化工原理第一章节第二章节资料

合集下载

化工原理公式及各个章节总结汇总

化工原理公式及各个章节总结汇总

第一章 流体流动与输送机械1. 流体静力学基本方程:gh p p ρ+=022. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p )3. 伯努力方程:ρρ222212112121p u g z p u g z ++=++4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρρ222212112121+ 5. 雷诺数:μρdu =Re6. 范宁公式:ρρμλfp d lu u d l Wf ∆==⋅⋅=22322 7. 哈根-泊谡叶方程:232d lup f μ=∆ 8. 局部阻力计算:流道突然扩大:2211⎪⎭⎫ ⎝⎛-=A A ξ流产突然缩小:⎪⎭⎫ ⎝⎛-=2115.0A A ξ第二章 非均相物系分离1. 恒压过滤方程:t KA V V V e 222=+令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22第三章 传热1. 傅立叶定律:n t dAdQ ϑϑλ-=,dxdt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:bt t AQ 21-=λ,或mA b tQ λ∆=4. 单层圆筒壁的定态热传导方程: )ln1(21221r r t t l Q λπ-=或m A b tt Q λ21-=5. 单层圆筒壁内的温度分布方程:C r l Qt +-=ln 2λπ(由公式4推导)6. 三层圆筒壁定态热传导方程:34123212141ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-=7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α8. 努塞尔数λαl Nu =普朗克数λμCp =Pr 格拉晓夫数223μρβtl g Gr ∆= 9. 流体在圆形管内做强制对流:10000Re >,1600Pr 6.0<<,50/>d lk Nu Pr Re 023.08.0=,或kCp du d ⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=λμμρλα8.0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+=无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝:)(12221t t c q r q Q p m m -== 11. 总传热系数:21211111d d d d b K m ⋅+⋅+=αλα 12. 考虑热阻的总传热系数方程:212121211111d d R R d d d d b K s s m ⋅++⋅+⋅+=αλα 13. 总传热速率方程:t KA Q ∆=14. 两流体在换热器中逆流不发生相变的计算方程:⎪⎪⎭⎫⎝⎛-=--22111112211lnp m p m p m c q c q c q KA t T t T 15. 两流体在换热器中并流不发生相变的计算方程:⎪⎪⎭⎫ ⎝⎛+=--22111122111lnp m p m p m c q c q c q KA t T t T 16. 两流体在换热器中以饱和蒸气加热冷流体的计算方程:2221ln p m c q KAt T t T =--第四章 蒸发1. 蒸发水量的计算:110)(Lx x W F Fx =-=2. 水的蒸发量:)1(1x x F W -= 3. 完成时的溶液浓度:WF F x -=4. 单位蒸气消耗量:rr D W '=,此时原料液由预热器加热至沸点后进料,且不计热损失,r 为加热时的蒸气汽化潜热r ’为二次蒸气的汽化潜热5. 传热面积:mt K QA ∆=,对加热室作热量衡算,求得Dr h H D Q c =-=)(,1t T t -=∆,T 为加热蒸气的温度,t 1为操作条件下的溶液沸点。

化工原理第一章第二节

化工原理第一章第二节

第一章流体流动第一章流体流动第三节流体流动的基本方程一、流量与流速二、稳态流动与非稳态流动三、连续性方程式四、柏努利方程式五、柏努利方程式的应用1.3.1 流量与流速1、流量流量: 单位时间内流过管道任一截面的流体量。

体积流量V S:若流量用体积来计量,单位为:m 3/s 质量流量W S:若流量用质量来计量,单位:kg/s 。

体积流量和质量流量的关系是:ρS S V W =2、流速流速u : 单位时间内流体在流动方向上流过的距离,单位为:m/s数学表达式为:AV u S =流量与流速的关系为:uAV S=ρuA W S =对于圆形管道,24dA π=24d V u S π=uV d S π4=——管道直径的计算式质量流速:单位时间内流体流过管道单位面积的质量流量用G 表示,单位为kg/(m 2.s)。

数学表达式为:A W G s =AV S ρ=ρu = 1.3.2 稳态流动与非稳态流动稳定流动:描述流动的物理量与时间无关的流动稳定流动u =f (x ,y ,z )非稳定流动u =f (x ,y ,z ,θ )1.3.2 稳态流动与非稳态流动流动系统稳态流动流动系统中流体的流速、压强、密度等有关物理量仅随位置而改变,而不随时间而改变非稳态流动上述物理量不仅随位置而且随时间变化的流动。

1.3.3 连续性方程在稳定流动系统中,对直径不同的管段做物料衡算衡算范围:取管内壁截面1-1’与截面2-2’间的管段。

衡算基准:1s对于连续稳定系统:21SSWW=ρuAWs=222111ρρAuAu=如果把这一关系推广到管路系统的任一截面,有:常数=====ρρρuAAuAuWS L222111若流体为不可压缩流体常数======uAAuAuWV SS L2211ρ——一维稳定流动的连续性方程对于圆形管道,22221144duduππ=21221⎟⎟⎠⎞⎜⎜⎝⎛=∴dduu表明:当体积流量VS一定时,管内流体的流速与管道直径的平方成反比。

化工原理-第一章-2

化工原理-第一章-2

We
hf
2021/7/13
∵ p
2 1
d
p
v2 v1
pdv
p2 p1
vdp
代入上式得:
gZ
u 2 2
p2 p1
vdp
We
hf
——流体稳定流动过程中的机械能衡算式
2)柏努利方程(Bernalli’s equation)
当流体不可压缩时,
p2 p1
vdp
v
p2 p1
p
2021/7/13
gZ
当地大气压强为101.33×103Pa。
2021/7/13
R
1
2
1
2


h
分析:
已知d
求流量Vh
Vh
3600u
4
求u
d2
直管 任取一截面
气体
判断能否应用?
柏努利方程
2021/7/13
解:取测压处及喉颈分别为截面1-1’和截面2-2’ 截面1-1’处压强 :
P1 = HggR =136009.810.025 = 3335Pa(表压)
截面2-2’处压强为 :
P2 = gh = 10009.810.5 = 4905Pa(表压)
流经截面1-1’与2-2’的压强变化为:
P1 P2 (101330 3335) (101330 4905)
P1
(101330 3335)
= 0.079 = 7.9% < 20%
2021/7/13
对于连续稳定系统:
2021/7/13
WS= uA u1A11 = u2A22
如果把这一关系推广到管路系统的任一截面,有:
WS = u1A11 = u2A22 = = uA = 常数

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

化工原理第一章主要内容

化工原理第一章主要内容

化⼯原理第⼀章主要内容第⼀章流体流动流体:⽓体和液体统称流体。

流体的特点:具有流动性;其形状随容器形状⽽变化;受外⼒作⽤时内部产⽣相对运动。

质点:⼤量分⼦构成的集团。

第⼀节流体静⽌的基本⽅程静⽌流体的规律:流体在重⼒作⽤下内部压⼒的变化规律。

⼀、流体的密度ρ1. 定义:单位体积的流体所具有的质量,kg/m 3。

2. 影响ρ的主要因素液体:ρ=f(t),不可压缩流体⽓体:ρ=f(t ,p),可压缩流体3.⽓体密度的计算4.混合物的密度5.与密度相关的⼏个物理量⽐容υ⽐重(相对密度) d ⼆、压⼒p 的表⽰⽅法定义:垂直作⽤于流体单位⾯积上的⼒ 1atm=760mmHg=1.013×105Pa=1.033kgf/cm 2 =10.33mH2O 1at=735.6mmHg=9.807×105Pa =1kgf/cm 2 =10mH20 表压 = 绝对压⼒ - ⼤⽓压⼒真空度 = ⼤⽓压⼒ - 绝对压⼒三、流体静⼒学⽅程特点:各向相等性;内法线⽅向性;在重⼒场中,同⼀⽔平⾯上各点的静压⼒相等,但其值随着点的位置⾼低变化。

1、⽅程的推导 2、⽅程的讨论液体内部压强 P 随 P 0 和 h ⽽改变的; P ∝h ,静⽌的连通的同⼀种液体内同⼀⽔平⾯上各点的压强相等;当P 0改变时,液体内部的压⼒也随之发⽣相同的改变;⽅程成⽴条件为静⽌的、单⼀的、连续的不可压缩流体;h=(P-P 0)/ρg ,液柱⾼可表⽰压差,需指明何种液体。

3、静⼒学⽅程的应⽤ (1)压⼒与压差的测量 U 型管压差计微差压差计(2)液位的测定(3)液封⾼度的计算 m Vρ=(),f t p ρ=4.220M =ρ000T p p T ρρ=PM RT ρ=12121n m n a a a ρρρρ=+++1122......m n nρρ?ρ?ρ?=+++mm PM RTρ=1/νρ=41/,gh p p ρ+=0()12A C P P gR ρρ-=-() gz21A B A gR P P ρρρ+-=-第⼆节流体流动的基本⽅程⼀、基本概念(⼀)流量与流速1.流量:单位时间流过管道任⼀截⾯的流体量。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

化工原理各章节知识点总结

化工原理各章节知识点总结

化工原理各章节知识点总结化工原理是化学工程与技术的基础课程之一,主要涉及物质的物理性质、能量转化、传质现象、化学反应等方面的知识。

下面是化工原理各章节知识点的总结。

第一章:化工基本概念与物质的物理性质1.1化学工程与化学技术的发展历史与现状1.2化工过程及其特点1.3物质的物理性质-物质的密度、比重、相对密度-物质的表观密度、气体密度-物质的粘度、表面张力、折射率-物质的热容、导热系数、热膨胀系数-物质的流变性质第二章:能量转化与传递2.1能量的基本概念2.2热力学第一定律2.3热力学第二定律2.4热力学第三定律2.5热力学循环第三章:物质的传递过程3.1传质的基本概念与分类3.2质量传递平衡方程3.3传质速率和传质通量3.4界面传质-液-气界面传质-液-液界面传质-固-液界面传质-固-气界面传质3.5传质过程中的最速传质与弛豫时间第四章:化工流体的流动4.1流体的基本性质4.2流体的流动类别4.3流体的流动方程-流体的质量守恒方程-流体的动量守恒方程-流体的能量守恒方程4.4流体内运动的基本规律-斯托克斯定律-流体的相对运动-流体的运动粘度4.5流体的管道流动-管道内的雷诺数-管道的流动阻力第五章:多元物系中物质的平衡与分离5.1多元物系基本概念5.2雾滴定律5.3吸附平衡5.4蒸汽液平衡5.5溶液中的平衡情况5.6气相-液相-固相三相平衡第六章:化学反应与反应工程6.1化学反应动力学6.2化学平衡6.3化学反应速率6.4反应器的基本类型-批次反应器-连续流动反应器-均质反应器-非均质反应器6.5反应器的设计与操作以上是化工原理各章节的知识点总结,涵盖了物理性质、能量转化、传质现象、化学反应等方面的内容。

这些知识点是化学工程与技术的基础,对于理解和应用化工原理具有重要意义。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结:
静止、连续、均质、不可压缩流体
p1 gZ1 p2 gZ2
流体静力学方程式:
p1
g
Z1

p2
g
Z2
p1

Z1g

p2

Z2g
两点间压差公式 P1 P2 A B gR
2019/10/28
第一章 流体流动
第二节 流体动力学
2019/10/28

gZ
u2

p
=
总机械能
=
常数
2
位动

能能


所以:伯努利方程式是单位质量流体机械能守恒方程式
用液柱高度表示
Z u 2 p 常数
2g g
2019/10/28
2)实际流体的伯努利方程式
实际流体—有粘性,流动过程中有内摩擦作用,消耗部分机械能。
Z1

u12 2g

p1
g

Z2

u22 2g

p2

R
J / kg
Z1

u12 2g

p1
g

H

Z2

u22 2g

p2
g
H
f
m
2019/10/28
2、柏努利方程式的讨论
1)柏努利方程式表明理想流体在管内做稳定流动,没有外功加入 时,任意截面上单位质量流体的总机械能即动能、位能、静压能之和为 一常数。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机械能 却不一定相等,可以相互转换。
2)对于实际流体,在管路内流动时,应满足: 上游截面处的总机械能大于下游截面处的总机械能。
2019/10/28
3、柏努利方程式的应用
应用柏努利方程的注意事项 1)作图并确定衡算范围
根据题意画出流动系统的示意图,并指明流体的流动方向,定出上 下截面,以明确流动系统的衡标范围。 2)截面的截取 两截面都应与流动方向垂直,并且两截面的流体必须是连续的,所
qm1 qm2
qm uA
得到
u1 A11 u2 A2 2
将这一关系推广到管路系统的任一截面,有:
qm u1 A11 u2 A2 2 uA 常数
若流体为不可压缩流体
qv

qm

u1 A1
u2 A2
uA 常数
—稳定流动的连续性方程
2019/10/28
对于圆形管道,
u1

4
d12

u2

4
d22
u1 u2


d2 d1
2
表明:当体积流量一定时,管内流体的流速与管道直径的平方成 反 比。
注:连续性方程应用于管道流动时必须充满整个管道,不能有间断 之处。其常用于变截面流动计算,而且是流体力学的基础。
2019/10/28
四、能量衡算方程式
流动的流体,任一点上的物理参数,
不稳定流动 有部分或全部随时间而改变。
2019/10/28
2019/10/28
三、连续性方程
在连续稳定流动系统中,对直径不同的管段做物料衡算
衡算范围:取管内壁截面1-1’与截面2-2’及其之间的管段。 衡算基准:单位时间,1s
2019/10/28
对于连续稳定系统,有:

p2
g
Hf
H f ——压头损失,m
外界输入机械功:
Z1

u12 2g

p1
g
H

Z2

u22 2g

p2
g
H f
H —— 外加压头,m
2019/10/28
乘g:
Z1g

u12 2

p1

We

Z2g

u22 2

p2

R
R g H f 单位质量流体的能量损失, J / kg
求得未知量应在两截面或两截面之间,截面的有关物理量Z、u、p等
除了所求的物理量之外 ,都必须是已知的或者可以通过其它关系式 计算出来。
2019/10/28
3)基准水平面的选取 所以基准水平面的位置可以任意选取,但必须与地面平行,为了 计算方便,通常取基准水平面通过衡算范围的两个截面中的任意 一个截面。如衡算范围为水平管道,则基准水平面通过管道中心 线,ΔZ=0。
A A
质量流速:单位时间内流体流过管道单位面积的质量流量用 G表示,单位为kg/(m2.s)。
与流量及流速的关系为:
G qm qv uA u
AA A
2019/10/28
二、稳定流动与不稳定流动源自流动系统流动系统中,流体在任一点上的流
稳定流动 速、压强、密度等有关物理量都不
随时间而改变。
动能: 流体以一定的流速流动而具有的能量。
质量为m,流速为u的流体所具有的动能 1 mu2 (J ) 2
单位质量流体所具有的动能 1 u 2 (J / kg) 2
2019/10/28
静压能(流动功):
通过某截面的流体具有的用于克服压力功的能量
单位质量流体所具有的静压能 p (J / kg)
例:如图锥形管,水由上而下流动。如果两测点之间的摩擦阻力忽
略不计,试求水得流量为多少m3/h。
解:如图 范围:1-1 2-2 基准:1-1面
依题意: H f =0
列伯努利方程:
We 0
Z1
g

4)单位必须一致 在应用柏努利方程之前,应把有关的物理量换算成一致的单位, 然后进行计算。两截面的压强除要求单位一致外,还要求表示方 法一致。
2019/10/28
应用伯努利方程可解决的问题:
• 流量测定 • 流动体系的压差测量 • 输送流体所需要的功 • 高位槽的位置 • 流向的判断
2019/10/28
1、流体流动的总能量衡算
伯努利方程式: 1)理想流体的伯努利方程式
gZ u 2 p 常数
2
2019/10/28
伯努利方程式的物理意义
gZ u 2 p 常数
2
位能:流体因处于重力场内而具有的能量。
质量为m流体的位能 mgZ(J ) 单位质量流体的位能 gZ (J / kg)
一、流量与流速
1、流量
单位时间内流过管道任一截面的流体量,称为流量。
流量
体积流量,单位为:m3/s。 质量流量,单位:kg/s。
q q 质量流量和体积流量的关系是:
m
v
2、流速
单位时间内流体在流动方向上流过的距离,称为流速,用u表示,
单位为:m/s。
2019/10/28
流量与流速的关系为: u qv qm
We gH 单位质量流体的外加能量,也称为有效功。 J / kg
2019/10/28
伯努利方程式
理想流体
Z1g
u12 2

p1

Z2g
u22 2

p2

Z1

u12 2g

p1
g

Z2

u22 2g

p2
g
J / kg m
实际流体
Z1g

u12 2

p1

We

Z2g

u22 2
相关文档
最新文档