ―→·AC ―→,则△ABC 的面积最小值为( )A .4B .433C .2D .23325.在四边形ABCD 中,()1 1A B DC ==,,113BA BC BD BABCBD+=,则四边形ABCD 的面积为 .26.平面上的向量与满足24MA MB +=,且0=⋅,若点C 满足3231+=,的最小值为________.27.已知A (,),B (,)是函数的图象上的任意两点(可以重合),点M 在直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.28.已知向量2(2sin ,2sin 1),(cos ,3)444x x xm n =-=-,函数()f x m n =⋅. (1)求函数()f x 的最大值,并写出相应x 的取值集合; (2)若()3f πα+=,且(0,)απ∈,求tan α的值.29.已知向量2(cos,1),(3sin ,cos )222x x xm n =-=,设函数()f x m n =∙+12(1)若[0,]2x π∈,)(x f 求cos x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是,,a b c ,且满足2cos 2b A c ≤,求)(B f 的取值范围.30.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , q=(a 2,1),p=(c b -2, C cos )且q p //.求:(1)求sin A 的值; (2)求三角函数式1tan 12cos 2++-CC的取值范围.CACAB DC 8.7 9.)2,0( 10.21 11.0120 12.258- BDDCD BCA 21.6π ADC 25.3 26.4727.(Ⅲ)==,=1++=.28.29.解:(1)依题意得()sin()6f x x π=-,………………………………2分由[0,]2x π∈得:663x πππ-≤-≤,sin()063x π-=>,从而可得cos()63x π-=,………………………………4分则cos cos[()]cos cos()sin sin()66666626x x x x ππππππ=-+=---=-……6分(2)由2cos 2b A c ≤得:cos 2B ≥,从而06B π<≤,……………………10分故f(B)=sin(6B π-)1(,0]2∈- ………………………………12分30.。
平面向量单元测试题及答案

平面向量单元测试题(一)2一,选择题:1,下列说法中错误的是 ( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的2,下列命题正确的是 ( )A. 若→a 、→b 都是单位向量,则 →a =→bB . 若AB =DC ,则A 、B 、C 、D 四点构成平行四边形C. 若两向量→a 、→b 相等,则它们是始点、终点都相同的向量D. AB 与BA 是两平行向量3,下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量AB 的长度与向量BA 的长度相等,D 、若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。
4,已知向量(),1m =a ,若,a=2,则m =( )A .3 C. 1± D.3±5,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ∥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,6,若→a =(1x ,1y ),→b =(2x ,2y ),,且→a ⊥→b ,则有( )A ,1x 2y +2x 1y =0,B , 1x 2y ―2x 1y =0,C ,1x 2x +1y 2y =0,D , 1x 2x ―1y 2y =0,7,在ABC ∆中,若=+,则ABC ∆一定是 ( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定8,已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120B 060C 030D 90o二,填空题:(5分×4=20分)9。
已知向量a 、b 满足==1,a 3-=3,则a +3=10,已知向量a =(4,2),向量b =(x ,3),且a //b ,则x =11,.已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =12,.把函数742++=x x y 的图像按向量a 经过一次平移以后得到2x y =的图像, 则平移向量a 是(用坐标表示)三,解答题:(10分×6 = 60分)13,设),6,2(),3,4(21--P P 且P 在21P P =,,则求点P的坐标14,已知两向量),1,1(,),31,,31(--=-+=b a 求a 与b 所成角的大小,15,已知向量a =(6,2),b =(-3,k ),当k 为何值时,有(1),a ∥b ?(2),a ⊥b ?(3),a 与b 所成角θ是钝角?16,设点A (2,2),B (5,4),O 为原点,点P 满足OP =OA +AB t ,(t 为实数);(1),当点P 在x 轴上时,求实数t 的值;(2),四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由, 17,已知向量OA =(3, -4), OB =(6, -3),OC =(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.18,已知向量.1,43),1,1(-=⋅=n m m n m 且的夹角为与向量向量π(1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅a n ,试求||b n +的取值范围.平面向量单元测试题2答案:一,选择题:A D C D B C C A二,填空题: 9,23; 10,6; 11,13132 12,)3,2(- 三,解答题:13,解法一:设分点P (x,y ),∵P P1=―22PP ,λ=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15,∴ P(―8,15)解法二:设分点P (x,y ),∵P P1=―22PP , λ=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15)解法三:设分点P (x,y ),∵212PP P P =,∴―2=24x+, x=―8,6=23y+-, y=15, ∴ P(―8,15)14,解:a=22, b =2 , cos <a ,b >=―21, ∴<a ,b >=1200, 15,解:(1),k=-1; (2), k=9; (3), k <9,k ≠-116,解:(1),设点P (x ,0),AB =(3,2),∵OP =OA +AB t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即(2),设点P (x,y ),假设四边形OABP 是平行四边形,则有OA ∥BP , ⇒ y=x ―1,OP ∥AB ⇒ 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由OP =OA +AB t ,⇒(x,y)=(2,2)+ t(3,2),得 ∴⎩⎨⎧+=+=t y t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t ,矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
第五章《平面向量》基础测试题.doc(最新)

平面向量测试题(一)选择题(第题5分,共50分)1.下列命题正确的是 ( ))(A 单位向量都相等 )(B 任一向量与它的相反向量不相等 )(C 平行向量不一定是共线向量 )(D 模为0的向量与任意向量共线2. 已知正六边形ABCDEF 中,若=a ,=b ,则= ( ))(A )(21b a - )(B )(21b a + )(C b a - )(D b a +213.计算BA CD DB AC +++等于( ).(A )0 (B ) (C )2 (D )24.若向量=(3,2),=(0,-1),则向量2-的坐标是( ).(A )(3,-4) (B )(-3,4) (C )(3,4) (D )(-3,-4) 5.已知点P 1(-2,4),P 2(5,3),点P 在P 1 P 2的延长线上,且 P P 1=2P P 2,则点P 的坐标为 ( ) A .(38,310) B .(310,38) C .(12,2) D .(2,12) 6.a ·b =0 是a =0或b =0的( )A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分又非必要条件 7.下列各组向量中,共线的是( ).(A )=(-2,3),=(4,6) (B )a =(1,-2),b =(7,14)(C )=(2,3),=(3,2) (D )=(-3,2),=(6,-4)8.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为( ).(A )5 (B )6 (C )7 (D )89.设|a|=1,|b|=2,且a 、b 夹角120°,则|2a +b|等于 ( )2 .A4 .B21 .C32 .D10.设s 、t 为非零实数,与均为单位向量时,若|s +t |=|t -s |,则与的夹角θ 的大小为( ).(A )30° (B )45° (C )60° (D )90°(二)填空题(每题4分,共20分)11.已知a )0,1(+=x ,b ),0(y x -=,c )1,2(=,则满足等式x c b a =+的x 、y 的值分别为 .12.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.13.已知点P 1(1,2),P 2(-2,1),直线P 1P 2与x 轴相交于点P ,则点P 分21P P 所成的比λ 的值为_____.()_.__________向量,则k的值为__且a与b为互相平行的,k,8b ,k ,29已知a 14.=⎪⎭⎫⎝⎛=15.把一个函数图像按向量)2,3(-=π平移后,得到的图象的表达式为2)6sin(-+=πx y ,则原函数的解析式为(三)解答题(16、17每题10分,18、19每题15分)16.已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求及D点坐标.17.已知点A 、B 的坐标分别为(2,-2)、(4,3),向量(21,2)a λ=- .按下列条件分别求λ的值(1)a AB ⊥ ; (2) //a AB ;(3) ||||a AB = 。
平面向量高考试题精选(含详细答案)

平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是.21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值X围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF与其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值X围是(0,]故答案:(0,]21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值X围是.。
高一数学平面向量基本定理试题答案及解析

高一数学平面向量基本定理试题答案及解析1.(本小题满分14分)在四边形中,已知,,.(1)若四边形是矩形,求的值;(2)若四边形是平行四边形,且,求与夹角的余弦值.【答案】(1)18;(2)【解析】(1)由四边形是矩形知,再通过构造三角形,利用向量加法与减法将,用和表示出来,利用向量数量积的运算法则求出的值;(2)过构造三角形,利用向量加法与减法将,用和表示出来,利用向量数量积的运算法则通过计算的值列出关于与数量积的方程,求出与数量积,再利用向量夹角公式求出与的夹角的余弦值.试题解析:(1)因为四边形是矩形,所以由得:,. 3分∴. 7分(2)由题意,∴10分又,∴,∴.又∴,即.(利用坐标法求解,同样给分) 14分考点:向量的加法运算;向量数量积的运算法则和性质;向量夹角;方程思想;转化与化归思想2.如图,在△中, ,是上的一点,若,则实数的值为( )A.B.C.D.【答案】C【解析】如下图,∵B,P,N三点共线,∴,∴,即,∴①,又∵,∴,∴②,对比①,②,由平面向量基本定理可得:.【考点】1.平面向量的线性运算;2.平面向量基本定理.3.下列命题中,正确的是.①平面向量与的夹角为,,,则;②已知,是平面内两个非零向量,则平面内任一向量都可表示为,其中;③已知,,其中,则;④是所在平面上一定点,动点P满足:,,则直线一定通过的内心.【答案】①③④【解析】①:,①正确;②:根据平面基本定理的描述,作为基底的两个向量必须保证不共线才行,②错误;③:∵,,其中,∴,③正确;④:由,又∵,∴平分,即直线一定通过的内心.【考点】1.平面向量基本定理;2.平面向量的线性运算;3.平面向量的数量积.4.如图,在平行四边形中,,,,则()(用,表示)A.B.C.D.【答案】D【解析】.【考点】平面向量的基本定理,三角形法则.5.在平面直角坐标系中,给定,点为的中点,点满足,点满足.(1)求与的值;(2)若三点坐标分别为,求点坐标.【答案】(1);(2)点的坐标为.【解析】先引入平面向量的基底,如,然后将分别用基底表示,最后得到,而另一方面,再根据平面向量的基本定理得到方程组,求解方程组即可;(2)先确定的坐标,设,再结合,得到,从而得到,求解即可得到点的坐标.试题解析:(1)设则 2分,,故 4分而由平面向量基本定理得,解得 6分(2)、、,由于为中点, 9分设,又由(1)知所以可得,解之得所以点的坐标为 12分.【考点】1.平面向量的线性运算;2.平面向量的基本定理;3.平面向量的坐标运算.6.如图,向量若则【答案】-.【解析】由题,BP=BA,所以BO+OP=(B0+OA),整理得OP=OA-OB+OB, OP=OA+OB,所以x=,y=,x-y=-.【考点】向量.7.若,且,则四边形的形状是________.【答案】等腰梯形【解析】,共线,所以平行且不等,又有,所以四边形为等腰梯形【考点】向量共线点评:若两向量共线,则满足关系式,由向量共线可判定直线平行8.已知,,当=时,(1) 与垂直;当=时, (2) 与平行。
平面向量测试题及答案

平面向量测试题及答案 This model paper was revised by LINDA on December 15, 2012.平面向量测试题一.选择题1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .MD .3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .4 5.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a 6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。
(常考题)北师大版高中数学必修四第二章《平面向量》测试(包含答案解析)(1)

【分析】
设 , ,设 ,则 ,由 ,得到 , ,再利用 ,得到 ,再设 ,得到 ,根据 ,可解得结果.
【详解】
因为 ,所以可设 , ,
设 ,则 ,
由 ,得 ,所以 ,
由 ,得 ,化简得 ,所以 ,
所以由 ,得 ,
所以 ,
设 ,则 ,所以 ,
所以 ,
由 ,得 ,解得 ,
所以 ,
所以 ,
所以 ,
故答案为: .
15.已知正方形 的边长为4,若 ,则 的值为_________________.
16.已知圆 , 点为圆上第一象限内的一个动点,将 逆时针旋转90°得 ,又 ,则 的取值范围为________.
17.已知平面非零向量 ,满足 且 ,已知 ,则 的取值范围是________
18. 中, , ,且 ,则 ______.
6.C
解析:C
【详解】
由题意可得 ,所以 ,又因为 ,所以 ,选C.
7.B
解析:B
【分析】
根据方程有实根得到 ,利用向量模长关系可求得 ,根据向量夹角所处的范围可求得结果.
【详解】
关于 的方程 有实根
设 与 的夹角为 ,则
又
又
本题正确选项:
【点睛】
本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.
此时,符合条件的点 有 个.
综上所述,满足题中条件的点 的个数为 .
故选:D.
【点睛】
本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.
9.B
解析:B
【分析】
由 知, ,根据平面向量的线性运算可推出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础试题(一)一.选择题(共12小题)1.已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)2.若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°3.已知均为单位向量,它们的夹角为60°,那么=()A.B. C.D.44.已知向量满足||=l,=(2,1),且=0,则||=()A.B.C.2 D.5.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.6.已知点P(﹣3,5),Q(2,1),向量,若,则实数λ等于()A.B.﹣C.D.﹣7.已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是()A.4 B.﹣1 C.﹣48.已知平面向量,且,则为()A.2B.C.3 D.19.已知向量=(3,1),=(x,﹣1),若与共线,则x的值等于()A.﹣3 B.1 C.2 D.1或210.已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.11.下列四式不能化简为的是()A.B. C.D.12.如图所示,已知,=,=,=,则下列等式中成立的是()A.B.C.D.二.选择题(共10小题)13.已知向量=(2,6),=(﹣1,λ),若,则λ=.14.已知向量=(﹣2,3),=(3,m),且,则m= .15.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .16.已知,若,则等于.17.设m∈R,向量=(m+2,1),=(1,﹣2m),且⊥,则|+|= .18.若向量=(2,1),=(﹣3,2λ),且(2﹣)∥(+3),则实数λ=.19.设向量,不平行,向量+m与(2﹣m)+平行,则实数m= .20.平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为.21.向量,若,则λ=.22.设B(2,5),C(4,﹣3),=(﹣1,4),若=λ,则λ的值为.三.选择题(共8小题)23.在△ABC中,AC=4,BC=6,∠ACB=120°,若=﹣2,则•= .24.已知,的夹角为120°,且||=4,||=2.求:(1)(﹣2)•(+);(2)|3﹣4|.25.已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.26.已知向量=(3,4),=(﹣1,2).(1)求向量与夹角的余弦值;(2)若向量﹣λ与+2平行,求λ的值.27.已知向量=(1,2),=(﹣3,4).(1)求+与﹣的夹角;(2)若满足⊥(+),(+)∥,求的坐标.28.平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.29.已知△ABC的顶点分别为A(2,1),B(3,2),C(﹣3,﹣1),D在直线BC上.(Ⅰ)若=2,求点D的坐标;(Ⅱ)若AD⊥BC,求点D的坐标.30.已知,且,求当k为何值时,(1)k与垂直;(2)k与平行.平面向量基础试题(一)参考答案与试题解析一.选择题(共12小题)1.(2017•天津学业考试)已知向量=(1,2),=(﹣1,1),则2+的坐标为()A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1)【解答】解:∵=(1,2),=(﹣1,1),∴2+=(2,4)+(﹣1,1)=(1,5).故选:A.2.(2017•天津学业考试)若向量,满足||=,=(﹣2,1),•=5,则与的夹角为()A.90°B.60°C.45°D.30°【解答】解:∵=(﹣2,1),∴,又||=,•=5,两向量的夹角θ的取值范围是,θ∈[0,π],∴cos<>===.∴与的夹角为45°.故选:C.3.(2017•甘肃一模)已知均为单位向量,它们的夹角为60°,那么=()A.B. C.D.4【解答】解:∵,均为单位向量,它们的夹角为60°,∴====.故选C.4.(2017•龙岩二模)已知向量满足||=l,=(2,1),且=0,则||=()A.B.C.2 D.【解答】解:||=l,=(2,1),且=0,则||2==1+5﹣0=6,所以||=;故选A5.(2017•山东模拟)已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.6.(2017•日照二模)已知点P(﹣3,5),Q(2,1),向量,若,则实数λ等于()A.B.﹣C.D.﹣【解答】解:=(5,﹣4).∵,∴﹣4×(﹣λ)﹣5=0,解得:λ=.故选:C.7.(2017•金凤区校级一模)已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是()A.4 B.﹣1 C.﹣4【解答】解:+=(﹣1,2+x).﹣=(3,2﹣x),∵+与﹣平行,∴3(2+x)+(2﹣x)=0,解得x=﹣4.故选:C.8.(2017•西宁二模)已知平面向量,且,则为()A.2B.C.3 D.1【解答】解:∵∥,平面向量=(1,2),=(﹣2,m),∴﹣2×2﹣m=0,解得m=﹣4.∴=(﹣2,﹣4),∴||==2,故选:A.9.(2017•三明二模)已知向量=(3,1),=(x,﹣1),若与共线,则x 的值等于()A.﹣3 B.1 C.2 D.1或2【解答】解:=(3,1),=(x,﹣1),故=(3﹣x,2)若与共线,则2x=x﹣3,解得:x=﹣3,故选:A.10.(2017•汕头二模)已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=()A.﹣3 B.3 C.﹣D.【解答】解:向量=(1,2),=(2,﹣3),则m+=(m+2,2m﹣3),3﹣=(1,9);又m+与3﹣共线,∴9(m+2)﹣(2m﹣3)=0,解得m=﹣3.故选:A.11.(2017•河东区模拟)下列四式不能化简为的是()A.B. C.D.【解答】解:由向量加法的三角形法则和减法的三角形法则,===,故排除B==故排除C==,故排除D故选A12.(2017•海淀区模拟)如图所示,已知,=,=,=,则下列等式中成立的是()A.B.C.D.【解答】解:===.故选:A.二.选择题(共10小题)13.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=﹣3 .【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.14.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m= 2 .【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.15.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= 7 .【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.16.(2017•龙凤区校级模拟)已知,若,则等于 5 .【解答】解:∵=(2,1),=(3,m),∴﹣=(﹣1,1﹣m),∵⊥(﹣),∴•(﹣)=﹣2+1﹣m=0,解得,m=﹣1,∴+=(5,0),∴|+|=5,故答案为:5.17.(2017•芜湖模拟)设m∈R,向量=(m+2,1),=(1,﹣2m),且⊥,则|+|= .【解答】解:=(m+2,1),=(1,﹣2m),若⊥,则m+2﹣2m=0,解得:m=2,故+=(5,﹣3),故|+|==,故答案为:.18.(2017•南昌模拟)若向量=(2,1),=(﹣3,2λ),且(2﹣)∥(+3),则实数λ=﹣.【解答】解:2﹣=(7,2﹣2λ),+3=(﹣7,1+6λ),∵(2﹣)∥(+3),∴7(1+6λ)+7(2﹣2λ)=0,解得λ=﹣.故答案为:﹣.19.(2017•武昌区模拟)设向量,不平行,向量+m与(2﹣m)+平行,则实数m= 1 .【解答】解:∵向量,不平行,向量+m与(2﹣m)+平行,∴,解得实数m=1.故答案为:1.20.(2017•龙岩一模)平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为 1 .【解答】解:=(3,6),=(x,2),∵∥,∴6x﹣6=0,可得x=1.故答案为:1.21.(2017•海淀区校级模拟)向量,若,则λ= 1 .【解答】解:∵,∴2(λ+1)﹣(λ+3)=0,解得λ=1.故答案为:1.22.(2017•重庆二模)设B(2,5),C(4,﹣3),=(﹣1,4),若=λ,则λ的值为﹣2 .【解答】解:=(2,﹣8),∵=λ,∴(2,﹣8)=λ(﹣1,4),∴2=﹣λ,解得λ=﹣2.故答案为:﹣2.三.选择题(共8小题)23.(2017•临汾三模)在△ABC中,AC=4,BC=6,∠ACB=120°,若=﹣2,则•= .【解答】解:∵=﹣2,∴AD==(﹣).∴•=(﹣)=(﹣﹣)=﹣﹣•=﹣×42﹣×4×6×(﹣)=,故答案为:.24.(2017春•宜昌期末)已知,的夹角为120°,且||=4,||=2.求:(1)(﹣2)•(+);(2)|3﹣4|.【解答】解:,的夹角为120°,且||=4,||=2,∴•=||•||cos120°=4×2×(﹣)=﹣4,(1)(﹣2)•(+)=||2﹣2•+•﹣2||2=16+4﹣2×4=12;(2)|3﹣4|2=9||2﹣24•+16||2=9×42﹣24×(﹣4)+16×22=16×19,∴|3﹣4|=4.25.(2017春•荔湾区期末)已知平面向量,满足||=1,||=2.(1)若与的夹角θ=120°,求|+|的值;(2)若(k+)⊥(k﹣),求实数k的值.【解答】解:(1)||=1,||=2,若与的夹角θ=120°,则=1•2•cos120°=﹣1,∴|+|====.(2)∵(k+)⊥(k﹣),∴(k+)•(k﹣)=k2•﹣=k2﹣4=0,∴k=±2.26.(2017春•赣州期末)已知向量=(3,4),=(﹣1,2).(1)求向量与夹角的余弦值;(2)若向量﹣λ与+2平行,求λ的值.【解答】解:向量=(3,4),=(﹣1,2).(1)向量与夹角的余弦值==;(2)若向量﹣λ=(3+λ,4﹣2λ)与+2=(1,8)平行,则8(3+λ)=4﹣2λ,解得λ=﹣2.27.(2017春•郑州期末)已知向量=(1,2),=(﹣3,4).(1)求+与﹣的夹角;(2)若满足⊥(+),(+)∥,求的坐标.【解答】解:(I)∵,∴,∴,∴,∴,∴.设与的夹角为θ,则.又∵θ∈[0,π],∴.(II)设,则,∵⊥(+),(+)∥,∴,解得:,即.28.(2017春•巫溪县校级期中)平面内给定三个向量=(1,3),=(﹣1,2),=(2,1).(1)求满足=m+n的实数m,n;(2)若(+k)∥(2﹣),求实数k.【解答】解:(1)=m+n,∴(1,3)=m(﹣1,2)+n(2,1).∴,解得m=n=1.(2)+k=(1+2k,3+k),2﹣=(﹣3,1),∵(+k)∥(2﹣),∴﹣3(3+k)=1+2k,解得k=﹣2.29.(2017春•原州区校级期中)已知△ABC的顶点分别为A(2,1),B(3,2),C(﹣3,﹣1),D在直线BC上.(Ⅰ)若=2,求点D的坐标;(Ⅱ)若AD⊥BC,求点D的坐标.【解答】解:(Ⅰ)设点D(x,y),则=(﹣6,﹣3),=(x﹣3,y﹣2).∵=2,∴,解得x=0,y=.∴点D的坐标为.(Ⅱ)设点D(x,y),∵AD⊥BC,∴=0又∵C,B,D三点共线,∴∥.而=(x﹣2,y﹣1),=(x﹣3,y﹣2).∴解方程组,得x=,y=.∴点D的坐标为.30.(2017春•南岸区校级期中)已知,且,求当k 为何值时,(1)k与垂直;(2)k与平行.【解答】解:(1),∴﹣5+2t=1,解得t=2.∵k与垂直,∴(k)•()=﹣3=k(1+t2)+(1﹣3k)﹣3×(25+4)=0,联立解得.(2)k=(k﹣5,2k+2),=(16,﹣4).∴16(2k+2)+4(k﹣5)=0,解得.。